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Consider a graph with a set of vertices and oriented edges connecting
pairs of vertices. Each vertex is associated with a random variable and these
are assumed to be independent. In this setting, suppose we wish to solve the
following hypothesis testing problem: under the null, the random variables
have common distribution N(0,1) while under the alternative, there is an un-
known path along which random variables have distribution N(μ,1), μ > 0,
and distribution N(0,1) away from it. For which values of the mean shift μ

can one reliably detect and for which values is this impossible?
Consider, for example, the usual regular lattice with vertices of the form

{(i, j) : 0 ≤ i,−i ≤ j ≤ i and j has the parity of i}
and oriented edges (i, j) → (i + 1, j + s), where s = ±1. We show that
for paths of length m starting at the origin, the hypotheses become distin-
guishable (in a minimax sense) if μm � 1/

√
logm, while they are not if

μm � 1/ logm. We derive equivalent results in a Bayesian setting where one
assumes that all paths are equally likely; there, the asymptotic threshold is
μm ≈ m−1/4.

We obtain corresponding results for trees (where the threshold is of or-
der 1 and independent of the size of the tree), for distributions other than
the Gaussian and for other graphs. The concept of the predictability profile,
first introduced by Benjamini, Pemantle and Peres, plays a crucial role in our
analysis.

1. Introduction. This paper discusses the model problem of detecting wheth-
er or not there is a chain of connected nodes in a given network which exhibit an
“unusual behavior.” Suppose we are given a graph G with vertex set V and a ran-
dom variable Xv attached to each node v ∈ V . In that sense, this is a graph-indexed
process. We observe a realization of this process and wish to know whether all the
variables at the nodes have the same behavior in the sense that they are all sampled
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from a common distribution F0, or whether there is a path in the network, that is,
a chain of consecutive nodes connected by edges, along which the variables at the
nodes have a different distribution F1. In other words, can one tell whether hidden
in the background noise, there is a chain of nodes that stand out?

Suppose, for example, that F0 is the standard normal distribution, whereas F1
is a normal distribution with mean 0.1 and variance 1. In a situation where the
number of nodes along the path we wish to detect is comparably small, the largest
values of Xv are typically off this path. Can we reliably detect the existence of
such a path? More generally, how subtle an effect can we detect? In this paper, we
attempt to provide quantitative answers to such questions by investigating asymp-
totic detection thresholds—values of the mean shift at which detection is possible
and values at which detection by any method whatsoever is impossible.

Detection thresholds depend, of course, on the type of graphs under consider-
ation and we propose the study of two representative graphs which are, in some
sense, far from each other, as well as emblematic—regular lattices and trees. We
introduce them next. Later in the paper, we will also consider other graphs.

• Regular lattice in dimension 2. Our first graph is a regular lattice with nodes

Vm = {(i, j) : 0 ≤ i ≤ m − 1,−i ≤ j ≤ i and j has the parity of i}
and with oriented edges (i, j) → (i +1, j + s), where s = ±1. We call (0,0) the
origin of the graph. Here and below, we use the subscript m in Vm to remind the
reader of the radius of the graph. A path in the graph is represented in Figure 1.

FIG. 1. Representation of a path (in red) in the regular lattice.
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FIG. 2. Representation of a path (in red) in the binary tree.

• Complete binary tree. Our second model is the oriented regular binary tree. The
nodes in the tree are of the form

Vm = {(i, j) : 0 ≤ i ≤ m − 1,0 ≤ j < 2i}.
and it has oriented edges (i, j) → (i + 1,2j + s), where s ∈ {0,1}. Again, we
call (0,0) the origin of the graph and the subscript m indicates the radius of the
graph (i.e., the depth of tree). A path in the tree is represented in Figure 2.

Note that even though the numbers of paths of length m in both graphs are the
same, the numbers of nodes are considerably different—about m2/2 for the lattice
and 2m for the binary tree.

We denote by Pm the set of paths in the graph starting at the origin and of
length m. (In this paper, we define the length of a path to be the number of vertices
the path visits.) We attach a random variable Xv to each node v in the graph. We
observe {Xv :v ∈ V } and consider the following hypothesis testing problem:

• Under H0, all the Xv’s are i.i.d. N(0,1).
• Under H1,m, all the Xv’s are independent; there is an unknown path p ∈ Pm

along which the Xv’s are i.i.d. N(μm,1), μm > 0, while they are i.i.d. N(0,1)

away from the path.

In plain English, we would like to know whether there is a path along which the
mean is elevated.

1.1. Motivation. While this paper is mainly concerned with the study of fun-
damental detection limits, our problem is in fact motivated by applications in var-
ious fields, especially in the area of signal detection.
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Suppose we are given very noisy data of the form

yi = Si + zi, i = 1, . . . , n,(1.1)

where (Si) are sampled values of a signal of interest and (zi) is a noise term. Based
on the observations (yi), one would like to decide whether or not a signal is hiding
in the noise. That is, we would like to test whether S = 0 or not. Suppose, further,
that the signal is completely unknown and does not depend on a small number of
parameters. In image processing, the signal S might be the indicator function of a
general shape we wish to detect or a curve embedded in a two-dimensional pixel
array [3]. In signal processing, the signal may be a chirp, a high-frequency wave
with unknown and rapidly changing oscillatory patterns [10].

In these situations, we cannot hope to generate a family of candidate signals
that would provide large correlations with the unknown signal as the number of
such candidates would be exponentially large in the signal size. In response to this
obstacle, recent papers [10, 13] have proposed a very different approach, in which
the family of candidate signals actually corresponds to a path in a network. We
briefly explain the main idea. In most situations, it is certainly possible to gener-
ate a family of templates (φv)v∈V which provide good local correlations with the
signal of interest, for example, over shorter time intervals. Any signal of interest
could then be closely approximated by a chain of such templates. Here, a chain is
a path in a graph G with nodes v ∈ V indexed by our templates and rules for con-
necting templates, these rules possessing the following property: any consecutive
sequence of templates in the graph must correspond to a meaningful signal; that is,
a signal one might expect to observe (e.g., imagine connecting linear segments to
approximate smooth curves). Now, calculate a Z-score for each template and de-
note it Xv . For simplicity, assume that Xv ∼ N(μ1,1) if the template matches the
signal S locally and Xv ∼ N(μ0,1) otherwise. Assume μ1 > μ0. Then, the signal
detection problem is this: is there a path along which the mean of the Z-scores is
slightly elevated?

To make things a little more concrete, suppose the unknown signal S(t) is a
chirp of the general form A(t) exp(iλϕ(t)), where A(t) is a smooth amplitude,
ϕ(t) is a smooth phase function and λ is a large base frequency. Roughly speak-
ing, a chirp is an oscillatory signal with “instantaneous frequency” given by the
derivative of the phase, that is, λϕ′(t). Here, one might use as templates chirplets
of the form φv(t) ∝ 1Iv (t) exp(i(avt

2/2 + bvt)) which are supported on the time
interval Iv and assume the linear instantaneous frequency avt +bv . Such templates
provide a local quadratic approximation of the unknown phase function λϕ(t) (or
a local linear approximation of the unknown instantaneous frequency) and can ex-
hibit high correlations with the unknown signal, provided that the discretization of
the chirplet parameters is sufficiently fine. The chirplet graph [10] then connects
pairs of chirplets supported on contiguous time intervals by imposing a certain kind
of continuity of the instantaneous frequency in such a way that a path represents a
chirping signal with a piecewise linear instantaneous frequency which obeys a pre-
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scribed regularity criterion. Given the data vector y (1.1), one would then compute
all the chirplet coefficients Xv = 〈y,φv〉 of y. Testing whether there is signal or
not amounts to testing whether all the node variables Xv in the chirplet graph have
mean 0 or whether there is a path along which the mean is nonzero (the constraint
that all possible paths start at a given vertex corresponds to the constraint that if a
signal exists, its instantaneous frequency at time 0 is known).

