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Searching for a solution to the automatic RBF network
design problem
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Abstract

While amazing applications have been demonstrated in di+erent science and engineering
,elds using neural networks and evolutionary approaches, one of the key elements of their
further acceptance and proliferation is the study and provision of procedures for the auto-
matic design of neural architectures and associated learning methods, i.e., in general, the
study of the systematic and automatic design of arti,cial brains. In this contribution, con-
nections between conventional techniques of pattern recognition, evolutionary approaches,
and newer results from computational and statistical learning theory are brought together in
the context of the automatic design of RBF regression networks. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

A signi,cant number of neural network architectures have been studied in the
literature, for a partial list of key references see e.g. [23–25,64]. An integral part of
the subject of study here, RBF networks were introduced in [5,36,44]. Extensions
were presented among others in [29,43,7,15,42,38,47–49,56,27]. The relationship
between neural networks and pattern recognition is becoming increasingly closer
as discussed recently in [50] and the references therein, further in-depth treatment of
related issues can be found in [41,51,37,20,45,34,4,14]. Evolutionary computation
is a fascinating research discipline incorporating areas of study which have become
known as evolutionary programming and strategies as well as genetic algorithms
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[1]. Characteristic of these stochastic search procedures is its population-based ap-
proach. To perform computational tasks, the individuals of the population compete
and communicate, as in natural evolutionary systems. The original foundations are
reviewed in [26,18,30,13,54] and in their references.
Neural, fuzzy, and evolutionary methods have been very actively researched and

developed for key pattern recognition tasks including classi,cation, clustering, and
regression, see e.g. [39,2,40,33]. On the other hand, conventional pattern recogni-
tion techniques have been used in neural networks, notably clustering algorithms
like k-means clustering, speci,cally for the design of radial basis function (RBF)
network architectures. Advances in the application of evolutionary approaches to
design neural networks have been reported, key references specially with regards
to RBF network design are included e.g. in [3,60,62,12,10].
This paper is subdivided as follows. Section 2 concisely reviews RBF regression

networks. Section 3 formulates the problem of their automatic design from a com-
putational learning theoretical perspective. Section 4 discusses evolving solutions to
the automatic RBF network design problem based on conventional pattern recogni-
tion techniques, constructive procedures, statistical learning theoretical means, and
evolutionary approaches. Section 5 discusses a concrete example for the automatic
design of an RBF regression network using a constructive procedure to help the
reader visualize the ingredients of the design process. Section 6 discusses some
results from the perspective of searching for a solution to the automatic design of
RBF regression networks. Finally, Section 7 provides conclusions.

2. RBF regression networks

RBF networks that solve nonlinear regression tasks are called RBF regression
networks. To get an idea of the regression task itself, the linear multivariate re-
gression case is described in the sequel. The purpose of regression analysis can
be summarized as to determine whether and which kind of a quantitative rela-
tionship (expressed by a regression equation) exists between two vector variables:
the criterion variable x̃∈Rn and the predictor variable ỹ∈Rm, as well as to as-
sess the prediction accuracy of the regression equation. Under zero-mean Gaussian
noise ñ∈Rm ∼N(0;V); V is its covariance matrix, the data model is de,ned by
the following regression equation: ỹ= b̃ + A · x̃ + ñ, where b̃∈Rm and A∈Rm×n

represents a linear transformation.
In the case of a scalar predictor variable y∈R, the matrix A becomes a row

vector w̃ and the decision function from the data model without considering the
noise component becomes f(̃x)= b+ w̃ · x̃ where b∈R and · represents the scalar
product. To generate a solution for a concrete regression problem, data are pro-
vided in one or more sets {(̃xi; yi); x̃i ∈Rn; yi ∈R; i=1; : : : ; N}. In the case of a
nonlinear transformation f :Rn → R the data model becomes much more complex
and neural networks o+er an eHcient solution for that purpose, in particular RBF
regression networks. RBF networks possess three layers: one input, one hidden, and
one output layer. The hidden layer contains neurons realizing basis functions. The
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Table 1
Examples of RBF nonlinearities

Function name Function expression �(r; c)=
(c=constant)

Linear r
Cubic r3

Thin plate spline r2 log r
Gaussian exp(−r2=c2)
Multiquadric (r2 + c2)±1=2

ouput layer contains one neuron for the approximation of functions f :Rn → R.
The approximation function gm realized by a network architecture with m hidden
units has the form in (1). The weights wi; i=1; : : : ; m are parameters weighting
the connections between each of the hidden neurons and the output neuron.
The basis functions �i :Rn → R realized in the individual hidden units are pa-

rameterized scalar functions, which are built using a given nonlinearity � :R → R.
To parameterize this function, the centers c̃i and the widths �i for i=1; : : : ; m
are used, see (2). Examples of nonlinearities for RBF networks are summarized in
Table 1, one of the most commonly used is the Gaussian nonlinearity. A more gen-
eral form of the basis functions is given in (3). The basis functions �i; i=1; : : : ; m
are parameterized by the center c̃i and the width matrix �i, which in general has
the form stated in (4). Ri is a rotation matrix that represents the orientation of
a hyperellipsoid with respect to the given coordinate system in Rn. The hyperel-
lipsoid is the corresponding support region for a given basis function. Outside of
the hyperellipsoid, the value of the function � tends to disappear fast with the
distance to this region. Di is a diagonal matrix, whose elements are the square of
the semiaxes �2ij ; j=1; : : : ; n of the hyperellipsoid. A common choice is the use of
hyperspherical support regions, i.e., ∀j=1; : : : ; n: �ij=�i, in which case it is suH-
cient to determine one scalar width �i per width matrix �i, essentially simplifying
the expression for the basis functions �i in (3) to the one in (2).

gm(̃x)=
m∑
i=1

wi · �i (̃ci; �i; x̃); (1)

