
Searching for a compromise between satisfaction

and diversity in database fuzzy querying

Olivier Pivert,1 Allel Hadjali,1 Grégory Smits2

1Irisa-Enssat, Lannion, France, {pivert, hadjali}@enssat.fr
2Irisa-IUT Lannion, France, gregory.smits@univ-rennes1.fr

Abstract

This paper deals with fuzzy queries and describes an ap-

proach that aims at providing users with a set of answers

which satisfies a diversity criterion on one or several at-

tributes. Different cases are considered and two types

of algorithms are described. The first one, which has a

linear complexity in terms of the number of tuples in the

result, is suited to the case where the notion of similar-

ity underlying the definition of diversity is crisp. The

second one, based on a trial and error strategy, makes it

possible to deal with fuzzy similarity, but its high com-

plexity means that it can be employed only when a rela-

tively small sets of tuples is used to increase diversity.

Keywords: Databases, fuzzy queries, diversity.

1. Introduction

The idea of introducing preferences into queries is gain-

ing more and more attention in the database community.

In this paper, we focus on the fuzzy-set-based approach

to preference queries, which is founded on the use of

fuzzy set membership functions that describe the pref-

erence profiles of the user on each attribute domain in-

volved in the query. Then, satisfaction degrees associ-

ated with elementary conditions are combined using a

panoply of fuzzy set connectives, which go much be-

yond conjunction and disjunction.

Taking into account the user preferences makes it

possible to compute discriminated answers, thus to re-

turn only the k best, or those whose satisfaction degree

reaches a specified threshold α. In both cases, the final

result only depends on the initial preferences, the thresh-

old (either quantitative or qualitative), and of course the

data present in the database. In some cases, however, it

appears useful to impose an additional constraint, which

concerns the variety of the elements in the result.

Let us consider for instance a user looking for an

apartment to rent (he/she wants to check the k best)

located in Paris, with a surface of about 50 m2 and a

monthly rent of about 1000 euros. The user may wish

to have a certain diversity in terms of the geographical

location of the apartments in the result. He/she can then

express his/her query the following way:

select k * from Apt

where city = ’Paris’ and surface ≈ 50 and rent ≈ 1000

scattered on district.

where the new clause scattered on aims to insure the

greatest possible diversity among the answers on the

specified attribute(s).

The idea which consists in seeking a compromise be-

tween satisfaction (or similarity to a query) and diversity

(or dissimilarity between the elements of the result) has

been initially proposed by par B. Smyth et al. [7], and

by McSherry [6] in a context of recommender systems.

Several approaches aimed at diversifying search results

have subsequently been proposed both in the database

and information retrieval fields (see, e.g., the survey [3]).

In the following we consider the definition of diversity

given in [6] and we extend it to the case where fuzzy

database queries are dealt with.

Of course, the quest for diversity must not imply too

important a loss in terms of the satisfaction level of the

answers. In this paper, we propose algorithms which

aim at finding a solution optimal wrt two hierarchized

criteria. More precisely, the goal is to build a result of

cardinality k which i) is as diverse as possible on the set

of attributes specified by the user, and ii) has an average

satisfaction degree as high as possible, the first criterion

being prioritary over the second (knowing that the tu-

ple replacement process aimed at increasing diversity is

strictly controlled and cannot replace a good tuple by a

too mediocre one).

The remainder of the paper is structured as follows. In

Section 2, we recall basic notions about fuzzy queries.

In Section 3, we consider the case where the diversity

criterion concerns a single attribute, and we discuss pos-

sible algoritms for both cases where similarity is seen as

a Boolean or a gradual notion. Section 4 is devoted to

a brief discussion about complexity. Section 5 discusses

the situation where several attributes are concerned by

the diversity requirement. Section 6 presents related

work. Finally, Section 7 recalls the main contributions

and outlines some perspective for future work.

2. Fuzzy queries

The operations from relational algebra can be straight-

forwardly extended to fuzzy relations by considering

fuzzy relations as fuzzy sets on the one hand and by

introducing gradual predicates in the appropriate oper-

ations on the other hand. The definitions of these ex-

tended relational operators can be found in [1]. As an

illustration, we give the definition of the fuzzy selection

hereafter, where r denotes a (fuzzy or crisp) relation and

cond is a fuzzy predicate.