Although the signal detection problem motivates the theoretical study presented
in this paper, the problem of detecting a path in a network seems to represent a
fundamental abstraction as many modern statistical detection problems can rea-
sonably be formulated in this way. Indeed, it is very easy to imagine that one has
available a number of measurements about variables related through a graphical
model and that one wishes to detect whether there is a sequence of connected
nodes which exhibit a peculiar behavior. We give one example to stimulate the
reader’s imagination. In [22], water quality in a network of streams is assessed by
performing a chemical analysis at various locations along the streams. As a result,
some locations are marked as problematic. We may view the set of all tested lo-
cations as nodes and connect pairs of adjacent nodes located on the same stream,
thereby creating a tree (although not a regular tree), with the root corresponding
to the point which is the most downstream. We then assign to each node the value
1 or 0, according to whether the location is problematic or not. A possible model
would assume that the variables are Bernoulli, taking the value 1 with probability
equal to p0 when the location is normal and p1 when it is anomalous. One can
then imagine that one would like to detect a path (or a family of paths) upstream of
a certain sensitive location, in order to trace the existence of a polluter, or look for
the existence of an anomalous path upstream from the root of the system; see [22].
Note that here, one could also be interested in detecting whether or not there is a
family of anomalous paths, as opposed to just one such path. Examples of this kind
truly abound; for example, one could imagine detecting atypical gene behaviors in
a given gene network, and so on.

1.2. A quick look at the results. The optimal detection threshold discussed
above is the minimum value of μ = μm which allows us to reliably tell whether or
not there is a path which does not follow the null distribution. This value depends
on the criterion used for judging the quality of the decision rule, and statistical
decision theory essentially offers two paradigms: the Bayesian and the minimax
approach. We study them both.

Consider the minimax paradigm first. Recall that a test Tm is a {0,1}-valued,
measurable function of the collection (Xv)v∈V . The minimax risk of a test Tm is
defined as

γ (Tm) = P(Type I) + sup
p∈Pm

P1,p(Type II).(1.2)
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Throughout, we write P0 for the law of (Xv) under H0 and P1,p for the law of the
same variables under H1,m with path p ∈ Pm. With this notation, Type I and II are
shorthand for errors of Type I and II. In longhand,

P(Type I) = P0(Tm = 1), P1,p(Type II) = P1,p(Tm = 0).

We say that a sequence of tests (Tm) is asymptotically powerful if

lim
m→∞γ (Tm) = 0

and asymptotically powerless if

lim inf
m→∞ γ (Tm) ≥ 1.

When there exists an asymptotically powerful sequence of tests, we say that reli-
able detection is possible; when all sequences of tests are asymptotically power-
less, we say that detection is (essentially) impossible.

1.2.1. The regular lattice. We first consider the regular lattice in dimension 2.

THEOREM 1.1. Consider the regular lattice in dimension 2. Suppose that
μm(logm)1/2 → ∞ as m → ∞. That then is a sequence of tests which is asymp-
totically powerful. On the other hand, suppose that μm logm(log logm)1/2 → 0 as
m → 0. Every sequence of tests is then asymptotically powerless.

Theorem 1.1 states that one can detect a path as long as μm � (logm)−1/2,
while this is impossible if μm < (logm)−(1+ε) for each ε > 0, provided that m is
sufficiently large. The reader will note the discrepancy between the lower and the
upper bound, which we will comment on in the concluding section.

It turns out that the detection level is radically different in a Bayesian framework
where one assumes that all paths are equally likely. For a prior π on Pm, namely
on paths of length m, the corresponding risk of a test Tm is now defined as

γπ(Tm) = P(Type I) + EπP1,p(Type II),(1.3)

where Eπ stands for the expectation over the prior path distribution, namely, when
the path p is drawn according to π . We adopt the same terminology as before
and say that (Tm) is asymptotically powerful if γπ(Tm) → 0 and powerless if
lim infγπ(Tm) ≥ 1. The Bayes test associated with π is, of course, optimal here.
The following theorem shows that under the uniform prior on paths, the optimal
Bayesian detectability threshold is about m−1/4.

THEOREM 1.2. Consider the regular lattice in dimension 2 and assume the
uniform prior on paths. If μmm1/4 → ∞ as m → ∞, then the Bayes test is as-
ymptotically powerful. Conversely, if μmm1/4 → 0 as m → 0, then the Bayes test
is asymptotically powerless.
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Roughly speaking, if the anomalous path is chosen uniformly at random, one
can asymptotically detect it as long as the intensity along the path exceeds m−1/4,
while no method whatsoever can detect below this level.

Both results indicate that it is possible to detect an anomalous path event when
μm → 0 (sufficiently slowly). Note that while one can certainly reliably detect
in such circumstances, it may be impossible to tell which sequence of nodes the
anomalous path is traversing. This is an example of a situation where detection is
possible, but estimation may not be.

1.2.2. The binary tree. We are now interested in the complete binary tree.

THEOREM 1.3. If μm = μ ≥ √
2 log 2, then there is a sequence of tests that

is asymptotically powerful. On the other hand, if μm = μ <
√

2 log 2, then there
is no sequence of tests that is asymptotically powerful. Moreover, if μm → 0 as
m → ∞, then every sequence of tests is asymptotically powerless.

Notice that there is no sharp threshold phenomenon here, in the sense that the
minimax risk does not converge to 1 if μm = μ <

√
2 log 2. For example, the risk

of the test which rejects the null hypothesis for large values of the variable at the
root node is bounded away from 1 for any μ > 0.

For any graph, and under the normal model, consider the generalized likelihood
ratio test (GLRT) which is the test rejecting the null for large values of Mm :=
max{Xp :p ∈ Pm}, where Xp is the sum of the node variables along the path p:

Xp = ∑
v∈p

Xv.(1.4)

The proof of Theorem 1.3 then shows that for the binary tree, the GLRT achieves
the minimax threshold in that it has asymptotically full power when μ >

√
2 log 2.

In this sense, the GLRT rivals the Bayes test under the uniform prior on paths,
which, by symmetry, is minimax.

1.3. Innovations and related work. In the regular graph model, the number
of variables needed to describe the path is m, while the total number of nodes
or observations is about m2/2. Hence, the topic of this paper fits into the broad
framework of nonparametric detection as the object we wish to detect is simply
too complex to be reduced to a small number of parameters. Because the theory
and practice of detection have been centered around parametric models in which
the generalized likelihood ratio test has played a crucial role (see the literature on
scan statistics, matched filters and deformable templates, to name a few equivalent
terms used in various fields of science and engineering [16, 24, 20, 2]), methods
and results for nonparametric detection are comparably underdeveloped. Against
this background, we will first provide some evidence showing that the generalized
likelihood ratio test does not perform very well in our nonparametric set-up. Our
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work also differs from the important literature on nonparametric detection in that
it does not assume that the unknown object we wish to detect lies in a traditional
smoothness class, such as Sobolev or Besov classes, or belongs to an �p-ball or
some related geometric body; see the book by Ingster and Suslina [19] and the
multiple references therein. In fact, our model, techniques and results have noth-
ing to do with this literature and hence our paper contributes to developing the
important area of nonparametric detection in what appears to be a new direction.
In fact, we are not familiar with statistical theory posing a problem as a graph
detection problem and giving precise quantitative bounds. It has come to our at-
tention, however, that Berger and Peres have very recently considered problems
which are mathematically closely related to our framework but with a different
motivation.

Our paper also has some connections with the theory and practice of multiple
hypothesis testing. Indeed, we are interested in situations where testing at each
node separately offers little or no power so that we need to combine informa-
tion from different nodes. Because the anomalous nodes are located on a path, the
search naturally involves testing over paths. There are many such paths, however,
and in this sense, our problem resembles that of testing many hypotheses (one
hypothesis test would be whether the mean along a specified path is zero or not).

1.4. Organization of the paper. The paper is organized as follows. In Sec-
tion 2, we study the detection problems over the regular lattice in dimension 2 and
prove our results about the minimax and Bayesian detection thresholds, namely,
Theorems 1.1 and 1.2. In Section 3, we prove the detection thresholds for the bi-
nary tree. In Section 4, we extend our results to exponential distributions at the
nodes and in Section 5, to other distributions and other graphs. In Section 6, we
report on numerical simulations which complement our theoretical study. Finally,
we conclude with Section 7, where we comment on our findings and discuss open
problems.