�i (̃ci; �i; x̃)=�(‖̃x − c̃i‖; �i); 16 i6m; (2)

�i (̃x)=�[(̃x − c̃i)T · �−1
i · (̃x − c̃i)]; x̃∈Rn; (3)

�i=RTi ·Di · Ri; Di=diag[�2i1; : : : ; �
2
in]: (4)

3. Formulating the problem of the automatic design of RBF networks

From a computational learning theoretical perspective, i.e., following the prob-
ably approximately correct (PAC) learning from examples model originally stated
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in [57] for Boolean functions and taking into consideration decision theoretic gen-
eralizations to characterize learning from examples of real-valued functions, see
e.g. [22], the basic learning problem is formalized in terms of six elements: the
instance space X , the outcome space Y , the decision space A, the decision rule
space H= {h :X → A}, a family P of joint probability distributions P on the
sample space Z =X × Y , and a family L of regret functions L.
The regret function L :P×H → R+ is de,ned in terms of a chosen loss function

l :Y×A → R to measure how much we failed to generate the optimal decision rule.
In typical regression problems a function f :X → Y needs to be approximated by
h∈H on the basis of given data generated according to an unknown distribution P
from X ×Y and l is the quadratic loss function de,ned by l(y; h(x))= (h(x)−y)2.
An example of how to de,ne the regret function L in terms of a chosen loss
function l is shown in (5), where 0¡!¡ 1 is called the accuracy parameter and
d# (#¿ 0) is a metric to measure distance from optimality according to (6). rh; l
de,nes the expected loss of a given decision rule h according to (7) and r∗l (P)
denotes the in,mum of rh; l(P) over all h∈H.

L(P; h)=L!;#(P; h)=



1 if d#(rh; l(P); r∗l (P))¿!;

0 otherwise;
(5)

d#(r; s)=
|r − s|

#+ r + s
; r; s∈R; r; s¿ 0; (6)

rh; l(P)=E(l(y; h(x)))=
∫
Z
l(y; h(x)) dP(x; y): (7)

The de,nition of a learning method follows. Given Z =X × Y and a sample
z̃ =((x1; y1); : : : ; (xm; ym)) randomly obtained from Zm according to an unknown
distribution Pm; P ∈P, a learning method is de,ned in (8). The goal of learning
is formally de,ned as minimizing the so-called big “L” risk in (9) of A under P
for the sample size m. We say that a learning method A solves the basic learning
problem if (10) holds, 0¡'¡ 1 is called the con,dence parameter. For the re-
gret function example L!;# given before, RL;A;m(P)6 ' translates into demanding
according to the typical PAC approach that when m random training examples are
generated according to P and given to the learning method A, the error of the
decision rule generated by the learning method A and measured with the regret
function L!;# has a distance greater than ! from optimal using the metric d# with
probability at most '. The smallest value of such m is called the sample complexity
of the learning method A and is denoted m(L; ').

A:
⋃
m¿1

Zm → H; (8)

RL;A;m(P) =
∫
z̃ ∈Zm

L(P;A(̃z)) dPm(̃z); (9)

∀L∈L; ∀'; ∃m=m(L; ') such that:
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∀P ∈P: RL;A;m(P)6 ': (10)

The de,nition of the associated optimization problem follows, which is relevant
for practical environments. For that purpose, the empirical risk is ,rst de,ned.
For a given decision rule h and a given random training sample z̃=(z1; : : : ; zm);
zj=(xj; yj)∈Z drawn according to an unknown distribution P the empirical risk is
de,ned in (11) and r̂∗(̃z)= inf{r̂h(̃z): h∈H}. The associated optimization problem
with the basic learning problem can then be stated: given the training sample z̃,
,nd a decision rule ĥ∈H such that r̂ĥ(̃z) is close to r̂∗(̃z). In [22] a result shows
that a learning method A which is a solution to the associated optimization prob-
lem, provides a solution to the basic learning problem, provided that the empirical
risk estimates are uniformly convergent. In practice, the common situation is to
solve the associated optimization problem, then only ,nite-sized training sets are
available.

r̂h(̃z)=
1
m

m∑
j=1

l(yj; h(xj)): (11)

This general learning theoretical discussion summarized is the basis for the
understanding of the learning-from-examples problem as a whole, in particular
for the understanding of the complexity of learning, and applies to learning us-
ing RBF regression networks. Two kinds of complexity are considered when a
learning-from-examples problem is being investigated from a learning-theoretical
perspective: the sample complexity and the computational complexity. The sample
complexity refers to the number of examples needed to generate a good approxi-
mation. The computational complexity refers to the computational e+ort required to
generate the approximation from the examples given. A bound for the sample com-
plexity of ,xed, ,nite-sized RBF networks is given in (12), ! and ' are parameters
used to de,ne the accuracy and the con,dence in the learning model, respectively.
# is used to parameterize a metric d# to measure the distance from optimality. W
and m are the number of parameters (weights) and the number of hidden neurons
(basis functions), respectively. This bound translates into the following statement.
The training set size and the number of parameters should be in a nearly linear
relationship for a good approximation, at least in the worst case.