µsel(r, cond)(t) = ⊤(µr(t), µcond(t)).

EUSFLAT-LFA 2011 July 2011 Aix-les-Bains, France

© 2011. The authors - Published by Atlantis Press 402

The language called SQLf described in [2] extends SQL

so as to support fuzzy queries. Here, we just describe the

base block in SQLf since this is all we need for our pur-

pose. The principal differences w.r.t. SQL affect mainly

two aspects :

• the calibration of the result since it is made with

discriminated elements, which can be achieved

through a number of desired answers (k), a mini-

mal level of satisfaction (α), or both, and

• the nature of the authorized conditions which may

include fuzzy predicates and fuzzy operators.

Therefore, the base block is expressed as:

select [distinct] [k | α | k, α] attributes from relations
where fuzzy-cond

where fuzzy-cond may involve both Boolean and fuzzy

conditions.

3. Diversity on a single attribute

Let resk be the set of the k best answers to a given fuzzy

query. The idea is to introduce a certain diversity into

the result without decreasing the satisfaction level of the

answers too much. Let divk be the diversity degree asso-

ciated with resk. In a first step, one will assume that the

clause scattered on only involves one attribute, denoted

by Adiv . One may define divk as follows [6]:

divk =

∑k−1
i=1

∑k

j=i+1(1− sim(ti, tj))
k·(k−1)

2

(1)

where ti and tj denote two tuples of resk and sim is

defined as follows:

sim(t, t′) = µsAdiv
(t.Adiv, t

′.Adiv) (2)

with µsAdiv
the membership function attached to a simi-

larity relation defined over the domain of attribute Adiv .

One considers the following constraint: a tuple t of de-

gree µ may be replaced by a tuple t′ of degree µ′ iff

µ− µ′ ≤ p (3)

where p is a given constant (for instance 0.15). The ob-

jective is then to find the set of tuples res′

k which maxi-

mizes div′

k while respecting the previous constraint.

Remark. In [6], the author authorizes a decrease of the

average satisfaction which is upper bounded by a thresh-

old α ∈ [0, 1]. The constraint we consider is slightly

different but more general.

Let rv denote the “reserve” of tuples (i.e., the set of tu-

ples which can be used to replace some of the tuples

from resk in order to increase diversity). One will ex-

amine the possible replacements of the tuples from resk
by the tuples from rv. The objective is to maximize div′

k

(the diversity of the modified set of k answers), and fi-

nally to return the set res′

k which has the highest average

degree µ′

k among those which have the maximal diver-

sity.

3.1. Boolean similarity

The reserve rv is made of those tuples whose indice is

higher than k in the initial result, and whose degree µ is

such that µ ≥ µmin−p, with µmin the degree of the kth

tuple of resk. An optimal greedy algorithm is described

hereafter.

Principle of an optimal greedy algorithm.

One tries to build a result of cardinality k:

1. containing as many distinct values of Adiv as pos-

sible and

2. whose average satisfaction degree is as high as pos-

sible,

the first criterion being more prioritary than the second.

Let ψ denote the condition from the where clause. One

takes the tuples from resk in decreasing order of their

degree µψ . The first step of the algorithm is as follows:

• let µmrv be the highest satisfaction degree among

the tuples from the reserve. One first looks for the

smallest indice i ∈ {1, . . . , k}— let us denote it by

i0 — such that µ(resk[i])− p ≤ µmrv. The tuples

from resk whose indice is in [1, i0 − 1] stay un-

changed (and are saved in res′

k) since they cannot

be replaced due to the constraint on the satisfaction

degree.

• for each tuple ti, i = i0, . . . , k, one performs

the following treatment: if ti.Adiv is not already

present in res′

k, then ti is added to res′

k. Other-

wise, tuple ti is marked so that it can be used later

(let M be the list of marked tuples).

• for every marked tuple ti of M (scanned in in-

creasing order of µψ), one looks for the best pos-

sible substitute t′ to ti in the reserve rv such that

t′.Adiv /∈ res
′

k[Adiv]. The reserve rv is scanned in

decreasing order of µψ . If such a substitute (which

must satisfy µψ(t′) ≥ µψ(ti)− p) is found, one in-

serts it at the end of res′

k and one removes it from

the reserve.