2. The regular lattice. Throughout, for positive sequences (am), (bm), we
write am � bm if the ratio am/bm is bounded away from zero and infinity. Also,
we occasionally drop subscripts to lighten the notation, wherever there is no am-
biguity.

2.1. Bayesian detection. We assume the uniform distribution over all paths,
denoted by π . Equivalently, the distribution of the unknown path is that of an
oriented symmetric random walk. We write Pπ(·) = EπP1,p(·). As is well known,
the test minimizing the risk (1.3) is the Neyman–Pearson test which rejects the
null if and only if the likelihood ratio Lm(X) = dPπ(X)/dP0(X) exceeds 1 (the
subscript m refers here to the size of the problem). Here, the likelihood ratio is
given by

Lm(X) = 2−(m−1)
∑

p∈Pm

eμXp−mμ2/2,(2.1)
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where Xp is defined in (1.4). Although Lm(X) is an average over an exponen-
tially large number of paths so that, at first sight, calculating this quantity may
seem practically impossible, there is a recurrence relation which actually gives an
algorithm for computing the likelihood ratio in a number of operations which is
proportional to the number of nodes; see Section 6 for details. Note that the likeli-
hood ratio Lm(X) is closely related to the partition function of models of random
polymers; see [11].

2.1.1. Proof of Theorem 1.2: upper bound. Assume μmm1/4 → ∞. This im-
plies the existence of a sequence of real numbers (hm) tending to infinity and such
that μmm1/4h

−1/2
m → ∞. Define S(hm) as the set of nodes obeying

S(hm) = {
(i, j) ∈ Vm : |j | ≤ hm

√
m

}
.

In other words, S(hm) is the intersection of Vm with a strip of width hm

√
m.

Define Tm, the sum of the variables in the strip,

Tm = ∑
(i,j)∈S(hm)

Xi,j ,(2.2)

and consider the test rejecting for appropriate large values of Tm (determined be-
low). With the assumption that hm is going to infinity, the oriented symmetric ran-
dom walk (i, Si)0≤i≤m−1 is contained in S(hm) with probability approaching 1.
That is, if we define the event

Am =
{

max
0≤i≤m−1

|Si | < hm

√
m

}
,

then

lim
m→∞ P(Ac

m) = 0.(2.3)

To see this, use Doob inequality for martingales to get

P
(

max
0≤i≤m−1

|Si | ≥ hm

√
m

)
≤ 2

E|Sm−1|
hm

√
m

≤ 2

√
E|Sm−1|2
hm

√
m

≤ 2

hm

.

Let nm be the number of nodes in S(hm) and note that nm = hmm3/2(1 + o(1)).
Under H0,

Tm ∼ N(0, nm),

while under H1, conditionally on the event Am, we have

Tm ∼ N(mμm,nm).

It then follows from (2.3) and the fact that

μmmn−1/2
m � μmm1/4h−1/2

m → ∞ as m → ∞
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that the test with rejection region |Tm| > mμm/2 obeys

lim
m→∞ P0(Type I) = 0 and lim

m→∞ Pπ(Type II) = 0.

That is, the test based on Tm is asymptotically powerful. This completes the proof
of the first part of Theorem 1.2.

2.1.2. Proof of Theorem 1.2: lower bound. It suffices to bound the Bayes risk
from below. Note that

Bm(π) := inf
all tests

γπ(Tm) = P0(Lm ≥ 1) + Pπ(Lm < 1),(2.4)

where Lm is the Bayes test (or likelihood ratio) Lm(X) = (dPπ/dP0)(X) and
E0Lm = 1. A standard calculation shows that

Bm(π) = 1 − E0|Lm − 1|
2

≥ 1 −
√

E0(Lm − 1)2

2
.(2.5)

Therefore, to show that the two hypotheses are asymptotically indistinguishable,
it is sufficient to establish that, under the null, the variance of the likelihood ratio
tends to zero.

Another standard calculation shows that the variance of Lm is given by

E0(Lm − 1)2 = E0L
2
m − 1 = Eeμ2

mNm − 1,(2.6)

where Nm is the number of crossings of two independent paths of length m drawn
from the prior. Hence, to derive a lower bound with this strategy, one needs to
understand for which sequences (tm)

lim
m→∞Mm(tm) = 1,(2.7)

where Mm(t) := EetNm , t ∈ R, is the moment generating function of Nm.
Here, the prior is the distribution of a symmetric random walk and the reader

may know that ENm � m1/2. Since

EetmNm ≥ 1 + tmENm,

this shows that it is necessary for the bound to be effective, to have tmm1/2 → 0
or, equivalently, μmm1/4 → 0. This is the correct asymptotic behavior, as we shall
see next.

Let (Si)1≤i≤m and (S′
i )1≤i≤m be two independent symmetric random walks

(note the slight change of the range of indices which is of no consequence whatso-
ever). Observe that {Si = S′

i} = {Si −S′
i = 0} so that we equivalently need to study

the number Nm of returns to zero of the difference process (Si − S′
i )1≤i≤m, which

is a Markov chain with the even integers as state space, and with jump probabilities
to each neighbor equal to 1/4 and probability to stay put equal to 1/2. Therefore,
the joint law of the difference process is that of (S2i )1≤i≤m, where, again, S is a
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symmetric random walk (note the doubling of the interval together with the sam-
pling at even times only). An immediate consequence is that

P(Nm = k) = P(|{1 ≤ i ≤ m :S2i = 0}| = k).

The number of returns of a random walk to the origin has been well studied and
we have from [14] and [15], Page 96 that

P(Nm = k) = 1

22m−k

(
2m − k

m

)
.(2.8)

The idea is now to develop a useful upper bound on the right side of (2.8) in order
to estimate the moment generating function of Nm.

First, recall the classical refinement of the Stirling approximation to n! (see [15],
pages 50–53), which states that

√
2πnn+1/2e−n+1/(12n+1) < n! < √

2πnn+1/2e−n+1/(12n).

Substituting this approximation into (2.8) (when expanding the binomial coeffi-
cients) yields

P(Nm = k) ≤ 1√
πm

(1 − k/2m)2m−k+1/2

(1 − k/m)m−k+1/2

(2.9)

= 1√
πm

√
1 − k/2m

1 − k/m
e−mg(k/m),

where

g(t) = (1 − t) log(1 − t) − 2(1 − t/2) log(1 − t/2), 0 ≤ t ≤ 1.

For t ∈ (0,1), it holds that d2/dt2(g(t)− t2/4) > 0 and, by convexity, the function
g(t) − t2/4 is above its tangent at the origin. This tangent is the line y = 0 since
g(0) = g′(0) = 0, whence

g(t) ≥ t2/4 ∀t ∈ [0,1).

Also, observe that (1 − t/2)/(1 − t) ≤ 1 + t for each t ∈ [0,1/2]. Now, fix 0 <

ε < 1/2. For k ≤ εm, we have (1 − k/2m)/(1 − k/m) ≤ 1 + ε, while for k < m,

one always has
√

1−k/2m
m(1−k/m)

≤ 1. We then conclude that

P(Nm = k) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
1 + ε

πm
e−k2/4m, k ≤ εm,

1√
π

e−k2/4m, εm < k ≤ m.

(2.10)

[The case k = m in the above estimate is checked directly rather than from (2.9).]
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The estimate (2.10) gives an upper bound on the moment generating function at
tm since

Mm(tm) ≤
�εm�∑
k=0

etmk

√
1 + ε√
πm

e−k2/4m +
m∑

k=�εm�+1

etmk 1√
π

e−k2/4m.