O
(
1
!2#

(
W log

m
!#
+ log

1
'

))
: (12)

The relationship in (13) for the generalization error measured using the metric
L2(P) has been introduced in [38]. P(̃x; y) is an unknown probability distribution
de,ned on X̃ × Y . The examples provided in the training set are sampled from
X̃ × Y according to P(̃x; y). With probability greater than 1 − ', (13) holds for
a Gaussian RBF network with m hidden units, input dimension n, and a training
set of size N . f0 represents the regression function to be approximated by the
function f̂m;N realized by a ,nite RBF network with m hidden units trained using
a given ,nite training set {(̃xj; yj); j=1; : : : ; N}. f̂m;N represents a solution to the
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associated non-convex optimization problem given in (14). The bound for the gen-
eralization error can be decomposed into an approximation error bound j(m) [16]
and an estimation error bound 2w(N;m; ') [17] that correspond to the two terms
on the right side of expression (13). This relationship shows how the number of
parameters (hypothesis complexity), the number of examples (sample complexity),
and the generalization error are related. In particular, due to this relationship it can
be concluded that m needs to grow more slowly than N for guaranteed conver-
gence, otherwise the estimation error w(N;m; ') will diverge. For a ,xed number
of training data N there is an optimal number of centers m=m∗(N ) that minimizes
the generalization error. For a low value of m the approximation and estimation
error terms are high and low, respectively. For a high value of m the approxi-
mation and estimation error terms are low and high, respectively. m∗(N ) lies in
between.

‖f0 − f̂m;N‖2L2(P)6O
(
1
m

)
+O

([
nm ln(mN )− ln '

N

]1=2)
; (13)

f̂m;N =arg minwi ;̃zi ;�i

N∑
j=1

[
yj −

m∑
i=1

wi · �i (̃zi; �i; x̃j)

]2
: (14)

In the speci,c area of RBF regression networks as speci,ed in (1) and (2) and
for a chosen nonlinearity � the solution procedure to the automatic RBF network
design problem is one that given a training sample z̃ automatically determines the
number of basis functions or hidden neurons m, the weights wi, the centers c̃i
and the widths �i; i=1; : : : ; m while optimizing the generalization capability of the
network to be designed.

4. Evolving solutions to the automatic RBF network design problem

The problem of systematically and automatically designing arti,cial brains is far
from being completed. It is an open and exciting research area and to great extent
a new one. In this section, in the context of RBF regression network design, four
approaches are summarized. One based partially on conventional pattern recogni-
tion techniques, i.e. k-means clustering. Then a constructive design procedure is
presented. In addition, statistical learning theoretical and evolutionary approaches
are discussed.

4.1. Clustering and basic weight determination

Given a set of points {̃xi ∈Rp; i=1; : : : ; n} the goal of clustering is to determine
a set of clusters Cj each of them represented by its prototype {̃cj ∈Rp; j=1; : : : ; m}



V. David S&anchez A. /Neurocomputing 42 (2002) 147–170 153

Table 2
Distance measures within clusters

Expression Description

dj =
∑mj

i=1
∑mj

k=1 ‖̃xi − x̃k‖
mj · (mj − 1)

Average distance

dj =
∑mj

i=1 ‖̃xi − c̃j‖
mj

Centroid distance

dj =
∑mj

i=1 mink ‖̃xi − x̃k‖
mj

Nearest-neighbor distance

Table 3
Distance measures between clusters

Expression Description

dCj;Cl = min
x̃i∈Cj ; x̃k∈Cl

‖̃xi − x̃k‖ Single linkage distance

dCj;Cl = max
x̃i∈Cj ; x̃k∈Cl

‖̃xi − x̃k‖ Complete linkage distance

dCj;Cl =
∑mj

i=1
∑ml

k=1 ‖̃xi − x̃k‖
mj · ml

Average linkage distance

dCj;Cl = ‖̃cj − c̃l‖ Centroid linkage distance

such that the distances between points of the same cluster are minimized and the
distances between clusters are maximized. This corresponds to central clustering as
opposed to pairwise clustering. In pairwise clustering pairwise distances are given
{di; j ∈R; i; j=1; : : : ; n}. The goal of clustering stated needs to be further speci,ed,
e.g. in relation to the distance measures used. Tables 2 and 3 show commonly
used distance measures within and between clusters. ‖ · ‖ is the Euclidian norm,
mj is the number of points belonging to cluster j=1; : : : ; m, and the centroid c̃j
of a cluster is given in (15). The result of clustering is an element M of the set
of assignment matrices Mn;m in (16), which is a Boolean representation of data
partitionings. Mi;j=1 and 0 indicate that the data point x̃i belongs and does not
belong to cluster Cj, respectively.

c̃j=

∑
x̃i∈Cj

x̃i
mj

; (15)

Mn;m=


M ∈{0; 1}n×m;

m∑
j=1

Mi;j=1; i=1; : : : ; n


 : (16)

The criterion function used in k-means clustering, a very popular clustering
technique, for a given data set {̃xt ; t=1; : : : ; n} is de,ned in (17) where c̃l are the
centroid vectors of the clusters Cl; l=1; : : : ; m. k-means clustering [35] has been
used to determine the centers z̃i of an RBF network from the data provided to
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solve the regression task, e.g. in [36].

E=
m∑

l=1

∑
x̃t∈Cl

‖̃xt − c̃l‖2: (17)

Once the centers and the widths are ,xed a basic learning method for weight
determination can be applied. This basic method is outlined in the sequel. For the
RBF networks realizing gm in (1), ,xed values for m, z̃i ; �i; i=1; : : : ; m, and a given
training data set Tr= {(̃xi; yi); i=1; : : : ; N}, the learning method needs to solve the
optimization problem in (18) determining the weight vector w̃=(w1; : : : ; wm)T. This
leads to the solution of a linear equation system or more speci,cally, of a linear
least-squares problem and to the maximization of the memorization capability for a
,xed number of hidden units m. The actual learning goal, i.e., the optimization of
the generalization capability is dependent on m (model complexity) and in practical
settings is typically based on a given test data set Te= {(̃xk ; yk); k=1; : : : ; M}. The
solution of the least-squares problem is found using the non-iterative single value
decomposition (SVD) in the basic weight determination procedure or other iterative
numerical optimization techniques.

min
w̃

eTr; eTr =
1
N

N∑
i=1


yi −

m∑
j=1

wj · �j (̃xi)



2

: (18)

4.2. Constructive RBF regression network design procedure

The basic weight-determination procedure of the previous subsection and an
algorithm for automatic width determination are used throughout the constructive
RBF regression network-design procedure. The width-determination algorithm is
described ,rst. The algorithm works on a given set of centers C= {̃c1; : : : ; c̃m}
and determines automatically the corresponding width set S= {�1; : : : ; �m}. The
individual widths are determined using (19), ‖ · ‖ is the Euclidian norm. The pair
(̃ci; �i) uniquely speci,es the basis function �i (̃x).

