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Abstract

Recently, Vogelsang (1999) proposed a method to detect outliers which explicitly
imposes the null hypothesis of a unit root. It works in an iterative fashion to select
multiple outliers in a given series. We show, via simulations, that under the null
hypothesis of no outliers, it has the right size in finite samples to detect a single outlier
but when applied in an iterative fashion to select multiple outliers, it exhibits severe size
distortions towards finding an excessive number of outliers. We show that his iterative
method is incorrect and derive the appropriate limiting distribution of the test at each
step of the search. Whether corrected or not, we also show that the outliers need to be
very large for the method to have any decent power. We propose an alternative method
based on first-differenced data that has considerably more power. We also show that
our method to identify outliers leads to unit root tests with more accurate finite sample
size and robustness to departures from a unit root. The issues are illustrated using two
US/Finland real-exchange rate series.
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1 Introduction

From Fox (1972), who introduced the notion of additive and innovational outliers, issues
related to this type of atypical observations in time series have received considerable attention
in the statistics and econometric literature. The outlier detection issue, itself, has received
particular attention !. Another topic of interest in the research has been the estimation
of ARM A models in the presence of outliers. In this case, as mentioned by Chen and Liu
(1993), a common approach is to identify the locations and the types of outliers and then to
accommodate the effects of outliers using intervention models as proposed by Box and Tiao
(1975). This approach requires iterations between stages of outlier detection and estimation
of the model 2.

In the context of integrated data (processes with an autoregressive unit root), the effects
of additive outliers have recently been the object of sustained research. It is by now well
recognized that outliers affect the properties of unit root tests (e.g., Franses and Haldrup
(1994)). They do so by inducing a negative moving average component in the noise function
which causes most unit root tests to exhibit substantial size distortions towards rejecting
the null hypothesis too often. Franses and Haldrup (1994) suggested applying Dickey-Fuller
(1979) unit root tests by incorporating dummy variables in the autoregression chosen on the
basis of the outlier detection procedure proposed by Chen and Liu (1993). This procedure has
been implemented in the computer program T"RAM (Time Series Regression with ARIM A
Noise and Missing Values) written by Gémez and Maravall (1992b), which allows us to
estimate ARIM A models where missing observations may be treated as additive outliers.

In an interesting recent paper, Vogelsang (1999) makes two contributions to the issue
about the effects of additive outliers on unit root tests. First, recognizing that outliers
induce a negative moving average component, he suggests using unit root test developed
by Stock (1999) and Perron and Ng (1996) that are robust, in terms of achieving exact
size close to nominal size in small samples, even in the presence of a substantial negative

moving average component. He shows via simulations that these unit root tests are little

!See, e.g., Hawkins (1980) who presents a set of methods proposed before 1980 and Hawkins (1973) who
proposed one of the most used methods, based on order statistics, to detect for outliers.

2Some references are Chang, Tiao and Chen (1988) and Tsay (1986). Chen and Liu (1993) also followed
this way and they proposed another method to detect the locations of the outliers and the joint estimation
of the parameters of the model. Their point of view was the fact that even if the model is well specified,
outliers may still produce biased estimates of the parameters and, hence, may affect the outlier detection
procedure. This is because atypical observations, in general, affect the variance of the estimates (e.g., Pena

(1990)).



affected by systematic outliers. Secondly, he recognized that one can take advantage of
the null hypothesis of a unit root in devising an outlier detection procedure. This allows
the derivation of a non-degenerate limiting distribution for the t-statistic on the relevant
one-time dummy.

In this paper, we make further contributions following the second suggestion of Vogel-
sang (1999). We show, via simulations, that Vogelsang’s (1999) procedure, under the null
hypothesis of no outlier, has the right size in finite samples to detect a single outlier but,
when applied in an iterative fashion to select multiple outliers, it exhibits severe size distor-
tions towards finding an excessive number of outliers. We show that there is a basic flaw in
the iterative method suggested by Vogelsang (1999). In effect, contrary to what he implic-
itly assumes, the limiting distribution of the test used is different at each iteration of the
outlier detection procedure. We derive the appropriate limiting distribution and tabulate
some critical values. When so corrected, his method is shown to have very low power to
detect outliers (even a single one without the correction made) unless the magnitude of the
outlier is very large. As an alternative, we propose a method based on first-differenced data
which has considerably more power. All of the methods considered are illustrated using two
US/Finland real-exchange rate series.