It is clear that if tm → 0 as m → ∞, then the second term of the right side goes to
zero as m → ∞ so we focus on the first term. Using the monotonicity in k of both
etmk and e−k2m/4, we have

�εm�∑
k=0

etmk 1√
πm

e−k2/4m ≤ 1√
πm

+
√

m

π
etm

∫ ε

0
emtmue−mu2/4 du

= 1√
πm

+ 2etm

∫ ε
√

m/2

0
e
√

2mtmu e−u2/2
√

2π
du

≤ 1√
πm

+ 2emt2
m+tmP

(
Z > −√

2mtm
)
,

where Z is a standard normal random variable. It follows that if tm is chosen such
that

√
mtm → 0 as m → ∞, then

lim
m→∞ 2emt2

m+tmP
(
Z > −√

2mtm
) = 1

and thus limm→∞ Mm(tm) = 1. In conclusion, we have proven that

lim
m→∞μmm1/4 = 0 �⇒ lim inf

m→∞Bm(π) ≥ 1.(2.11)

This proves the second part of Theorem 1.2.

2.2. Minimax detection. Just as in the Bayesian case, we first prove the upper
bound by constructing a test which allows us to detect reliably when μm decays
slower than (logm)−1/2, and then study the lower minimax bound.

2.2.1. Proof of Theorem 1.1: upper bound. Consider a simple test statistic of
the form

Tm = ∑
(i,j)∈Vm

wi,jXi,j , wi,j := wi = λm

i + 1
.(2.12)

Hence, Tm is a weighted sum of the values at the vertices of the graph. For conve-
nience, we fix λm so that

∑
0≤i≤m−1 wi = 1. Note that λm = (logm)−1(1 + o(1)).

Under H1, the mean of Tm is given by μm

∑
0≤i≤m−1 wi = μm and since the Xi,j ’s

have identical variance under both H0 and H1, we have

Var0(Tm) = Var1,p(Tm) = ∑
(i,j)∈Vm

w2
i,j

= ∑
0≤i≤m−1

(i + 1)w2
i = ∑

0≤i≤m−1

λ2
m

i + 1
= λm.
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Hence,

Tm ∼H0 N(0, λm) and Tm ∼H1,p
N(μm,λm),

under any alternative. Consider the test which rejects the null whenever Tm >

μm/2. The risk of this test is then equal to

γ (Tm) = 2P
(
N(0,1) > 1

2μmλ−1/2
m

) �⇒ lim
m→∞γ (Tm) = 0

when μmλ
−1/2
m → ∞ or, equivalently, when μm

√
logm → ∞. This proves the

first part of Theorem 1.1.

2.2.2. Proof of Theorem 1.1: lower bound. The idea for obtaining a lower
bound is to exhibit a prior on H1 which makes the Bayesian detection problem
as hard as possible. Consider a prior π on H1 (here a distribution on the set of
paths). Then, for all tests Tm,

γ (Tm) ≥ Bm(π),

where Bm(π) is the risk of the Bayes test,

Bm(π) = P0(Lm ≥ 1) + Pπ(Lm < 1).

Our strategy is to construct a prior on the family of paths with a low predictability
profile, that is, a process whose location in the future is hard to predict from its
current state and history.

The predictability profile of a stochastic process. The concept of the predictabil-
ity profile was first introduced in [7].

DEFINITION 2.1. The predictability profile of a stochastic process (Sn)n≥1 is
defined by

PRES(k) = sup P(Sn+k = x|S0, . . . , Sn),(2.13)

where the supremum is taken over all positions and histories.

We will consider nearest-neighbor walks which are defined as processes with
increments equal to ±1. Improving upon earlier results of Benjamini, Pemantle
and Peres [7], Häggström and Mossel [17], Theorem 1.4, proved the following.

THEOREM 2.2. Suppose (fk)k≥1 is a decreasing positive sequence such that∑
k≥1 fk/k < ∞. There then exists a nearest-neighbor process starting at S0 = 0

and obeying

PRES(k) ≤ C

kfk

(2.14)

for all k ≥ 1 and some positive constant C.
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C. Hoffman proved in [18] that this is sharp in the sense that if (fk) is a decreas-
ing positive sequence with

∑
k≥1 fk/k = ∞, then the predictability profile (2.14)

is impossible to achieve.
In what follows, we will need a quantitative, finite version of Theorem 2.2.

This is achieved by using a concrete prior, introduced in [17], which gives the
predictability profile below.

LEMMA 2.3 ([17], Proposition 3.1). Fix a sequence (aj )j≥0 obeying∑
j≥0 aj < 1. There then exists a nearest-neighbor process (Sn)n≥0 obeying

PRES(k) ≤ 20

ka�log2(k/2)�
for all k = 1,2, . . . .(2.15)

The construction of the process and the proof of (2.15) may be found in the Ap-
pendix. Later, we will consider a prior on paths obeying (2.15) for suitable values
of the sequence (aj )j≥0.

Predictability profiles and numbers of intersections. Hereafter, we consider sto-
chastic processes with a finite horizon, that is, (Si)0≤i≤m−1. In the sequel, we will
need to estimate the number of times two independent processes drawn from a
prior with prescribed predictability profile cross each other. From the proof of [7],
Lemma 3.1, we state the following

LEMMA 2.4. Let B be such that∑
1≤k≤�m/B�

PRES(kB) ≤ θ < 1.(2.16)

Then, for any sequence (vn)0≤n≤m−1 and all k ≥ 1, the distribution of the total
number of intersections between (Sn) and (vn) obeys

P(|S ∩ v| ≥ k) ≤ B · θk/B, |S ∩ v| := |{n :Sn = vn}|.(2.17)

We emphasize that the lemma is valid even if the sequence (vn)n≥0 does not deter-
mine a nearest-neighbor path.

We now prove the lower bound in Theorem 1.1 by providing a lower bound for
the Bayes risk Bm(π) for the prior π given by Lemma 2.3, and with the sequence

aj = aj (m) :=
{

1/(3 log2 m), j ≤ log2 m,
0, j > log2 m.

(2.18)

With the above choice,
∑

j≥0 aj ≤ log2 m+1
3 log2 m

< 1/2 for m > 4.
As in the analysis of the Bayes risk [see (2.5),(2.6)], we employ the simple

bound

Bm(π) ≥ 1 −
√

E0(Lm − 1)2

2
, E0(Lm − 1)2 = Eeμ2

mNm − 1,(2.19)
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where Lm is the likelihood ratio and Nm is the number of crossings of two inde-
pendent paths drawn from the prior π . We compute

∑
k≥1

eμ2
mkP(Nm = k) = ∑

1≤k≤K−1

eμ2
mkP(Nm = k)

+ ∑
k≥K

eμ2
mk[P(Nm ≥ k) − P(Nm ≥ k + 1)]

and, summing by parts, deduce that

Eeμ2
mNm ≤ eμ2

m(K−1) + [1 − e−μ2
m] ∑

k≥K

P(Nm ≥ k)eμ2
mk.

With the choice (2.18), Lemma 2.3 gives

PRES(k) ≤ (60 log2 m)/k, k = 1,2, . . . .

In particular, with B = Bm = 120(logm)2/ log 2, we have

�m/Bm�∑
k=1

PRES(kBm) ≤ 1
2 .

Applying Lemma 2.4 yields

E0L
2
m ≤ eμ2

m(K−1) + [1 − e−μ2
m]Bm

∑
k≥K

eμ2
mk2−k/Bm

≤ eμ2
m(K−1) + [1 − e−μ2

m]Bm

aK
m

1 − am

, am = eμ2
m2−1/Bm < 1,

where the last inequality is due to the fact that limm→∞ μ2
mBm = 0 [since

μm(logm)(log logm)1/2 = o(1)]. Further,

lim inf
m→∞ (−Bm logam) = log 2 �⇒ 1

1 − am

≤ 1

1 − e− log 2/(2Bm)
≤ c1Bm

for some constant c1 and all m large. It follows that for some constant c2 and all m

large,

E0L
2
m ≤ eμ2

mK + c2μ
2
mB2

me−K(log 2)/2Bm.

Taking K = Km = 2(Bm logBm)/ log 2 yields, for some constant c3,

E0L
2
m ≤ ec3μ

2
mBm logBm + O(μ2

mBm) → 1 as m → ∞.