At the end of this first step, if the cardinality of res′

k

equals k, the process is over (and the diversity of the re-

sult equals 1). Otherwise, additional steps are necessary.

One saves res′

k in a list c_sol and one reinitializes res′

k

with the first tuple of M . The next step is similar to the

first one, but resk is replaced by M . And so on, until

one gets k tuples in c_sol.

Proof of the correctness of this greedy algorithm.

By construction, it is quite clear that the set contain-

ing the highest possible diversity in terms of Adiv is

built. Duplicates are introduced only when there is no

possibility anymore of having all distinct elements, then

triples only when duplicates have been introduced in the

most diverse way possible, and so on. The fact that the

resulting set has the highest possible satisfaction degree

is guaranteed by the order in which the tuples are con-

sidered (in decreasing order of their satisfaction degree

µψ).�

403

3.2. Gradual similarity

In the case where similarity is considered to be a grad-

ual concept, an optimal solution can be obtained using a

trial and error algorithm.

A first question is: what size should the reserve be?

Even if it is theoretically possible to go as far as those

tuples whose degree equals µmin − p, this can be risky

because if the reserve is too large, the algorithm may

take too much time to converge. Therefore, it seems

more reasonable to set both an upper bound for the pa-

rameter k that the user may use in his/her query, and for

the size nmax of the reserve (for instance kmax = 20
and nmax = 30).

A second question is: is it possible to determine some

pruning criteria? The answer is yes, as we show below.

Trial and error algorithm

Let resk = {t1, . . . , tk} be the initial set of the k best

answers. One denotes by res′

k the modification of resk
obtained at any moment of the process. Let us consider

the replacement of tuple ti from resk by tuple t′ from

rv. One obviously has µψ(ti) ≥ µψ(t′).

Let us denote by µ′

k the average satisfaction degree of

the elements of res′

k. This degree evolves as follows:

µ′

knew
=
k · µ′

kold
− µψ(ti) + µψ(t′)

k

= µ′

kold
−

(µψ(ti)− µψ(t′))

k
.

The trial and error algorithm tests all the possible sub-

stitutes for t1 (on top of the case which consists in leav-

ing t1 unchanged), then all the possible substitutes for

t2, and so on. Let us denote by solopt the correspond-

ing recursive procedure. The call solopt(i) includes the

cases:

1. one does not replace ti,
2. one replaces ti by one of the t′ from rv not already

used (by taking them in decreasing order of their

degree µψ , i.e., by starting with the (k + 1)th ele-

ment of the result, which is the first element of rv,

cf. the first pruning criterion below).

A possible substitute t′ not already taken is satisfactory

iff µψ(ti)− µψ(t′) ≤ p. The following pruning criteria

may be used:

• if µψ(ti)− µψ(t′) > p, then it is not worth testing

the tuples t′′ located after t′ in rv. Indeed, these

elements can only be nonsatisfactory as well.

• as soon as div′

k = 1, one may stop the evaluation of

the currrent branch since it is impossible to do bet-

ter. Indeed, additional replacements can only de-

crease µ′

k — one then leaves the following tuples

unchanged in the current branch;

• Let divkopt
denote the maximal diversity at a given

moment of the calculus. If this diversity cannot be

reached by pursuing the current branch, then this

branch can be abandoned. Let us suppose that step

i has just been performed (i.e., the ith tuple of resk
has just been replaced). Let divi be the diversity

degree of the set containing the i tuples already pro-

cessed in res′

k:

divi =

∑i−1
j=1

∑i

u=j+1(1− sim(tj , tu))
i·(i−1)

2

.

Let restmax(i) the quantity that must be added

to divi in order to get the maximal diversity de-

gree already obtained, once the k tuples processed

(restmax(i) corresponds to the case where all the

remaining tuples are absolutely not pairwise simi-

lar and not similar at all to any of the i tuples al-

ready present):

restmax(i) = 1−
i·(i−1)

2
k·(k−1)

2

= 1−
i · (i− 1)

k · (k − 1)
.

if one has:

divi + restmax(i) < divkopt

then the current branch can be abandoned.

Other optimizations:

• Let µk+1 denote the degree associated with the

first tuple of the reserve and µq that associated

with the qth tuple of resk. The initial call will be

solopt(q) with q the smallest integer in [1, k] such

that µq ≤ µk+1 + p. Indeed, the tuples of a rank

q′ < q cannot be replaced due to the constraint (3)

on the degrees. If µk > µk+1 + p, it is not worth

running the procedure, since the diversity level can-

not be increased.