The rest of the paper is organized as follows. Section 2 deals with the model and the issue
of outlier detection. It reviews the procedure suggested by Vogelsang (1999) and presents
simulation evidence about its size. Section 3 derives the correct limiting distribution of the
test he suggested for each iteration of the outlier detection procedure. Section 4 presents the
procedure based on first-differenced data. Section 5 compares its size and power to methods
based on levels of the data using simulations. The size of unit root tests corrected using
the various methods to detect outliers is investigated in Section 6. An empirical illustration
using two US/Finland real-exchange rate series is presented in Section 7. Section 8 presents

brief concluding remarks and some details about the data used are discussed in an appendix.

2 The model and the issue of outlier detection

There is a large literature in statistics and econometrics on the subject of outlier detection in
ARM A models. The standard approach is to estimate a fully parameterized ARM A model
and construct a t-statistic for the presence of an outlier. Such a t-statistic is constructed at
all possible dates and the supremum is taken. The value of the supremum is then compared
to a critical value to decide if an outlier is present. Some references are Tsay (1986), Chang,
Tiao and Chen (1988), Shin, Sharkar and Lee (1996) and Chen and Liu (1993). Using
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a time series with an ARIM A noise function, Gémez and Maravall (1992a) proposed to
analyze missing observations as additive outliers. This paper was the basis for the computer
program TRAM written by Gémez and Maravall (1992b) to estimate ARIM A models with
missing observations, which was used by Franses and Haldrup (1994) in the context of outlier
detection in time series with unit roots.

The issue of outlier detection in the unit root framework offers a distinct advantage,
namely that one can work under the null hypothesis that a unit root is present. This is the
approach taken by Vogelsang (1999) whose procedure has two useful features. First, it does
not require a fully parametric model of the noise function and is valid for a wide class of
processes. Second, an asymptotic distribution can be obtained and critical values tabulated
even without having to make specific distributional and parametric assumptions about the
data-generating process.

The data-generating process entertained is of the following general form:

ye=di+ Y 6;D(Too ;)i + s (1)
j=1
where D(T,, ;) = 1 if t = T}, ; and 0 otherwise. This permits the presence of m additive
outliers occurring at dates 15, ; (7 = 1,...,m). The term d; specifies the deterministic com-
ponents. In most cases, d; = p if the series is non-trending or d; = u + St if the series is
trending (of course, other specifications are possible). The noise function is integrated of
order one, i.e.

Ut = Ut—1 + Ut (2)

where v; can be, for example, a linear process of the form v; = @(L)e; with ¢(L) =

Sl (D02, i%p? < o) and e is a martingale difference sequence with mean 0 and

2

2 = limy_n T ' Y27, E(e2) is finite. What is important is that the sequence v, sat-

o
isfies the condition for the application of a functional central limit theorem such that
T2 Zﬂ v, = oW(r) where W(r) is the unit Wiener process, = denotes weak con-
vergence in distribution and 02 = limy_,oc T 'E (ZL v;)? with 0 < 02 < oc0.

The detection procedure, suggested by Vogelsang (1999), starts with the following re-

gression estimated by OLS (if necessary, a time trend can also be included),

yo = 7i+ 0D(Tuo)s + Uy (3)

where D(T,,); = 1 if t = T,,, and 0 otherwise. Let t3(75,) denote the t-statistic for testing
6 = 0 in (3). Following Chen and Liu (1993), the presence of an additive outlier can be

3



tested using
T =sup | t3(Th) | -
TIIO
Assuming that A = T,,/T remains fixed as T grows, Vogelsang (1999) showed that as T' — oo,
W\
t5(Two) = H(N) = —3 (4)
(fo W (r)2dr)t/?

where W*(\) denotes a demeaned standard Wiener process (i.e. W*(\) = W()\)—fol W(s)ds).
If (3) also includes a time trend, W*(\) will denote a detrended Wiener process. Further-

more, from the continuous mapping theorem it follows that,
7= sup |[H(\)|=H" (5)
A€(0,1)