Together with (2.19), this concludes the proof of Theorem 1.2.
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3. The complete binary tree. In this section, we prove Theorem 1.3. For the
upper bound, we show that the GLRT is asymptotically powerful if μm = μ >√

2 log 2 and that a closely related test is asymptotically powerful if μm = μ =√
2 log 2. For the lower bound, we study the likelihood ratio under the uniform

prior on paths using a martingale approach.
We start by considering the GLRT, which is based on Mm = max{Xp : p ∈ Pm},

Xp being defined in (1.4). We first show that under the null hypothesis, the GLRT
obeys

P0
(
Mm ≥ m

√
2 log 2

) → 0, m → ∞.

This is, in fact, a simple application of Boole’s inequality and a standard bound on
the tail of the normal distribution

P
(
N(0,1) > t

) ≤ 1√
2π

e−t2/2

t
.

Indeed,

P0
(
Mm ≥ m

√
2 log 2

) ≤ 2m−1P0
(
Xp ≥ m

√
2 log 2

)
(3.1)

= 2m−1P
(
N(0,1) ≥

√
2m log 2

) ≤ 1

4
√

πm log 2
.

In fact, Mm/m → √
2 log 2 a.s.; see [23], Section 3. Under any alternative P1,p

with μ >
√

2 log 2, however, the GLRT obeys

P1,p

(
Mm > m

√
2 log 2

) → 1, m → ∞.(3.2)

Indeed, if p is the path along which the mean is elevated, Mm ≥ Xp and Xp/m is
normally distributed with mean μ and variance 1/m.

If μ = √
2 log 2, the same argument gives

lim inf
m→∞ P1,p

(
Mm > m

√
2 log 2

) ≥ 1
2

for each path p instead of (3.2). This is not quite enough to conclude that H0 and
H1 can be separated with probability approaching 1. However, taking mk = 2k ,
from (3.1) and Borel–Cantelli, we have that

P0
(
Mmk

≥ mk

√
2 log 2 infinitely often

) = 0,

while standard estimates for random walks imply that

P1,p

(
Mmk

≥ mk

√
2 log 2 infinitely often

) = 1

for each p and [because the increments Xp(mk) − Xp(mk−1) are exponentially
mixing] even

lim inf
k→∞

1

k

k∑
i=1

1{Mmi
≥mi

√
2 log 2} ≥ 1

2
, P1,p-a.s.
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Therefore, the test which computes, along the sequence mk , the number of times
Mmk

≥ mk

√
2 log 2, declaring H0 if this number is less than k/4 and H1 otherwise,

has asymptotic full power.
In conclusion, the GLRT (or its variant) has asymptotic full power if μ ≥√
2 log 2.
We now turn to studying the likelihood ratio under the uniform prior π on paths

Lm = 2−(m−1)
∑

all paths p

eμXp−mμ2/2

and show that for μ <
√

2 log 2, its risk

Bm(π) = P0(Lm ≥ 1) + Pπ(Lm < 1)

is bounded away from 0. A lower bound such as (2.5) would not suffice here since
we want to recover the same threshold

√
2 log 2. Instead, we turn to martingale

methods. Such methods have been used for years (see, e.g., [8, 12]). Here, we
follow the presentation found in [9].

A simple calculation shows that

Bm(π) = 1 − E0(1 − Lm)+.

Let |v| denote the distance of a vertex v from the root. By Proposition 1 in [9], we
know that under H0, Lm is a nonnegative martingale with respect to the filtration
F (Xv : |v| ≤ m − 1), which converges pointwise to a finite, nonnegative random
variable L∞. Hence, by dominated convergence,

lim
m→∞Bm(π) = 1 − E0(1 − L∞)+.

Applying Proposition 2 in [9], we have that for μ <
√

2 log 2, Lm is uniformly
integrable and, therefore, E0L∞ = 1. Hence, P0(L∞ = 0) < 1 and, consequently,

lim
m→∞Bm(π) > 0.

Finally, we briefly argue that if μm → 0, then every sequence of tests is asymp-
totically powerless. Here, it is enough to use the bound (2.5). It therefore suffices to
prove that Var0(Lm) → 0 as m → ∞. Just as in (2.19), Var0(Lm) = Eπeμ2

mNm −1,
where Nm is the number of crossings between two random paths drawn from the
prior π . Here, P(Nm = k) = 2−k , 1 ≤ k ≤ m − 1, and P(Nm = m) = 2−m+1. In
short, the distribution of Nm is that of a truncated geometric random variable with
probability of success equal to 1/2. Set τm = eμ2

m/2, which is less than 1 for m

large. We compute

Var0(Lm) = (2τm − 1)(1 − τm
m )

1 − τm

≤ 2τm − 1

1 − τm

.

It is now clear that Var0(Lm) → 0 when τm → 1/2 or, equivalently, when μm → 0.
This completes the proof of the theorem.
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4. Extension to exponential families. While the previous sections studied
the detection problem assuming a Gaussian distribution at the nodes of the graph,
it is now time to emphasize that our results hold more generally. In fact, one can
obtain similar conclusions for exponential models as well.

Letting F0 be a distribution on the real line, we define Fθ as the exponential
family with associated density exp(θx − logϕ(θ)) with respect to F0. Note that by
definition, ϕ(θ) = EF0[exp(θX)], where EF0 is the expectation under the distrib-
ution F0. We always assume that ϕ(θ) < ∞ for θ in a neighborhood of 0; further
restrictions are mentioned when needed.

Under the null hypothesis, we assume that all the nodes are i.i.d. with distrib-
ution F0, while under H1,m, there is a path along which the nodes are i.i.d. with
distribution Fθm , θm > 0, and distribution F0 away from the path. The question is,
of course, for what values of θm one can reliably detect this path. To connect this
general set-up with the previously studied special case, set ψ(θ) = logϕ(θ) and
recall that

μ(θ) := EFθ X = ψ ′(θ) and σ 2(θ) := VarFθ X = ψ ′′(θ).

With this notation, the mean shift is equal to

μ(θ) − μ(0) = ψ ′(θ) − ψ ′(0) = ψ ′′(0)
(
θ + o(θ)

)
.

In other words, the value of a small mean shift is just about proportional to θ . [In
the Gaussian case, μ(θ) = θ and logϕ(θ) = θ2/2.]

4.1. The regular lattice with an exponential family at the nodes. We first con-
sider the minimax detection problem, and extend Theorem 1.1.

THEOREM 4.1. Suppose that θm

√
logm → ∞ as m → ∞. There is then

a sequence of tests which is asymptotically powerful. Conversely, suppose that
θm logm

√
log logm → 0 as m → 0. Then, every sequence of tests (Tm) is asymp-

totically powerless.

In summary, one can reliably detect a path as long as the mean shift μ(θm) −
μ(0) � (logm)−1/2, while this is impossible if—ignoring the

√
log logm factor—

μ(θm) − μ(0) � (logm)−1.
As an example, consider the case where we have exponentially distributed ran-

dom variables; under the null, the node variables are exponentially distributed with
mean 1, while under the alternative hypothesis, there is a path along which the node
variables are exponentially distributed with mean 1 +μm. Let F0 be the density of
the exponential with mean 1. The density of an exponential random variable with
mean 1 + μ with respect to F0 is given by

(1 + μ)−1 exp
(
μx/(1 + μ)

) := exp
(
θx − logϕ(θ)

)
,
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with

θ = μ

1 + μ
, ϕ(θ) = 1

1 − θ
.

For this exponential model, one can reliably detect a mean shift μm if it is signif-
icantly larger than (logm)−1/2, while this is impossible if it is much smaller than
(logm)−1.

PROOF OF THEOREM 4.1. The proof is similar to that of Theorem 1.1.
For the upper bound, we consider the same statistic (2.12) as before, Tm :=∑

(i,j)∈Vm
wi,jXi,j , with exactly the same choice of weights. First, observe that

for any path p from H1, the mean difference obeys

E1,p(Tm) − E0(Tm) = μ(θm) − μ(0).

As for the variances, we have

Var0(Tm) = σ 2(0)
∑

(i,j)∈Vm

w2
i,j = λmσ 2(0)

and for any alternative in H1,

Var1,p(Tm) = σ 2(0)
∑

(i,j)∈Vm

w2
i,j + [σ 2(θm) − σ 2(0)] ∑

0≤i≤m−1

w2
i

= λmσ 2(0) + [σ 2(θm) − σ 2(0)]O(λ2
m).