• In any case, it is useless to consider the replace-

ment of the first tuple of resk. Let us denote this

tuple by t1. Let µmax be its associated satisfac-

tion degree. If t1 is the only tuple of resk which

has the value t1.Adiv , then it is useless to replace

it because it cannot increase diversity. On the other

hand, if there exists at least another tuple t′ of resk
such that t′.Adiv = t1.Adiv , then it is better to re-

place one (or several) of those (and not t1), since

this will decrease the average satisfaction degree

less (or at least not more). In the worst case (in

terms of complexity), the initial call will thus be

solopt(2). One may refine further by saying that if

there are several tuples with degree µmax in resk,

then one must rank this first group in such a way

that all the distinct values of Adiv are on top of

the list. If there exist u tuples with degree µmax
and distinct Adiv-values, then the initial call will

be solopt(u+ 1).

Non-optimal greedy algorithm.

The principle is as follows. One computes the most di-

verse set of answers containing i elements by consid-

ering the most diverse set containing (i − 1) elements

returned by the algorithm (via a recursive call), and by

404

completing it with the element which maximizes diver-

sity over the i items. Again, between two sets with equal

maximal diversity, one chooses that which maximizes

the average satisfaction degree. Of course, a tuple can be

used to replace another only if constraint (3) is satisfied.

The stop condition (i = 1) returns the list composed of

the element on top of resk.

Let us show that this algorithm is not optimal. Let us

consider the tuples t1, . . . , t4 such that t1.Adiv = a,

t2.Adiv = b, t3.Adiv = c, t4.Adiv = d. Let us suppose

that the similarity degrees are:

• sim(a, b) = 0,
• sim(a, c) = 0.5,
• sim(a, d) = 0.4,
• sim(b, c) = 0.7,
• sim(b, d) = 0.9,
• sim(c, d) = 0.1.

We assume that the first three tuples have degree 1 wrt

condition ψ, and that the fourth has degree 0.8. Let us

look for the optimal set composed of three elements. Ini-

tially, resk = {t1, t2, t3} and rv = {t4}. The trial

and error algorithm returns the correct answer which is

{t1, t3, t4}, whose diversity degree equals 0.67, whereas

the greedy algorithm returns {t1, t2, t3}whose diversity

degree equals 0.6.

However, if diversity is defined on the basis of a distance

in a unidimensional space, this greedy algorithm is opti-

mal, because a situation such as the previous one cannot

occur. Similarly, in the case where similarity is Boolean,

this algorithm returns an optimal answer.

Proof of the correctness in the Boolean case.

Let us prove that any result of cardinality q which is

maximally diverse (and has the maximal average sat-

isfaction degree) contains a result of cardinality q − 1
which is maximally diverse (and whose average satis-

faction degree is maximal). The set resq can then be

obtained by completing resq−1 with an additional ele-

ment, that which leads to the maximal diversity at order

q. For the sake of simplification, one assumes that the

Boolean similarity relation is equality. In this case, one

has:

divq =

∑q

i=1 nbdif(ti, resq)

q · (q − 1)

where ti is the tuple of rank i in resq and nbdif(ti, E)
denotes the number of tuples t′ of E such that t′ 6= t ∧
t.Adiv 6= t′.Adiv . One can also write:

divq = 1−

∑q

i=1 nbeq(ti, resq)

q · (q − 1)
(4)

where nbeq(ti, E) is the number of tuples t′ of E such

that t′ 6= t ∧ t.Adiv = t′.Adiv .

Case 1. All of the elements of resq have distinct Adiv-

values (divq = 1). Let t0 be the element (or one of the el-

ements) of smallest satisfaction degree in resq. Clearly,

resq−1 = resq\{t0} is optimal at order q− 1 (diversity

equals 1 and the average satisfaction degree is maximal).

Case 2. The set resq contains at least two t and t′ such

that µsAdiv
(t, t′) = 1 (i.e., such that t.Adiv = t′.Adiv

considering equality). Let

D(resq) =

{t ∈ resq | ∃t
′ ∈ resq s.t. t 6= t′ ∧ t.Adiv = t′.Adiv}.