The distribution given in (5) is non-standard but is invariant with respect to any nuisance
parameters, including the correlation structure of the noise function. The asymptotic critical
values for 7 were obtained using simulations. The Wiener processes were approximated by
normalized sums of i.i.d. N(0, 1) random deviates using 1000 steps and 50, 000 replications.
Two cases were considered according to the deterministic components included in (3). When
there is an intercept in (3) the critical values are 3.53, 3.11 and 2.92 at the 1, 5 and 10%
significance levels, respectively. If a time trend is also included in (3) the corresponding
critical values are 3.73, 3.31 and 3.12.3

The outlier detection procedure recommended by Vogelsang (1999) is implemented as
follows*. First, compute the 7 statistic for the entire series and compare 7 to the appropriate
critical value. If 7 exceeds the critical value, then an outlier is detected at date T\ao =
arg maxr,, |t3(Ta0)|. The outlier and the corresponding row of the regression is dropped and
(3) is again estimated and tested for the presence of another outlier. This continues until

the test shows a non-rejection.

2.1 Simulation experiments for size

To asses the properties of the method in finite samples, we performed simulation experiments
under the hypothesis that the series contain no outlier. We consider a simple data-generating

process with an autoregressive unit root, i.e.

Yt = Yr—1 + Uy

3Critical values were also tabulated for the case where no deterministic components are included in (3).
The critical values at 1%, 5% and 10% significance levels are 3.22, 2.84 and 2.65, respectively.
4This is equivalent to the stepwise procedure to select for multiple outliers. See Hawkins (1980).
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Two cases are considered for the errors wu;; namely M A(1) processes of the form u; =
vy + Ov, 1 and AR(1) processes of the form u; = pu; 1 + v;. In all cases, vy ~ i.i.d. N(0,1).
We consider values of 6 and p in the range [—0.8,0.8] with a step size of 0.2. Two sample
sizes are used, T" = 100 and 7" = 200. The number of replications used was 10,000 and tests
at the 5% and 10% significance levels were performed.

We first consider the size of the procedures in what we label the “one pass” case. The
size is the number of times an observation is categorized as an outlier when searching for a
single outlier (without iterating any further for a given sample). Results are presented in
Table 1.

For the i.i.d. case, Vogelsang’s method has an exact size close to nominal size. For the
case with negative moving average errors, the test has size distortions (being liberal). These
distortions are smaller when more deterministic components are included in the models. For
positive moving average errors and particularly for the model that includes a time trend,
the procedure is slightly undersized. A similar result is observed when there are positively
correlated autoregressive errors.

The next experiments consider the properties of the method when applied in a full it-
erative fashion, i.e. continuing to search for additional outliers when one is found. Here,
we record the total number of observations categorized as outliers divided by the number of
replications. These values can be labelled as the expected number of outliers found. If the
tests have the correct size «, say, at each steps of the iterations, and the tests are indepen-
dent, this number should be close to a/(1 — ), that is .111 for a significance level 10% and
.053 for a significance level 5%.

The results are presented in Table 2. The main thing to note is that Vogelsang’s procedure
finds many more outliers than would be expected if the test had the correct size at each
steps. For example, for the model with only a constant with i.i.d. errors, T = 100, and a
significance level of 10%, the number is .293 instead of .111, i.e. an average of 2.93 outliers
for each replication which contains at least one outlier. These distortions increase when 7'
increases to 200 with a value of .520 (instead of .111) which corresponds to approximately

5.2 outliers per replications which have at least one outlier.

3 The distribution of the test 7 at different iterations

In the last section, we showed that the original procedure of Vogelsang (1999) has severe size
distortions when applied in an iterative fashion to search for outliers. The reason for this is

that the limiting distribution of the 7 test given by (5) is only valid in the first step of the
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iteration. In subsequent steps, the asymptotic critical values used need to be modified. The

correct limiting distribution at each step is given in the following Theorem.

Theorem 1 Suppose that y; is generated by (1) with &; =0 (i = 1,...,m) and let 7% be the
statistic T obtained at step i of the iterative search for outliers, then

lim Pr[r") > z] = Pr[H* > z]/a’"

T—o0

where « is the significance level of the test. Hence, the correct a-percentage point of the

limiting distribution of 7% is the o percentage point of the distribution of H* defined by (5).