Recall that λm = (logm)−1(1 + o(1)). Using Chebychev’s inequality, we see that
the probabilities of Type I and Type II errors go to zero as soon as [μ(θm) −
μ(0)]λ1/2

m → ∞ as m → ∞. The first part of the theorem follows from μ(θm) −
μ(0) = θm VarF0(X)(1 + o(1)). That is, if the mean shift time

√
logm increases to

infinity, then the probability of each type of error goes to zero.
For the lower bound, we consider the same prior distribution on the family of

paths. For exponential models, the variance of the likelihood ratio Lm is given by

Var0(Lm) = E[λ(θm)Nm] − 1, λ(θ) = ϕ(2θ)

ϕ(θ)2 > 1,(4.1)

where, again, Nm is the number of crossings of two independent paths drawn from
the prior, or

Var0(Lm) = Eeα2(θm)Nm − 1 α(θ) =
√

logλ(θ).

This is the same expression as before [cf. (2.19)] and our previous analysis shows
the existence of a prior with the property

lim
m→∞α(θm) logm

√
log logm = 0 �⇒ lim

m→∞ Var0(Lm) = 0,



SEARCHING FOR A TRAIL OF EVIDENCE IN A MAZE 1745

which implies that the Bayes test is asymptotically powerless. It is now not difficult
to see that for exponential models, λ(θ) = 1 + O(|θ |2) so that α(θ) = O(θ) for θ

close to zero. As a consequence,

lim
m→∞ θm logm

√
log logm = 0 �⇒ lim

m→∞α(θm) logm
√

log logm = 0,

which establishes the second part of the theorem. �

Not surprisingly, the same extension also holds in the Bayesian set-up.

THEOREM 4.2. Consider the uniform prior on paths. Suppose that θmm1/4 →
∞ as m → ∞. The Bayes test is then asymptotically powerful. Conversely, if
θmm1/4 → 0 as m → 0, then the Bayes risk tends to 1 and every sequence of
tests (Tm) is asymptotically powerless.

The proof follows that of Theorems 1.2 and 4.1. We omit the details.

4.2. The tree with an exponential family at the nodes. Following [9], define
the function f as

f (θ) = 1

θ
log(2ϕ(θ)).(4.2)

By Lemma 4 in [9], f either attains its unique minimum or f is strictly decreasing
on (0,∞). In any case, we denote by θ� ∈ (0,∞] the value where f is minimum.

THEOREM 4.3. Assume that ϕ(θ) < ∞ in a neighborhood of θ�. If θm =
θ > θ�, then the GLRT is asymptotically powerful. If θm = θ < θ�, then there
does not exist any asymptotically powerful sequence of tests. If θm → 0, then all
sequences of tests are powerless. Finally, if θm = θ�, then there exists a sequence
of asymptotically powerful tests.

For exponential random variables, ϕ(θ) = 1/(1 − θ) and we numerically com-
pute θ� ≈ .63. In terms of mean shift (see above), we have μ(θ�) − μ(0) =
1/(1 − θ�) − 1 ≈ 1.70. The mean difference along the unknown path must exceed
approximately 1.70 to be reliably detectable.

For Bernoulli random variables, Fθ = Bernoulli(eθ/(1 + eθ )), the function f

is decreasing on (0,∞) and, therefore, θ� = ∞. Theorem 4.3 then implies that
no asymptotically powerful sequences of tests exist for testing fair coin tossing
at the nodes versus biased coin tossing with parameter q ∈ (1/2,1) along a path.
Note that the situation drastically changes when q = 1: in this case, the nodes with
value 1 that are connected to the root node through a path of nodes of value 1
form a critical branching process (with an expected number of descendants at each
node equal to 1) which, therefore, eventually dies out. Under H1, however, there
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is always a path of length m starting from the origin and with all 1’s. Hence, the
test that declares H1 if one finds such a path and H0 otherwise is asymptotically
powerful.

PROOF OF THEOREM 4.3. The proof is very similar to that of Theorem 1.3.
We start with the upper bound, assuming θ� < ∞. Define ξ(t) = infθ>0 ϕ(θ)e−tθ .
Note that

ξ(t) = 1/2 ⇐⇒ inf
θ>0

(
log(2ϕ(θ)) − θt

) = 0
(4.3)

⇐⇒ t = inf
θ>0

f (θ) = f (θ�).

Because ϕ(θ) < ∞ in a neighborhood of θ�, we can replace the estimate (3.1) by
the Bahadur–Rao bound [4], which yields

P0
(
Mm ≥ mξ−1(1/2)

) ≤ 2m−1P0
(
Xp ≥ mξ−1(1/2)

) ≤ C√
m

for some constant C. (In fact, under our assumptions, Mm/m → ξ−1(1/2) a.s., by
the argument in [23], Section 3.) This estimate and (4.3) imply that

P0
(
Mm ≥ mf (θ�)

) ≤ C√
m

.(4.4)

We now study the behavior of Mm/m under H1. Let p be the path along which
the nodes are sampled from the distribution Fθ . The strong law of large numbers
then shows that limm→∞ Xp/m = EFθ X a.s. and, therefore,

lim inf
m→∞

Mm

m
≥ d

dθ
(logϕ(θ)) a.s.

The derivative obeys d/dθ(logϕ(θ)) = ϕ′(θ)/ϕ(θ) > f (θ�) if and only if θ > θ�.
This equivalence follows from the identity

d/dθ log(ϕ(θ)) − f (θ�) = θf ′(θ) + f (θ) − f (θ�).

Since f is decreasing on (0, θ�) and strictly increasing on (θ�,∞), the right-hand
side has the sign of θ − θ�. This analysis shows that the GLRT has asymptotic
full power if θ > θ�, and the argument for handling θ = θ� is the same as in the
Gaussian case, using the full power of (4.4).

The study of the likelihood ratio under the uniform prior over paths is identical
to that in the Gaussian case, with the exception that when proving the uniform
integrability of the martingale Lm, we use Biggins’s theorem (in the form given in
[21]—noting the condition ϕ(θ) < ∞ in a neighborhood of θ�) instead of using
Proposition 2 from [9]. [The latter proposition requires that ϕ(θ) be finite for all
θ > 0, or at least for θ = 2θ�.] �
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5. Extension to other graphs. This section emphasizes that results are avail-
able for other graphs and, in particular, for the analog of the regular lattice in higher
dimensions.

• Regular lattice in dimension d ′ = d + 1. This is the graph with vertex set

V = {(i, j1, . . . , jd) : 0 ≤ i,−i ≤ jk ≤ i and jk has the parity of i}
and oriented edges (i, j1, . . . , jd) → (i + 1, j1 + s1, . . . , jd + sd), where sk =
±1.

Consider a distribution from the exponential family at the nodes and the uni-
form prior on paths. In this case, the likelihood ratio has been studied in dimen-
sion d + 1—under the name of the partition function—in the context of directed
random polymers. Martingale methods work well in this context and the behavior
of the likelihood ratio for d ≥ 3 is similar to the behavior of the likelihood ratio
for the tree that we studied in Section 3; see [11], Proposition 3.2.1. In particular,
for d ≥ 3, there are no asymptotically powerful sequences of tests if θm = θ obeys
λ(θ)ρd < 1, where λ(θ) is defined as in (4.1) and ρd is the return probability of a
symmetric random walk in dimension d . (The results for d = 2 only imply that the
Bayes risk tends to zero if θm = θ > 0.) In contrast, the minimax risk does not go to
zero here and this follows from the construction of a prior with low predictability
profile. We give a general statement in Theorem 5.3.

To establish a general result, we work with a connected graph (directed or undi-
rected), with one vertex marked that we call the origin, and, as before, we let P
be the set of self-avoiding paths starting at the origin and Pm ⊂ P be the subset
of paths of length m. Under the null hypothesis, all the nodes are i.i.d. F0, while
under the alternative, there is a path in Pm along which the nodes are i.i.d. F1. We
assume throughout that F1 is absolutely continuous with respect to F0; otherwise,
the detection problem becomes trivial.