Let us define:

D2(resq) =

{t ∈ resq | card({t′ | t.Adiv = t′.Adiv}) = 2}

D3(resq) =

{t ∈ resq | card({t′ | t.Adiv = t′.Adiv}) = 3}

. . .

Dq(resq) =

{t ∈ resq | card({t′ | t.Adiv = t′.Adiv}) = q}

One has: D(resq) = D2 ∪ . . . ∪Dq. Let q′ be the high-

est i such that Di 6= ∅. Let t0 be the tuple (or one of

the tuples) of Dq′ of smallest satisfaction degree. Let

resq−1 = resq\{t0}. Starting from Formula (4), one

may establish:

div(resq) = 1−

(q − 1)(1− div(resq−1)) + 2nbeq(t0, resq)

q
.

(5)

Let us show that resq−1 is optimal at order q − 1. One

must show that there does not exist any set Eq−1 of car-

dinality q − 1 such that

(div(Eq−1) > div(resq−1) ∨

(div(Eq−1) = div(resq−1) ∧

µavg(Eq−1) > µavg(resq−1))).

Let us use a reductio ad absurdum reasoning. Let t →
t′ be the replacement that makes it possible to obtain a

diversity level at order q − 1 higher than that of resq−1.

Let res′

q−1 (resp. res′

q) be the set obtained from resq−1

(resp. resq) by replacing t by t′.

• let us first suppose that t.Adiv 6= t0.Adiv . One has:

nbeq(t0, res
′

q) = nbeq(t0, resq).

It is clear from Formula (5) that in this case, by in-

creasing diversity at order q− 1, one also increases

diversity at order q:

div(res′

q−1) > div(resq−1)

⇒ div(res′

q) > div(resq).

Now, div(res′

q) > div(resq) contradicts the fact

that set resq is maximally diverse at order q. The

reasoning is similar when one considers a replace-

ment t→ t′′ which yields a diversity level at order

q− 1 equal to that of resq−1 with an average satis-

faction degree greater than µavg(resq−1).

• Let us now suppose that t.Adiv = t0.Adiv . One

has:

nbeq(t0, res
′

q) = nbeq(t0, resq)− 1.

Again, one gets div(res′

q) > div(resq). Hence,

there is a contradiction.�

405

Remark. The algorithm proposed in [6], which attempts

to maximize diversity in a retrieval set (see Algo. 1 be-

low), is in fact suboptimal, as we show hereafter. In this

algorithm, k is the required size of the retrieval set, and

Init is a non-empty set of cases that is to be extended to

provide a retrieval set RSet of the required size. Cand
is a set of candidate cases for addition to RSet.

begin
RSet← Init;
while |RSet| < k do

Cbest ← first(Cand);
Dmax ←
relative_diversity(Cbest, RSet);
foreach C ∈ Cand do

if relative_diversity(C, RSet) >
Dmax then

Cbest ← C;

Dmax ←
relative_diversity(C, RSet)

end

end

RSet← {Cbest} ∪RSet;
Cand← Cand− {Cbest}

end

end

Algorithm 1: MaxD(Init, RSet, Cand, k)

It is assumed that function relative_diversity is based

on Formula (1). Let us consider the following four tu-

ples:

t1 = (a1, b1, c1, d1, e1, f1)
t2 = (a2, b2, c2, d2, e2, f3)
t3 = (a1, b1, c1, d2, e2, f2)
t4 = (a2, b2, c2, d1, e3, f3)

One gets the following similarity degrees (based on the

ratio of attribute values shared by the tuples, as in [6]):

sim(t1, t2) = 0, sim(t1, t3) = 3/6, sim(t1, t4) = 1/6
sim(t2, t3) = 2/6, sim(t2, t4) = 4/6, sim(t3, t4) = 0.

Let us suppose that the best answer is t1 (which is then

used to initialize the retrieval set). Algorithm MaxD
returns, as the most diverse set, (t1, t2, t3) of diversity

level (1+3/6+4/6)/3 = 13/18 — or (t1, t2, t4) which

also has the diversity value (1+5/6+2/6)/3 = 13/18.

Now, there actually exists a more diverse set: (t1, t3, t4)
whose diversity level equals (3/6+5/6+1)/3 = 14/18.