Proof: The basic reason for this result is that at different steps the tests are not in-
dependent; indeed they are asymptotically equivalent because of the fact that the series is
integrated. Hence, at each step 7 = H* unconditionally on what happened in the previous
steps. But subsequent steps are applied only if the previous one showed a rejection, hence
one must consider the limiting distribution conditional upon a rejection at the previous step.
For simplicity, consider this limiting distribution for the second step. It is given by, where
T 18 the a-percentage point of the distribution of H*,

Tlgglo Pr[r® > z|7W >z ] = hmT_)OiifI:T[(_)Tj)Pj[iz)m: 7:3 > o)
limy oo Pr[(7?) > 2) N (71 > 2,)]
o

since 7)) = H*. Now, since we also have 72 = H*,

Pr|(H* H* N
lim Prpr® > z)r® > z,) = r[(H* > )N (H* > x,)]
T—)OO a
Pr[H* > ]
«

provided = > z,, which we shall need to have tests with correct sizes. The result stated in
the theorem follows using further iterations of the same arguments.ll

We shall denote by 7. the iterative outlier detection procedure that uses the correct (and
different) asymptotic critical values at different steps. We have simulated some asymptotic
critical values. We approximate the Wiener process by normalized sums of i.i.d. N(0,1)
random variables using 200 steps. To obtain a fair range of critical values, we used 2 million
replications. Nevertheless, even with such a large number of replications, the critical values

can be obtained for only a few cases. This is because as we get further in the iterations of



the outlier detection, we need percentage points of the distribution of H* that are very far
in the tail. For example, if the significance level is a = .05, the percentage point needed at
the 4th iteration is approximately .00001. Hence, even with 2 million replications we can
only present critical values up to i = 4 for a = .05, ¢ =5 for @ = .10, and ¢ = 7 for a = .20.

These are presented in Table 3 °.

4 A test using first differences of the data

As discussed in the next Section, Vogelsang’s original procedure is not powerful unless the
size of the outlier is very large. As a consequence, the full corrected iterative procedure is
even less powerful since the critical values to be used at each iteration increase. Simulation
evidence to that effect will be presented in the next section. Hence, it is desirable to entertain
an alternative outlier detection procedure that is less likely to suffer from this low power
problem.

We propose an iterative strategy using tests based on first-differences of the data. Con-
sider data generated by (1) with d; = p, and a single outlier occurring at date T,, with
magnitude 6. Then,

Ay, = 6[D(Tao)t — D(Tuo)i—1] + vy, (6)

where D(T,,): = 1, if t = T,, (0, otherwise) and D(7,,)i—1 = 1, if t = T,, — 1 (0, otherwise).
If the data are trending a constant should be included. This reflects the fact that a unit root
process with an outlier is characterized in first-differences by two successive outliers of equal

magnitude but with opposite signs. We have that the least-squares estimate of ¢ is given by

~

6 = (Ay:—Ayi1)/2
= (vp—v1)/2

under the null hypothesis of no outlier. So the variance of S is given by

var(6) = (Ry(0) — Ry(1))/2
where R,(j) is the autocovariance function of v; at delay j. Let R,(j) = T~ 317 tyiry,
with 0 the least-squares residuals obtained from regression (6). Then, R,(j) is a consistent
estimate of R,(j). We can then consider the following test statistic

74 = sup t5(Too)|

ao

®Note that the critical values with i = 1 are not quite identical to those presented in Section 2 of this
paper or in Vogelsang (1999) since 200 instead of 1000 steps where used to approximate the Weiner process.
The differences, however, are minor and do not affect subsequent results.
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where
t5(Tuo) = 8/((R,(0) — Ry(1))/2)">.

To detect multiple outliers, we can follow a strategy similar to that suggested by Vogelsang
(1999), by dropping the observation labelled as an outlier before proceeding to the next
step. The important feature is that, unlike for the case of tests based on levels (as the 7
statistic of Vogelsang), in the limit the test 7, is not perfectly correlated across each step
of the iterations when dealing with multiple outliers. With i.i.d. errors, the values of 7, are
approximately uncorrelated at each steps of the iterations; with positively correlated errors,
this no longer holds but the correlation is mild.