�i= min
k=1;:::;m; k �=i

{‖̃ck − c̃i‖}: (19)

In Fig. 1, two examples show how the algorithm works. Fig. 1(a) shows a one-
dimensional example. Five centers are given: c1; : : : ; c5 ∈R. To make things clear
circles were drawn using the widths determined by the algorithm. Each circle has its
center at one given RBF network center ci and its radius equals the corresponding
width �i determined by the algorithm. Fig. 1(b) shows a two-dimensional example.
Seven centers were given: c̃1; : : : ; c̃7 ∈R2. Their corresponding radii �1; : : : ; �7 ∈R
were determined by the algorithm. In this case, the drawn circles correspond geo-
metrically to the hyperellipsoids (dimension n=2) or support regions for the basis
functions �i. In the one-dimensional case, the support regions are the intervals
[ci − �i; ci + �i]. The circles were only drawn to visualize the width sizes. As the
examples show, an overlapping of the support regions is possible. The centers may
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Fig. 1. Examples for width determination: (a) One-dimensional example; (b) two-dimensional example.

be located anywhere in Rn. The grid of the two-dimensional example was drawn
to better visualize the location of the given centers.
Using the algorithm for automatic width determination in the proposed construc-

tive RBF regression network design procedure, an overlapping coverage of the
space is generated by means of the given centers and the widths determined by
the algorithm. This happens only for the areas of the space where training data are
provided. The network approximation tends to zero with increasing distance from
the generated overlapping coverage. If a better approximation is desired also for
these distant areas, then more training data from these areas need to be provided,
which is a reasonable condition.
The inputs to the constructive RBF regression network design procedure are two

sets of data: a training data set Tr= {(̃xi; yi); i=1; : : : ; N}; x̃i ∈Rn; yi ∈R and a
test data set Te= {(̃xk ; yk); k=1; : : : ; M}; x̃k ∈Rn; yk ∈R. Optionally, the training
data can be reordered randomly at the beginning. The initial architecture con-
sists of one hidden neuron, i.e. the initial size is m := 1 and the initial center is
c̃1 := x̃1; (̃x1; y1)∈Tr. The ,rst width is determined using �1 := mini=2; :::;N
{‖̃xi − c̃1‖}; (̃xi; yi)∈Tr. Using the basic weight-determination procedure and the
training data set, the weight vector w̃ is determined together with the approxima-
tion error for the training and test data set, i.e., the memorization and the gen-
eralization capability of the network, respectively. In particular, the minimum of
the generalization error eminTe is initialized. The index set, I , points to training data
whose component x̃ can still be considered for inclusion as center of the hidden
neuron to be incorporated into the RBF regression network architecture. Initially,
idx[i] := i + 1∈ I; i=1; : : : ; nI := N − 1.
The iterative, incremental growth of the architecture searches for an additional

hidden neuron, which leads to an increase of the network’s generalization capabil-
ity. In each iteration, either a new hidden neuron is generated, i.e., the network gen-
eralization capability is increased, or the whole procedure is terminated, because no
further generalization improvement could be achieved and therefore no new hidden



156 V. David S&anchez A. /Neurocomputing 42 (2002) 147–170

neuron was added to the network architecture. The iteration search for additional
hidden neurons, which takes place ∀i: 16 i6 nI ; idx[i]∈ I; (̃xidx[i]; yidx[i])∈Tr is
described in more detail in the sequel. The following initialization takes place.
The minimum index i∗m+1 := 1 and the generalization error for m := m + 1 →
em+1Te := eminTe . Tentatively, c̃m+1 := x̃idx[i] and using the width-determination algo-
rithm �m+1 is determined together with eTe. If eTe ¡em+1Te then em+1Te := eTe∧ i∗m+1 :=
i. This process ,nds the best tentative hidden neuron, i.e., the one among the ones
indexed by the elements in I which leads to the minimum generalization error.
When em+1Te ¡eminTe the tentative hidden neuron characterized by (̃cm+1; �m+1) is in-
corporated into the network architecture and the following updates take place:
eminTe := em+1Te and I := I \{idx[i∗m+1]}; nI := nI − 1. Otherwise, i.e., if em+1Te ¿ eminTe
the evolution of the network architecture stops and no further generalization gain
can be achieved.
In a line of study, learning methods for RBF networks have been systematically

designed and developed. The basic learning method for weight determination was
presented in [46]. The constructive RBF regression network design procedure was
introduced in [47]. Both of these methods handle noise-free and noisy data. A
new robust learning method for RBF networks that handles outliers in the data
as well was introduced in [48]. The evolving RBF network architecture within
the constructive procedure belongs to the family of approximations given in (20).
The basis functions �i :Rn → R realized in the hidden neurons can be determined
according to (2). If the generalization error is given by the approximation error
eTe for the test data set Te, then the sequence in (21) for the generated architec-
tures during the strategy to generate the ,nal RBF network holds, i.e., a
monotonic increase of the generalization capability of the RBF regression network
is achieved.