The problem with Algorithm MaxD is the following.

At step 1, it adds t2 to the retrieval set since t2 is the

element which has the highest diversity with t1, but then

one cannot “undo” this choice, and since both t3 and t4
have a rather high similarity with t2, the final set is not

optimal.

4. About complexity

Clearly, the first type of algorithm (the optimal greedy

one), which corresponds to the crisp similarity case, has

a θ(n) complexity in the number of diversity compu-

tations to be performed (where n denotes the number

of tuples involved). Some preliminary experimental re-

sults show that it is able to produce the optimal diver-

sified result in less than one second even when the re-

serve contains thousands of tuples (the reserve is stored

in main memory). Notice that the use of a crisp simi-

larity is meaningful in many situations where categori-

cal attributes are handled, but not only (see the example

given in the introduction, for instance).

When a fuzzy similarity relation is used, the algorithm

based on a trial and error strategy, due to its high com-

plexity, can be employed only when a relatively small

sets of tuples is considered by the diversification pro-

cess (on average, the experiments performed show that

the response time remains reasonable for a reserve that

contains less than 30 tuples). This can be enough for

some applications, but cannot be considered a realistic

solution in general.

The non-optimal greedy algorithm is of course much

more efficient (its complexity is quadratic), but it only

provides a suboptimal solution in general. It remains to

be studied whether the difference in quality between the

result it returns and the optimal one can be bounded. The

preliminary experimentation that we carried out shows

that in general, the approximation obtained is of a good

quality, but this observation has yet to be generalized.

5. Diversity on several attributes

Let us now consider the case where several attributes are

involved in the diversity requirement. LetAdiv be the set

of attributes present in the clause scattered on.

5.1. Boolean similarity

Two cases have to be considered:

• Adiv = {A1, . . . , An} is a “flat” set of attributes.

One may define similarity as follows:

sim(t, t′)

=

{

1 iff t.A1 = t′.A1 and . . . and t.An = t′.An

0 otherwise.

The previous optimal greedy algorithm may be ap-

plied directly.

• Adiv = {A1, . . . , An} is a list describing a hierar-

chy A1 ≻ . . . An. This means that one wishes to

diversify first on A1, then on A2, etc, then on An
(this idea is proposed in [8]). More precisely, the

approach proposed in [8] aims at finding the sub-

set r of (resk ∪ rv) whose cardinality equals k and

which is maximally diverse on A1, such that every

group of tuples of r which have the same A1-value

a1,i is maximally diverse onA2 (i.e., there does not

exist any k-cardinality subset of (resk ∪ rv) such

that the group of tuples which have the A1-value

a1,i is more diverse on A2), ..., and such that every

group of tuples of r which have the same values on

A1 . . . An−1 is maximally diverse on An.

406

The algorithm proposed in [8] assumes available a

data structure called Dewey tree [4]) representing

the tuples of the underlying relation (and not only

those from (resk ∪ rv)) according to the (fixed)

hierarchy between the attributes concerned by the

diversity requirement. Considering the rigidity

of this method, one may envisage the following

simplification (which corresponds to an alternative

view of hierarchical diversity): one first diversifies

on A1, then for each group of tuples that share the

same value of A1, one diversifies on A2, and so

on. Diversity on A2 is then maximized on every

group of tuples resulting from the choice made on

A1, and not for the whole set of global possible

solutions (i.e., of subsets of (resk ∪ rv) with a car-

dinality equal to k). The optimal greedy algorithm

proposed in Subsection 3.1 can then be used in a

nested way.

One may also adapt the greedy algorithm proposed

above to the gradual similarity case. Let us re-

call that this algorithm is optimal in the case of a

Boolean similarity. The adaptation would consist

in making the algorithm compute a maximal (in the

sense of the lexicographic order) vector of scores
at each step, instead of a maximal score. Notice

that this view of multiattribute diversity also dif-

fers from that advocated in [8] and constitutes a

third possible interpretation of hierarchical diver-

sity. Indeed, with such a modified algorithm, di-

versity would be computed on the referential com-

posed of all the top-k tuples for A1, A2, ..., An,

whereas in [8], the diversity on A2 (for instance) is

maximized for each prefix a1,i over the subset of

tuples (of cardinality k) which have this prefix.