The disadvantage of this procedure, compared to that based on the level of the data, is
that the limiting distribution depends on the specific distribution of the errors u;, though not
on the presence of serial correlation and heteroskedasticity. This problem is exactly the same
as that for finding outliers in stationary time series since by differencing we effectively work
with a stationary series. The standard practice in the literature is rather ad hoc and consists
in rejecting if the t-statistic on some observation is greater than a critical value chosen to
be some number between 3 and 4 (see, e.g., Tiao (1985), Chang and Tiao (1983) and Tsay
(1986), among others). Here, we shall simulate critical values assuming i.i.d. normal errors
and discuss the extent to which inference is affected when the data deviates from these

specifications. So the data generating process is again

Yt = Y1+ Uy (7)

where u; ~ i.i.d. N(0,1). Two samples sizes are considered, namely 7" = 100 and 7" = 200.
The number of replications used was 50,000. The percentage points of the test 7, are
presented in Table 4. To assess the size of the test in finite samples when correlation is
present in the errors, we consider, as in Section 2.1, the same process defined by (7) with
correlated errors. T'wo cases are considered for the errors u;; namely M A(1) processes of the
form u; = vy + 6Ov, 1 and AR(1) processes of the form u; = pu; 1 + vi. In all cases, vy ~ i.i.d.
N(0,1). We consider values of § and p in the range [—0.8,0.8] with a step size of 0.4. The
sample size is T = 100, the number of replications used was 10,000 and tests at the 5%
significance level were performed. We consider the iterative procedure with up to 4 outliers.
The results are presented in Table 5.

The probability of finding at least one outlier is close to the nominal 5% level throughout.
The test is slightly conservative with positive moving-average errors or when the autoregres-

sive coefficient is very large in absolute value. The probability of finding at least two outliers
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is close to the theoretically expected value of .0025. The probability of finding more than
2 outliers is basically null in all cases. Hence, we conclude that the iterative procedure is
adequate in that it delivers the expected number of rejections at each stage of the iterations.

Also, the correction for the presence of serial correlation appears to perform satisfactorily.

5 Simulations for size and power

In this section, we present results about the size and, especially, the power of the various

procedures when multiple outliers are present. The Data Generating Process considered is

Y = Z5jD(Tao,j)t + Uy, (8)
j=1
U = U1 + Vg, (9)

where D(T4,;) = 1 if t = T,,; and 0 otherwise. Again, two cases are considered for the
errors v;; namely M A(1) processes of the form v, = e; + fe;—1 and AR(1) processes of the
form v; = pvi_1 + e;. In all cases, e; ~ i.i.d. N(0,1). We consider values of # and p in the
range [—0.8,0.8] with a step size of 0.4. This permits the presence of m additive outliers
occurring at dates Ti,; (7 = 1,...,m). We consider two cases, one with m = 0 to assess
size and one with m = 4 outliers to assess power. All simulations are based on a sample
size T' = 100 and 10,000 replications were performed. We present results only for the case
where a constant is included in the set of deterministic components. The significance level
of the test is set to 5%. For the procedures based on 7. and 74, we used the critical values
presented in Tables 3 and 4, respectively.

When m = 4, the location of the outliers are at observations 20, 40,60, and 80. The
magnitudes of the outliers considered are either a) 6; = 5, 6o = 3 and 63 = 6, = 2 or
b) 61 = 10 and 65 = 63 = 64 = 5. We consider the properties of Vogelsang’s uncorrected
method (7), its corrected version (7.) and the method based on first-differenced data (74).
The results are presented in Table 6 (MA errors) and Table 7 (AR errors).

Consider first the behavior of the tests when there is no outlier. The only procedure with
a size close the expected theoretical nominal size (5% at the first step, .0025 at the second
and basically 0 at the third and fourth) is that based on first-differenced data (7,), though
as noted before it is somewhat conservative with an autoregressive coefficient that is large
in absolute value and for positive MA coefficients. Vogelsang’s procedure, whether corrected
or not show substantial size distortion (liberal tests) in the presence of negative MA errors,

and also to a lesser extent in the presence of strong negative AR errors. The results also
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confirm the fact that Vogelsang’s uncorrected procedure (7) finds an excessive number of
outliers when applied in an iterative fashion.

The most interesting feature of the results is that the methods based on the level of the
data have basically no power while the method based on first-differenced data has excellent
power even for outliers of moderate size. Consider, for example, case (a) which is repre-
sentative of outliers of moderate sizes. In the case with i.:.d. errors, Vogelsang’s corrected
procedure (7.) finds one outlier 14% of the cases while it basically never finds more than one
outlier. The method based on first-differenced data finds at least one outlier almost 100% of
the times and more than 3 outliers 23% of the times. Consider now case (b) which is repre-
sentative of large outliers, the method 74 finds 4 outliers basically 100% of the times, while
the method 7, finds at least one outlier 52% of the time and finds more than 2 outliers only
4% of the time. The results are qualitatively similar with errors that are serially correlated.
Negative serial correlation (of the autoregressive or moving-average type) induces a loss of

power while positive serial correlation (again of either type) induces an increase in power.