UN =

{
gm | gm(̃x)=

m∑
i=1

wi · �i (̃zi; �i; x̃); m=1; : : : ; N

}
; (20)

e(1)Te ¿e(2)Te ¿ · · ·¿e(m)Te 6 e(m+1)Te : (21)

In terms of the computational complexity of the constructive RBF regression net-
work design procedure, one way to express this complexity is through the number
�N of networks examined until the ,nal network architecture completes its design
and training. This number can be determined using (23). An upper bound for �N
can be found in terms of N when m=N . This bound has only theoretical character
because over,tting takes place for m=N . Typically, m is much smaller than N .
At the same time we should point out that the training of network architectures
of di+erent size has di+erent complexity. Groups of architectures can be built that
have the same number of p hidden neurons. For all the group members, training
is equally complex. Training is carried out using the basic weight-determination
procedure based on N training data and p hidden neurons, and consists essentially
of the computation of the singular value decomposition of the matrix C ∈RN×p,
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whose computational complexity 4N;p is expressed in (24).

�N =1+ (N − 1) + (N − 2) + · · ·+ (N −m+ 1) + (N −m)

= 1 + Nm− (1 + 2 + · · ·+ (m− 1) +m) (22)

=1 + Nm− m(m+ 1)
2

; (23)

4N;p=O(4Np2 + 8p3): (24)

4.3. Support vector regression machines

Recently, kernel methods and support vector machines (SVMs) have become
very popular for classi,cation and regression, in particular when using RBF net-
works. Details on support vector algorithms and learning can be found in [58,53,8].
We present an RBF network solution with an associated SVM learning method. Ad-
ditional, more speci,c regression-related material can be found e.g. in [11,59,52].
Theoretical foundations were reported in [55]. For regression the decision function
is given in (25).

f(̃x)= b+
m∑
i=1

yi(!i − 5i)K (̃xi; x̃): (25)

For an 7-insensitive loss function:

L(x)=

{
0; |x|¡7;

|x|; 76 |x|; (26)

a quadratic optimization problem needs to be solved: the dual objective function
to be minimized is given in (27) subject to the conditions in (28) ∀i=1; : : : ; m.

W (!; 5) =
m∑
i=1

yi(!i − 5i)− 7
m∑
i=1

(!i + 5i) · · ·

−1
2

m∑
i=1

m∑
j=1

(!i − 5i)(!j − 5j)K (̃xi; x̃j); (27)

06 !i6C; 065i6C;

m∑
i=1

!i=
m∑
i=1

5i: (28)

The bias b is typically determined by averaging individual values which are
gained from the Karush–Kuhn–Tucker conditions leading to b=yi − w̃ · x̃i ± 7,
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see e.g. [6], where,

w̃=
m∑
i=1

yi(!∗i − 5∗
i )̃xi: (29)

!∗i and 5∗
i are the optimal values previously determined. Similar quadratic opti-

mization problems are generated when instead of the 7-insensitive loss function
quadratic or robust loss functions [28,21] are utilized. A robust learning method
for RBF regression networks was introduced in [48]. When the same statistical
learning framework is used, the solution provided with the RBF regression net-
work to the nonlinear regression problem shows a close connection to the solution
to the linear regression task which follows. The linear regressor’s decision func-
tion is given in (30). The optimization problem consists in the maximization of
the functional given in (31) subject to the constraints in (28) as before, and the
solution w̃ is given in (32), whereas b is determined as in the case of the RBF
network solution.

f(̃x)= b+ w̃ · x̃; (30)

W (!; 5) =
m∑
i=1

yi(!i − 5i)− 7
m∑
i=1

(!i + 5i) · · ·

−1
2

m∑
i=1

m∑
j=1

(!i − 5i)(!j − 5j )̃xi · x̃j; (31)

w̃=
m∑
i=1

(!∗i − 5∗
i )̃xi: (32)

4.4. Evolutionary approaches

The integration of neural and evolutionary systems has been an active area of
research including coupled evolutionary and neural systems, evolutionary algorithm
preprocessing of neural network input, genetic design of neural networks, and ap-
plications, among others. The combination of evolutionary algorithms and neural
networks can also be subdivided into two broad categories: supportive combina-
tions and collaborative combinations. The supportive combinations include using
neural networks to assist evolutionary algorithms, using evolutionary algorithms
to assist neural networks, and using evolutionary algorithms and neural networks
independently on the same task. Collaborative combinations include evolutionary
algorithms for neural network learning, evolutionary algorithms to specify neural
network topology, and others. In relation to this subdivision we are interested in
evolutionary algorithms to specify neural network topology within the collaborative
combinations. Most of the work reported is for the application to other types of
architecture though, most notably multilayer perceptrons (MLP), e.g. [31], sigma–
pi networks, e.g. [63], or networks based on cellular automata, e.g. [9]. Or for
designing Boolean neural networks, e.g. [19], as opposed to neural networks with
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real-valued outputs relevant to regression. Or for RBF networks for classi,ca-
tion, e.g. [32], as opposed to RBF networks for regression applications. A few
approaches have been presented for the design of RBF regression networks as
referenced in the introductory section.
In [60,61] an approach using genetic algorithms was proposed to solve the RBF

network-design problem within the context of time-series prediction. The main idea
is to evolve centers and widths using a cooperative–competitive genetic algorithm.
The genetic competition among individual RBF’s is the basis for the selection of the
set of centers. Competition is restricted within orthogonal niches determined using
the singular value decomposition SVD. The outer loop of the algorithm constructs
and evaluates successive generations G0; G1; : : : . A ,tness-based selection procedure
is used to generate the population Gk+1 from the population Gk . In contrast to other
approaches that evolve populations of competing networks, in this algorithm, the
entire population encodes only one network. Each population individual speci,es a
di+erent basis function of the RBF network. In each generation Gk the algorithm
state consists of a population of bit strings  i; i=1; : : : ; m. m is the size of the
population which is equal to the number of hidden neurons in the RBF network.
The bit string  i encodes the center c̃i and the width �i of a basis function �i,
cf. (1) and (2). If c̃i and �i are encoded with l bits of precision, then each basis
function �i can be encoded using a bit string of size L=(n+1)l, n is the dimension
of the input vector x̃.  i= b1b2 : : : bL; bh ∈{0; 1}.
In a ,xed-sized population the algorithm draws each slot in Gk+1 by sampling