5.2. Gradual similarity

Two views are possible in the case where a gradual sim-

ilarity is used:

• one computes a multiattribute similarity (defined,

e.g., as the arithmetic mean — or a weighted mean

in the case where importances are associated with

the different attributes — or even the minimum —

of the similarities defined on each attribute), and

one then has only one global diversity degree to

maximize;

• one maximizes the mean of the diversities on each

of the attributes from Adiv taken separately.

In both cases, the previous algorithms (corresponding to

the case where diversity is defined on a single attribute

and similarity is gradual) can be directly generalized, by

considering that Adiv is now a set. The case where a

hierarchy is handled is not as clear and deserves further

investigation. First, it is necessary to define what could

be the interpretation of such a hierarchy when a gradual

similarity is used.

6. Related work

As mentioned before, the pioneering works in this field

are those by B. Smyth [7] and D. McSherry [6] in a con-

text of recommender systems. Since then, several defi-

nitions of diversity have been proposed, see the survey

paper by Drosou and Pitoura [3].

In [5], the authors propose an approximate greedy al-

gorithm whose quality seems good, but they consider a

different definition of diversity (a set is considered di-

verse if every pair of values from that set has a dissimi-

larity at least equal to a predefined threshold).

In the approach described in [8], the user may attach

a priority to each attribute on which he/she wishes to

diversify the result. The authors propose several types

of algorithms but only consider Boolean similarity. Be-

sides, the preferences in terms of diversity on a given

database are specified once and for all by a domain ex-

pert, where we consider a type of diversity requirement

which may be specified by the user inside a query.

Let us also mention [9] which i) uses a different defi-

nition of diversity, based on entropy, ii) proposes to max-

imize a linear combination of diversity and global satis-

faction. This approach, proposed in a decision-making

context, does not use any fuzzy similarity relation, and

does not specify any algorithm for efficiently comput-

ing the most diverse set of top-k answers (which, in a

database framework, is a crucial aspect).

7. Conclusion

In this paper, we have considered fuzzy queries to re-

lational databases and described an approach that aims

at providing users with sets of answers which satisfy a

diversity criterion on one or several attributes. Different

cases have been considered and two types of algorithms

have been described. The first one, which has a linear

complexity in terms of the number of tuples in the result,

is suited to the case where the notion of similarity under-

lying the definition of diversity is crisp. The second one,

based on a trial and error strategy, makes it possible to

deal with fuzzy similarity, but its high complexity means

that it can be used only for relatively small sets of tuples.

As a perspective for future work, it would be inter-

esting to study how this approach could be applied to

overcome the plethoric answer problem (which occurs

when too many items satisfy a user query).

References

[1] P. Bosc, B. Buckles, F. Petry, and O. Pivert. Fuzzy

databases. In J. Bezdek, D. Dubois, and H. Prade,

editors, The Handbooks of Fuzzy Sets Series, vol.
3: Fuzzy Sets in Approximate Reasoning and Infor-
mation Systems, pages 403–468. Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1999.

[2] P. Bosc and O. Pivert. SQLf: a relational database

language for fuzzy querying. IEEE Trans. on Fuzzy
Systems, 3:1–17, 1995.

407

[3] M. Drosou and E. Pitoura. Search result diversifica-

tion. Sigmod Record, 39(1):41–47, 2010.

[4] L. Guo, F. Shao, C. Botev, and J. Shanmugasun-

daram. Xrank: Ranked keyword search over xml

documents. In Proc. of SIGMOD’03, pages 16–27,

2003.

[5] A. Jain, P. Sarda, and J. R. Haritsa. Providing diver-

sity in k-nearest neighbor query results. In Proc. of
PAKDD’04, pages 404–413, 2004.

[6] D. McSherry. Diversity-conscious retrieval. In Proc.
of ECCBR’02, pages 219–233, 2002.

[7] B. Smyth and P. McClave. Similarity vs. diversity.

In Proc. of ICCBR’01, pages 347–361, 2001.

[8] E. Vee, U. Srivastava, J. Shanmugasundaram,

P. Bhat, and S. Amer-Yahia. Efficient computation

of diverse query results. In Proc. of ICDE’08, pages

228–236, 2008.

[9] R. R. Yager. Including a diversity criterion in deci-

sion making. Int. J. Intell. Syst., 2010.

408