5.1 Robustness to departures from a unit root

It is of interest to asses the extent to which our suggested procedure is robust to departures
from a unit root. Indeed, sometimes the purpose of detecting outliers is to provide appropri-
ate corrections to unit root test, in which case the presence or not of a unit root is unknown.
A popular device to analyze this issue is a so-called near-integrated process which specifies,

under the null hypothesis of no outlier that
yo= 1+ ¢/T)yr + v (10)

where v; is a stationary process. Here, ¢ is a non-centrality parameter which measures the
extent of departures from a strict unit root process. When ¢ < 0, we have a locally stationary
process. This is labelled as a process local to unity, since as 7" increases the autoregressive
parameter converges to one. A little algebra shows that, under this specification, the OLS

estimate 6 from regression (6) is

~

6 = (Aye— Ay 1)/2
c
= [= (Y2 +ve—1) + (v — v1-1)]/2
T
= (v —v=1)/2 + Op(T77?)
Also, (Rv(o) - Rv(l)) /2 remains a consistent estimate of the variance of 6. Hence, we

can expect our procedure to remain adequate under this local to unit root setup. But the
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robustness of our procedure also extends to the case where y; is a stationary processes. The
reason is again that (R,(0) — R,(1))/2 remains a consistent estimate of the variance of .

To assess the size of the procedures 7. and 74 under departures from a unit root, we
performed simulations from data generated by (10) with 7= 100 and v; ~ i.i.d. N(0, 1) for
a range of values for c¢. The results are presented in Table 8. They clearly show that the
procedure 74 has an exact size close to the nominal 5% for any value of ¢. On the other
hand the procedure 7. shows increasing size distortions as ¢ moves away from 0 (it is easy
to show that the asymptotic distribution of the test 7. is different under the local to unity
framework; the Wiener process being replaced by an Orhnstein-Uhlenbeck process with drift
parameter c¢). The last row of Table 8, shows the exact size when y; ~ i.i.d. N(0,1). Again,
the procedure 74 has an exact size close to the nominal 5%.

When the process is stationary, a more natural procedure is to base the test on a regression

using levels of the data, i.e. a regression of the form

yt = ,u + 6D(Tao)t + V. (11)
Let 6* be the OLS estimate of 6 and denote the t-statistic for testing 6 = 0 by

ts(Tho) = 6% /Ry(0)'/2.

where R,(0) = T-' Y], 2 with ¢, the OLS residuals from regression (11). The statistic is
then

71 = sup |ts (Tuo)|-
TIIO

To assess the size and power properties of 74 and 7;, we performed a simulation experiment
with data generated by (8) with p = 0. Now the errors w; are stationary and, again,
two cases are considered; namely M A(1) processes of the form u; = e; + fe; 1 and AR(1)
processes of the form u; = puy—1 + e, with e; ~ i.i.d. N(0,1). The results, obtained from
10,000 replications, are presented in Tables 9 and 10 (the critical values for 7; were obtained
the same way as those for 74 in Table 4 except that regression (11) is used instead of (6)).
When the process is i.i.d. or negatively serially correlated, the procedure 74 based on first-
differences is indeed less powerful than that based on level (7;). However, with positive serial
correlation, the reverse holds and the procedure based on first-differences is more powerful.
This is encouraging since most macroeconomic time series are positively correlated. Hence,
for most applications of interest in economics, which have positive correlation, not only 74 is
valid if a unit root is present but is more powerful than the more common procedure based

on level.
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5.2 Consistency against local alternatives

It is well known that tests for outliers of the type considered here (based on the value of a
single observation) are inconsistent against fixed alternatives. That is, the power of the tests
against a fixed value of 6 does not converge to one as the sample size increases. Nevertheless,
insights into relative powers can be obtained looking at the properties of the tests in the

presence of local alternatives of the form
H1 . 6T = (50Ta (12)

for some fixed 6,. It is easy to show that Vogelsang’s procedure corrected or not (7 or 7.) is
consistent against alternatives of the form (12) only for values a > 1/2. On the other hand,
the procedures 74 and 7; are consistent against such alternatives for any values a > 0. This

goes some way towards explaining the greater power found for 74 in the simulations.