DEFINITION 5.1. A distribution π on P is said to have an exponential inter-
section tail with parameter η ∈ (0,1) if there exists C > 0 such that if N is the
number of crossings of two independent samples from π , then

P(N ≥ k) ≤ C · ηk ∀k ≥ 1.

The regular lattice with d ≥ 2 (i.e., d ′ ≥ 3) admits a measure on paths with an
exponential intersection tail [7], Theorem 1.3. Note that a summable predictability
profile implies an exponential intersection tail.

DEFINITION 5.2. Let L = dF1/dF0 be the likelihood ratio for testing F1 ver-
sus F0 at a single node. The Pearson χ2-distance between F0 and F1 is defined as
χ2(F0,F1) = Var0(L).



1748 E. ARIAS-CASTRO, E. J. CANDÈS, H. HELGASON AND O. ZEITOUNI

With these definitions, we have the following general statement.

THEOREM 5.3. Suppose that there is a distribution π on P having an expo-
nential intersection tail with parameter η. Then, if χ2(F0,F1) < η−1 − 1, there
are no asymptotically powerful sequences of tests.

The proof does not require any argument that we have not already presented,
and is omitted. For exponential variables, χ2(F0,Fθ ) = λ(θ) − 1, where λ(θ) is
defined as in (4.1) and, therefore, no asymptotically powerful sequences of tests
exist if λ(θ)η < 1.

Theorem 5.3 provides a lower bound on the minimax threshold for reliable de-
tection. For an upper bound, suppose, for example, that the variables are expo-
nentially distributed and assume that #Pm = O(δm) for some positive constant δ;
for instance, δ = 2d works for the regular lattice in dimension d + 1. Applica-
tion of Boole’s inequality and the law of large numbers shows that under those
assumptions, the GLRT is asymptotically powerful if ξ(t)δ > 1, where, again,
ξ(t) = infθ>0 ϕ(θ)e−tθ .

6. Numerical experiments. We now explore the empirical performance of
some of the detection methods we proposed for the regular lattice. The variables
at the nodes are independent Gaussians. To measure the performance, we fix the
probability of Type I error at 5% and estimate the power or detection rate, that is,
the probability of deciding in favor of the alternative H1 when H1 is true. This
power function was estimated at values of the mean shift μ (the mean of the node
variables along the path) at which this function is varying.

6.1. Bayesian detection under the uniform prior. We first consider detection
under the uniform prior on paths. We compare the performance of the Bayes test,
the GLRT and the test based on the strip statistic which was used in the proof of
the upper bound in Theorem 1.2. The Bayes test is optimal in this setting and we
recall that the strip statistic was shown to achieve the optimal detection rate. This
paper did not theoretically analyze the performance of the GLRT in this situation,
however, and we would like to do so empirically.

6.1.1. Computing the Bayes statistic. As emphasized earlier, there exists a
rapid algorithm for calculating the Bayes statistic Lm(X) [(2.1)]. Consider any
node v = (i, j) (0 ≤ i ≤ m − 1 and j has the parity of i) and let P End(v) be the
set of paths starting at the root (0,0) and ending at the node v. Set

Y(v) := 2−i
∑

p∈P End(v)

eμXp−(i+1)μ2/2.
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With this notation, Lm(X) is the sum of Y over all the terminal nodes v for which
i = m − 1. Now, observe the recurrence

Y(v) = eμXv−μ2/2 · Y(v+) + Y(v−)

2
,(6.1)

where (v+, v−) are the two predecessors of v in the graph, that is, the two nodes
from which one can reach v in one step. [By convention, set Y(v±) = 0 if v± is
outside the grid.] This recurrence shows that one can compute the Bayes statistics
in O(m2) flops.

For each value of μ and m, then, we simulated the Bayes statistic under H0 and
H1 using 2,000 realizations for each. Here and below, each realization uses a new
path realization drawn from the uniform distribution.

6.1.2. Simulating the strip statistic. For a positive integer B , the strip statistic
Tm,B is the sum of the random variables falling in the centered strip of length m

and width 2B + 1,

Tm,B = ∑
0≤i≤m−1

∑
j :|j |≤min(i,B)

Xi,j .

Under H0, Tm,B ∼ N(0, nm,B) where nm,B is the number of vertices in the strip,
while under H1 (fixed path), Tm,B ∼ N(μ ·Rm,B,nm,B), where Rm,B is the number
of vertices inside the strip that the random path visits. Therefore, one can simulate
Tm,B by taking one realization of Rm,B , multiplying it by μ and adding an inde-
pendent mean-zero Gaussian variable.

It remains to choose the width of the strip. We ran simulations with B = ν
√

m

for ν = 0.75,1,2,3. Among these values, B = 2
√

m gave the best performance
(at least for the graph sizes we considered). Finally, for a fixed μ and m, we used
5,000 realizations of the test statistic to estimate the detection rate.

6.1.3. Simulating the GLRT. The GLRT statistic rejects for large values of
Mm = max{Xp :p ∈ Pm}. This statistic can be calculated rapidly using dynamic
programming; for example, Dijkstra’s algorithm [1] has here a computational com-
plexity proportional to the number of nodes. For each graph size, the threshold
corresponding to a Type I error probability approximately equal to .05 and the de-
tection rate for a fixed μ were based on 10,000 and 1,000 realizations, respectively.

6.1.4. Comparing the tests. To compare the three tests, one can estimate the
value of the mean shift which gives a detection rate of about 95% from graphs
plotting the detection rates versus μ (see Figure 6). Call this quantity μ0.95. Table 1
shows μ0.95 for the Bayes test, the test based on the strip statistic test and the
GLRT for different graph sizes. As expected, the Bayes test outperforms the other
two, but one needs to recall that those tests do not require information about the
parameter μ, while the Bayes test does. Figure 3 shows a log-log plot of μ0.95 as a
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TABLE 1
Value of the mean shift giving a detection rate of about 95% when using the Bayes test, the strip

statistic test with width B = 2
√

m and the GLRT (uniform prior on paths)—one can compute μ.95
for the strip statistic for large values of m since it is given analytically

m 1025 2049 4097 8193 16385

μ0.95 (Bayes) 0.37 0.31 0.26
μ0.95 (strip) 0.84 0.69 0.59 0.51 0.42
μ0.95 (GLRT) 0.46 0.40 0.36 0.33

function of m, together with least-squares line fits. The slope of the line is −0.255
for the Bayes test and −0.246 for the strip test. Both of these values are quite close
to the −1/4 exponent one finds in Theorem 1.2. For the GLRT, the slope is about
−0.16. This suggests that the strip statistic test might eventually outperform the
GLRT for sufficiently large graphs. The fitted lines meet at approximately m =
220 ≈ 106, but it would be computationally extremely intensive to run simulations
for graphs of this size. The point here is that these simulations suggest that the
GLRT is only able to detect at μ ≈ m−1/6 and, therefore, does not achieve the
optimal detection rate under the uniform prior on paths.

FIG. 3. Comparison of the Bayes test, the strip statistic test and the GLRT under the uniform prior.
The plot shows the value μ0.95 of the mean shift for which a given test achieves a 95% detection rate
when the rate of false alarm is set at 5% as a function of the graph size m (log-log scale).
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FIG. 4. Comparison of the GLRT and the WAS when the anomalous path is the increasing path.
The plot shows the value μ0.95 of the mean shift for which a given test achieves a 95% detection rate
when the rate of false alarm is set at 5% as a function of the graph size m.

6.2. Minimax detection. We focus here on the increasing path p, where
pi = i, 0 ≤ i ≤ m − 1, as we believe this path to be the most challenging for
the GLRT. In this section, we compare the performance of the GLRT with the
weighted average statistic test (WAS) defined in (2.12).

Recall that the WAS is distributed as N(0, λm) under H0 and as N(μ,λm)

under H1, regardless of the unknown path [λm ∼ (logm)−1]. Thus, to achieve a
power equal to 0.95 at the 5% significance level, we need μ ≥ 2z0.95

√
λm, where

z0.95 is the 95% standard normal quantile. Some power curves for the WAS are
graphed in Figure 5. We use simulations to graph similar curves for the GLRT; see
Figure 6. Each point is based on 1,000 realizations of the statistic.