from Gk with replacement, and with each encoded �i in Gk having the probability
of selection proportional to its performance. The performance measure called ,t-
ness speci,es the expected number of copies of  i to occur in Gk+1. These copies
,ll the slots in Gk+1 and are then modi,ed using the genetic operators of recombi-
nation, creep, and mutation. The cooperative–competitive genetic selection of the
algorithm is based on the following rationale. Suppose that we have the training
data Tr= {(̃xj; f(̃xj)); j=1; : : : ; N}. The basis function �i is normalized to P�i ac-
cording to (33). The vector called the normalized activation sequence �̂i is de,ned
according to (34). The inner product �̂i · �̂i′ helps to de,ne the degree to which
the basis functions should be competing or cooperating according to the extremes
shown in (35). When �̂i · �̂i′ is near zero, then �i and �i′ are contributing almost
independently to the overall RBF network performance. Their relationship should
be rather cooperative than competitive. When �̂i · �̂i′ is near one, then �i and �i′

are attempting to make almost the same contribution. They should compete in the
sense that selecting one basis function to be in the next generation should exclude
the selection of the other. This is described as �i and �i′ sharing a niche.

P�i (̃x)=
�i (̃x)∑N

j=1 �
2
i (̃xj)

; i=1; : : : ; m; (33)

�̂i (̃x)= [ P�i (̃x1); P�i (̃x2); : : : ; P�i (̃xN )]; ‖�̂i‖=1; (34)
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�̂i · �̂i′ =

{
1 (pure competition; nice sharing);

0 (pure cooperation; independent niches):
(35)

After examining several prospective ,tness measures for the basis functions �i,
the one stated in (36), where E(·) denotes mean value over all �̂i′ ; i′=1; : : : ; m,
was selected. That ,tness measure was selected because it ful,lled the cooperative–
competitive requirements in the rationale described above better than the others
examined. In the experiments reported, a value of 5=1:5 was used for the ,tness
measure within the cooperative–competitive selection procedure. After applying
the genetic operators to the selected strings, the strings in the generation Gk+1 are
decoded into the centers and widths of the RBF network and this is trained using
the LMS algorithm to save computational time. This step involves the solution of
a linear least-squares problem. To improve precision of the training solution, the
SVD method is applied after the execution of the genetic algorithm.

|wi|5
E(|wi′ |5) ; 1¡5¡ 2: (36)

To get a feeling about other directions in which evolutionary approaches help to
design RBF networks for regression another procedure is brieQy reviewed. In [12]
an evolutionary strategy based on a random search algorithm is used to determine
only the widths �i; i=1; : : : ; m of the RBF network. Heuristic procedures determine
the centers and weights of the network. The widths are determined using a two-step
learning strategy composed of a local optimization of the width of each added
neuron, called local tuning, and a global optimization of all the network widths,
called ,ne tuning. Based on an initial value �i at time t a population of individuals
is generated using (37) excluding zero as a possible result. N (0; �) is a random
number generated using a Gaussian distribution with mean zero and variance �.
�i(t) is replaced by �i(t + 1) only if the overall network approximation error
decreases. Through the adjustment of � a non-local search is enabled to escape
from local minima in the �i parameter space. Based on an initial value � at time
t updated values are generated according to (38), SE is the change in the value
of the network approximation error, c1 → 1−, and c2 → 1+.

�i(t + 1)=�i(t)[1 + N (0; �)]; (37)

�(t + 1)=




c1�(t) if SE¿ 0;
c2�(t) if SE¡ 0;
�(t) if SE=0:

(38)

5. Visualization example

To visualize the key components of the automatic design of RBF regression
networks, the approximation of a real-valued function of a two-dimensional real
vector is described. The partitioning of the input space is as follows. NTr =NxNy
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and NTe=(Nx−1)(Ny−1) elements of the training and test data sets are generated,
respectively. Nx and Ny are the number of equidistant points of the partitions of
the x- and y-coordinates of the de,nition square [ax; bx] × [ay; by]. The constant
distances between partition points are given in (39). The components of the training
partition are speci,ed in (40) and (41). The components of the test partition are
speci,ed in (42) and (43).

dx=
bx − ax

Nx − 1 ; dy=
by − ay

Ny − 1 ; (39)

xTri = ax + idx; i=0; : : : ; Nx − 1; (40)

yTr
j = ay + jdy; j=0; : : : ; Ny − 1; (41)

xTei = ax + (i + 0:5)dx; i=0; : : : ; Nx − 2; (42)

yTe
j = ay + (j + 0:5)dy; j=0; : : : ; Ny − 2: (43)

Using these one-dimensional partitions, a two-dimensional partititon of the de,ni-
tion square [ax; bx]×[ay; by] is generated. The x- and y-coordinates of the elements
of the training data set (xTrk ; yTr

k ; zTrk ); k=0; : : : ; NTr − 1; zTrk =f(xTrk ; yTr
k ) are deter-

mined according to xTrk = xTri ; yTr
k =yTr

j for i=0; : : : ; Nx − 1; j=0; : : : ; Ny − 1 and
k=Nxi+j. In an analogous way the x- and y-coordinates of the elements of the test
data set (xTel ; yTe

l ; zTel ); l=0; : : : ; NTe −1; zTel =f(xTel ; yTe
l ) are determined according

to xTel = xTei ; yTe
l =yTe

j for i=0; : : : ; Nx − 2; j=0; : : : ; Ny − 2 and l=(Nx − 1)i + j.
The function speci,ed in (44) is used to generate the training and test data with
Nx=Ny=11, dx=dy=0:1, NTr =121; NTe=100.

f: [0:0;+1:0]× [− 0:5;+0:5]; f(x; y)= cos(;x) sin(;
√
|y|3): (44)

Fig. 2. Generalization and centers for the evaluation example: (a) learning curve; (b) centers.
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Table 4
Centers and widths for the evaluation example

i 1 2 3 4 5 6 7 8 9 10 11 12
zix 0.00 1.00 1.00 1.00 0.70 0.40 0.40 0.10 0.00 0.70 0.10 0.70
ziy −0:50 −0:50 0.50 0.10 0.30 0.50 −0:50 0.50 −0:20 −0:50 0.20 0.50
�i 0.30 0.22 0.28 0.14 0.10 0.30 0.30 0.30 0.22 0.28 0.20 0.20

i 13 14 15 16 17 18 19 20 21 22 23 24
zix 0.90 0.90 0.70 0.50 1.00 0.80 0.70 0.80 0.60 0.80 0.90 0.90
ziy −0:20 −0:30 0.20 −0:20 −0:20 −0:20 0.00 0.20 0.20 0.30 0.00 0.20
�i 0.10 0.10 0.10 0.22 0.10 0.10 0.20 0.10 0.10 0.10 0.14 0.10

i 25 26 27 28 29 30 31 32 33 34 35
zix 0.40 0.50 0.40 0.30 0.20 0.10 0.30 0.30 0.20 0.40 1.00
ziy 0.20 0.20 0.00 0.00 0.00 0.00 0.20 0.10 −0:10 0.10 −0:10
�i 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

The results for this evaluation example are discussed in the sequel. Fig. 2(a) shows
the monotonic increase of the generalization capability or, equivalently, monotonic
minimization of the generalization error of the RBF network being constructed de-
pendent on the number m of hidden neurons. The optimal RBF network was found
to have m=35 hidden neurons. In Fig. 2(a) for m¿ 1 and for each (m; e) drawn,
(N −m) RBF networks, all with m hidden neurons, are designed and trained, but
only the minimal value of e is considered. Fig. 2(b) shows the centers automatically
generated for the optimal RBF network in the two-dimensional input space. The co-
ordinates (cix; ciy) of the centers c̃i and the widths �i for the optimal RBF network
are summarized in Table 4. In Fig. 2(b), the center indices i of Table 4 are superim-
posed on the graph. Intermediate approximations generated during the growth of the
,nal RBF network are shown in Fig. 3. The function f(x; y)= cos(;x) sin(;

√|y|3)
on its de,nition square [0:0;+1:0]×[−0:5;+0:5] is shown in Fig. 3(a). To draw the
graph the training data (xTrk ; yTr

k ; zTrk ); k=0; : : : ; NTr − 1; zTrk =f(xTrk ; yTr
k ) was used.

The approximations shown in Fig. 3(b)–(d) are the ones realized by the growing
RBF network with m=5; 10 and 35 (optimal number of) hidden neurons. The fol-
lowing values were drawn: (xTrk ; yTr

k ; zTrk ); k=0; : : : ; NTr − 1; zTrk = gm(xTrk ; yTr
k ). The

approximations for m=10 and 35 are very similar. The generalization error dif-
ference for both RBF networks is minimal as can also be veri,ed in Fig. 2(a). In
practical environments, a threshold could be introduced and used in such a way
that when the generalization error decrease is under the given threshold, the growth
of the RBF network terminates leading to savings in the computational e+orts. In
Fig. 2(b), the ,rst 10 centers generated automatically already cover the di+erent
areas of the de,nition square. The incorporation of further centers led to a better
coverage, but at the same time led only to a minimal increase of the generalization
capability of the resulting RBF network.
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Fig. 3. Function and successive approximations for the evaluation example: (a) given function; (b)
network approximation, m=5; (c) network approximation, m=10; (d) network approximation, m=35.

6. Discussion from a search perspective

One further evaluation example serves as the basis for the discussion from the
perspective of searching for a solution to the automatic RBF regression network
design. To generate the noisy data, the function f(x)=

√
x is de,ned on the interval

[0; 1]. The input space, more precisely the function de,nition region, is partitioned
regularly. In the case of a one-dimensional function f : [a; b]→ R when N elements
of the training data set Tr are to be generated, the following partition is used: xi=
a+id; i=0; : : : ; N−1, where d=(b−a)=(N−1). This partition includes the interval
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Fig. 4. Automatic generalization optimization for the second evaluation example: (a) without reorder-
ing; (b) with random reordering.

ends, x0 = a and xN−1 = b. The input components of the test data set are generated
according to xj= a+ (j+ 0:5)d; j=0; : : : ; N − 2, so that a space of 0:5d between
training data inputs and test data inputs is accomodated. The noise-free data are
modi,ed to generate the noisy data. The input component remains the same while
the output component is modi,ed according to yi=f(xi) + ji ; i=1; : : : ; N and
yj=f(xj) + jj; j=1; : : : ; M for the training data set Tr and the test data set Te,
respectively, and for functions of the type f :R → R. Gaussian noise j with mean
<=0 and standard deviation �n is used. Correspondingly, ji; j=�nni; j, where ni; j ∼
N (0; 1), i.e., ni; j is distributed according to the standard normal distribution. For
this evaluation example N =101 elements of the training data set and M =N − 1
elements of the test data set are generated. The standard deviation of the noise is
�n=0:05.
Fig. 4 visualizes the automatic, monotonic generalization optimization while sys-