While the power curves for the WAS tend to translate to the left, this does not
seem to be the case for the GLRT. This might indicate that the detection threshold
for the GLRT does not tend to zero as m increases, just as in the case of the binary
tree.

7. Discussion. Our paper leaves a number of open questions and invites sev-
eral refinements. We briefly discuss some of these.

7.1. Sharpening the minimax detectability threshold in the two-dimensional
regular lattice. There is a gap between the upper and lower bounds in The-
orem 1.1: the detection threshold for our estimator (2.12) is of order μm ∼
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FIG. 5. Detection rate curves for the WAS statistic with m = 1025, 2049, 4097, 8193, 16385,
32769. As m increases, the curve moves to the left. The Type I error is set to 5%

FIG. 6. Detection rate curves for the GLRT (increasing path). The probability of Type I error is set
to 5%.
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TABLE 2
Value of the mean shift giving a detection rate of about 95% when using the WAS test and the GLRT
for detecting the increasing path—one can compute μ0.95 for the WAS for large values of m since it

is given analytically

m 1025 2049 4097 8193 16385 32769

μ0.95 (WAS) 1.20 1.15 1.10 1.06 1.03 0.99
μ0.95 (GLRT) 0.90 0.89 0.885 0.88

(logm)−1/2, but the priors we constructed showed nondetectability only when
μm ∼ (logm)−1 (ignoring loglog factors). We do not see how to improve our prior
to yield significantly better bounds and it seems that in any case, explicit priors
of this family—as constructed in [17], for example—will not yield a lower bound
obeying μm � (logm)−3/4. It would be very interesting to understand this better
and decide what is the actual rate of the detectability threshold.

With this in mind, we would like to emphasize that the test (2.12) used to prove
the upper bound in Theorem 1.1 does not use the “continuity” of the path, only
that it is known to be in the grid. That is, the test detects any sequence of the form
{(i,pi) : 0 ≤ i ≤ m − 1} as long as (i,pi) is a vertex in the graph, provided, of
course, that μm is of order (logm)−1/2. In fact, (logm)−1/2 turns out to be the
minimax detection threshold when the set of vertices with positive mean is any
sequence (i,pi) remaining in the grid. Indeed, the least favorable prior chooses
the (pi) independently and uniformly at random in their respective range so that
the number of crossings of two independent paths obeys

Nm = ∑
1≤i≤m

Ii,

where the Ii ’s are independent with P(Ii = 1) = 1/i and P(Ii = 0) = 1 − 1/i. The
same argument as before shows that

E0(Lm − 1)2 = Eeμ2
mNm − 1 = ∏

1≤i≤m

(
1 + eμ2

m − 1

i

)
− 1,

which is easily shown to converge to zero when μm(logm)1/2 → 0.

7.2. Studying the GLRT on the two-dimensional regular lattice. The GLRT
may not be anywhere near optimal in the minimax sense. A indication of that can
be deduced from work of Baik and Rains in [5], Section 4.4, and [6]. In the lan-
guage of the current paper, they deal with the following problem: consider directed
paths in the grid {(i, j) ∈ Z2 : j ≤ i ≤ m}. That is, starting from the origin (0,0),
a path is a sequence of increments by 1 unit in the right or upward direction (this
corresponds to a rotation of the regular graph considered in Theorem 1.1, with its
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lower half erased). Under H0, all vertices are i.i.d. exponential random variables
with parameter 1. Under H1, the variables along the “diagonal path” [the path
(0,0), (1,1), (2,2) and so on] are i.i.d. exponential with mean 1 +μ (of course, in
this situation, H1 is asymptotically distinguishable from H0 if μ > 0, but this is of
no concern in what follows). They consider the GLRT statistic Mm, which consists
of the maximum partial sums among all possible directed paths connecting (0,0)

to (m,m), and show that the limit distribution of (a properly rescaled version of)
Mm does not depend on μ as long as μ < 1 (this follows from the geometric case
treated in [5], Section 4.4). This hints that in that particular set-up, the GLRT is far
from optimal since Section 2 shows that the minimax risk with respect to all possi-
ble directed path goes to zero for any μ > 0. (Note that, strictly speaking, since the
mode of convergence in [5] is weak convergence and not total variation, the results
there hint, but do not imply, that the GLRT is not optimal.) Recently, Beffara and
Sidoravicius (in a yet unpublished work) have analyzed the GLRT for the model
considered in Theorem 1.1 (with exponential random variables), and their results
seem to imply that the threshold for the GLRT is of order o(1), in contrast with the
case [5] treated by Baik and Rains.

Also of interest would be to study the power of the GLRT with a uniform prior
on paths, where we suspect that the GLRT does not achieve the optimal threshold.

7.3. Unknown starting location. Throughout this paper, we assumed that un-
der H1, the unknown path starts at a known node (the origin). The same question
can also be posed when the starting location is not known. For concreteness, con-
sider the regular lattice as in Section 2 and allow the unknown path of length m/2
to start at any vertex in the collection {(i, j)}m/2

i=0 . Does there exist an asymptoti-
cally powerful test (in the minimax sense) for some sequence μm → 0? Similarly,
we could also imagine having a square lattice Vm = {(i, j)} with 0 ≤ i ≤ m − 1,
0 ≤ j < 2m (j has the parity of i as before) and with edges (i, j) → (i + 1, j + s),
where s = ±1 and j +s is understood modulo 2m. If we know the starting location
(0, j) of the unknown path of length m, then this is the model problem discussed
in Section 2. But studying this problem when we do not know the starting vertex
is also of interest.

7.4. Further refinements. In this paper, we assumed that the node variables are
independent and identically distributed and, clearly, one could address similar test-
ing problems in far more general set-ups. Interesting extensions include situations
in which the variables are correlated or in which the means along the unknown
path are not all equal. Following up on the nonparametric signal detection prob-
lem, one could also imagine problems where the vector of means is not exactly
sparse in the sense that it is zero away from the unknown path, but only rapidly
decaying away from this path.

While this paper focuses on asymptotic properties of the detection problem, it
is also of interest to develop test statistics with good finite sample size properties
and we hope to report on our progress in a future publication.
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7.5. Other work. While this paper was being written, N. Berger and Y. Peres
described to us some of their own results, obtained independently, which address
related problems and may answer some of the questions raised above.

APPENDIX: PROOF OF LEMMA 2.3

To construct a stochastic process obeying (2.15), we follow [17] and let Sn be
the sum Sn = ∑n

i=1 Ii with P(Ii = 1) = pi and P(Ii = −1) = 1 − pi . Here, the
pi ’s are stochastic (random environment) and defined by

pi = 1/2 + p
(1)
i + p

(2)
i + · · · ,

where (p
(1)
i ), (p

(2)
i ), . . . , are independent processes.

1. For each i and j , the distribution of p
(j)
i is uniform on [−aj , aj ].

2. The value p
(j)
i is constant in i for i = 1, . . . ,2j . At time 2j + 1, it switches to a

new independent value, uniform on [−aj , aj ], which is kept until time 2 × 2j ,
and so on.

Note that we need ∑
j≥0

aj < 1/2(A.1)

for this to make sense so that the pi ∈ (0,1). Finally, the Ii’s are independent,
conditioned on the random environment (pi).

With this in place, Häggström and Mossel in [17], Proposition 3.1 showed that
there exists a nearest-neighbor process (Sn) obeying

PRES(k) ≤ C

ka�log2(k/2)�
for all k = 1,2, . . . ,(A.2)

where C = 4[C1 + 1], with C1 = 2mkamk
· P(Y < EY/2), mk = �log2(k/2)� and

Y is a binomial random variable with 2mk trials and a probability of success equal
to amk

. Since, for any binomial variable Yn,p ∼ Bin(n,p),

npP(Yn,p < np/2) ≤ 4npVar(Yn,p)

n2p2 ≤ 4,

C1 ≤ 4 and thus the constant C ≤ 20.
As discussed earlier, this remark is of importance to us since we have used a

sequence (aj ) that depends explicitly on m.
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