tematically and automatically designing and training the ,nal RBF network archi-
tecture. The x-coordinate of the graphs represents the RBF network index. The
y-value represents the approximation error for the training and the test data set,
i.e., the memorization and the generalization error, respectively. The training data
are taken as given in Fig. 4(a) while in Fig. 4(b) the training data were reordered
randomly. For both cases, the test data are taken as given, since the order of the
elements does not inQuence the growth of the ,nal RBF network. The optimal
RBF network when the training data are not reordered has m=4 hidden neurons.
According to (23) a total of 395 RBF networks were designed and trained. The
RBF networks from the index sets {1}, {2; : : : ; 101}, {102; : : : ; 200}, {201; : : : ; 298},
and {299; : : : ; 395} have 1, 2, 3, 4, and 5 hidden neurons, respectively. These sets
have 1, 100, 99, 98, and 97 elements corresponding to the same number of RBF
networks, respectively. For determining the number of RBF networks that have the
same number of hidden neurons see (22) .
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Table 5
Minimizing the generalization error, training data without reordering

m 1 2 3 4
p 1 94 125 202
eTe 0.49893218 0.00132397 0.00051568 0.00043095

Table 6
Centers and widths for the second evaluation example, training data without reordering

i 1 2 3 4
zi 0.00 0.93 0.24 0.02
�i 0.02 0.69 0.22 0.02

Table 7
Minimizing the generalization error, training data with random reordering

m 1 2 3 4 5
p 1 11 141 229 373
eTe 0.48702455 0.00203784 0.00037184 0.00028910 0.00025237

The ,rst center is taken as c1 = x1 from the ,rst element of the training data set.
The corresponding width �1 is determined using the special width determination
algorithm for the ,rst width embedded within the constructive RBF regression net-
work design procedure. Then, iteratively one hidden neuron is selected at a time
and added to the RBF network if it leads to a generalization increase. In this eval-
uation example, this happened after adding a second, a third, and a fourth hidden
neuron. A ,fth hidden neuron was also tested, but did not bring an improvement in
the RBF network generalization capability. Table 5 shows the number m of hidden
neurons of the RBF network, the index p of the RBF network that provided a
generalization increase, and the new improved generalization error eTe. The values
of (p; eTe) for m=2; 3; 4 are shown in Fig. 4(a) with an arrow. The centers and
widths for the resulting RBF network based on the training data without reordering
are summarized in Table 6.
The optimal RBF network when the training data are reordered randomly has

m=5 hidden neurons. RBF networks (491) were designed and trained. The auto-
matic, monotonic generalization optimization was performed in a similar way as
for the case when the training data are not reordered until m=4. Then a ,fth
hidden neuron was added into the RBF network and a sixth hidden neuron was
tested, but did not provide for a generalization increase. The corresponding index
sets were {299; 395} and {396; 491}, respectively. Table 7 shows the number m
of hidden neurons of the RBF network, the index p of the RBF network that pro-
vided a generalization increase, and the new improved generalization error eTe. The
values of (p; eTe) for m=2; : : : ; 5 are shown in Fig. 4(b) with an arrow. Table 8
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Table 8
Centers and widths for the second evaluation example, training data with random reordering

i 1 2 3 4 5
zi 0.48 1.00 0.22 0.03 0.69
�i 0.21 0.31 0.19 0.19 0.21

summarizes the centers and widths for the resulting RBF network based on the
training data with random reordering.
The generalization of the RBF network could be increased in this case when

the training data was randomly reordered, cf. Table 5, eTe=0:00043095 for m=4
and Table 7, eTe=0:00025237 for m=5. This increase due to random reordering
is of course not always possible. In order to become independent of the choice
of the ,rst center, N di+erent choices according to z1 = xi; i=1; : : : ; N could be
carried out and the corresponding generated RBF networks compared to determine
the optimal of all of them. With a linear increase of factor N in the computation
e+ort, this could be achieved. By using parallel processing, nearly no increase in
the computational time could be achieved if N processors were available and each
of them would generate the RBF network corresponding to a di+erent choice of
the ,rst center. In many practical situations, even though the generalization error
is increased marginally, the ,nal RBF network approximation looks very similar
to the one generated by only one choice of the ,rst center.
The dependence on the choice of the ,rst center is easy to see. After a ,rst

coverage of the input space, more speci,cally of the de,nition interval of the
function, by the ,rst center, further centers need to be added to increasingly cover
the input space. If a di+erent ,rst center were chosen, then a di+erent set of
complementary centers would be needed and this would also lead to a di+erent
set of widths determined by the algorithm for automatic width determination. This
can be observed comparing Table 6 with Table 8. This example stresses the key
ideas behind searching for the best solution. At the local level, there is competition
among the prospective new neurons to be incorporated into the network architecture
one at a time or per iteration, on the basis of improving the network generalization
capability. At the global level, after choosing a di+erent ,rst center, the search
for the best solution is carried out on the basis of the same criterium, i.e., the
improvement of the evolving network generalization capability.

7. Conclusions

Di+erent approaches that play an important role in the area of automatic design
of arti,cial brains were reviewed in the context of the automatic RBF regression
network design. Currently, traditional techniques of pattern recognition, e.g., clus-
tering, constructive procedures based on principles of computational and statistical
learning theory, and evolutionary approaches are evolving to form the foundations
for further research in this fascinating discipline. The perspective of searching for a



V. David S&anchez A. /Neurocomputing 42 (2002) 147–170 167

solution to the problem at di+erent levels from the originating posture of the opti-
mization problem associated to the learning problem from a computational learning
theoretical perspective to the solution of subproblems makes the use of evolution-
ary approaches a natural choice and in many cases a competitive choice. On the
other hand, after posing the optimization problem, the incorporation of require-
ments speci,c to the underlying learning problem and goal, i.e., maximization of
the network generalization, can guide the search process very e+ectively. Examples
and theoretical analysis of the procedures were used to visualize some of the key
ingredients of the automatic design process.
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