5.3 Departures from normality

As we argued above, the procedure 74 has several advantages over the procedure 7. proposed
by Vogelsang: the same critical values can be used at each step of the iterations, power is
much higher, and it is robust to departures from a unit root. However, an advantage of
the procedure 7. is that is not affected by departures from the normality assumption (at
least in large samples and with a strict unit root). This is not the case for the procedure
T4 whose distribution is heavily dependent on the normality assumption. This is not a new
problem and it has been present throughout much of the literature on outlier detection and,
as discussed in Section 4, most have resorted to recommend some ad hoc rule of thumbs to
decide upon a rejection or not.

The distribution of tests like 74 or the more common 7; depends on the shape of the
tail of the distribution of the error process. For alternative distributions, we obtained the
following results from 25,000 replications. With uniform [—1/2,1/2] errors, which have no
tail, the 5% critical value of 74 is 2.61 for 7" = 100 (compared to 3.65 with Normal errors).
On the other hand when the errors are distributed as a chi-square with one degree of freedom
(centered to have mean zero), the 5% critical value is 6.22; indeed much higher due to the
long right tail of the distribution.

To the authors’ knowledge, no satisfactory procedure is available to overcome this depen-
dence of outlier detection procedures on the exact nature of the error distribution. It may
be possible to use extreme value theory and non-parametric estimates of tail behavior but

such an extension is well beyond the scope of the present paper.
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6 Size of corrected ADF unit root tests

As noted by Franses and Haldrup (1994) and Vogelsang (1999), the presence of outliers biases
unit root tests towards over-rejection of the null hypothesis acting like a negative moving-
average component. One of the aim of outlier detection mentioned by these authors is to be
able to correct the unit root tests by incorporating appropriate dummy variables. To assess
the relative merits of the outlier detection procedures discussed in correcting the size of unit
root tests, we again resorted to a simulation analysis concerning the size of the Dickey-Fuller

(1979) test given by the t-statistic for testing that ax = 1 in the following regression

p+l m k
Y=+ ay—1 + Z Z 8ij D (Thoj)t—i + Z diAy;_; + €.
i=0 j=1 i=1

where D(Ty ;)¢ = 1 if t = T,,; and 0 otherwise, with T,,; (j = 1,...,m) the dates of
the outliers identified. The data-generating process is the same as described earlier. In
constructing the unit root tests, the lag length k& was selected in the same way as in Vogelsang
(1999), namely using a recursive general to specific t-test on the last lag with a significance
level of 10% starting at some maximal value set at 5. The results are presented in Table 11
(MA errors) and Table 12 (AR errors). For each cases, the row marked “without” indicates
the percentage of rejections of the null hypothesis that occurred when no outlier was selected;
the row marked “with” indicates the percentage of rejections of the null hypothesis when
outliers were detected and the appropriate dummies introduced in the autoregression; the
row marked “total” is simply the sum of the two cases mentioned above.

We first consider the case where no outlier is present. This establishes a base case to
compare size distortion with cases where outliers are present. With autoregressive errors all
procedure have approximately the correct size. The same is true with a positively correlated
moving-average component. As is well known the ADF unit root test suffers from substantial
size distortion with a negatively correlated moving-average component and this is reflected in
our results. When outliers are present, the size of the ADF test corrected for outliers using
T. is, in almost all cases, larger than when corrected using the method 74. For example,
with ¢.7.d. errors and large outliers, the size is .087 when corrected with 7. and .041 when
corrected with 74. Comparing the rows “with” and “without”, we see that when outliers are
present rejections of the unit root occurring when no outliers are identified are very small
for the method 7,4 while they are substantial when using the method ..

As emphasized by Franses and Haldrup (1994), outliers induce an MA like component

in the errors when they are not accounted for. Even if Vogelsang’s method selects too few
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outliers (given its low power) the size of the corrected ADF test can be brought close to
nominal size when using a data dependent method to select the lag length since the latter
would tend to correct for missed outliers by choosing a higher lag length (since the missed
outliers have the effect of inducing a negative moving-average structure in the errors). To
verify this claim, we conducted the same simulation experiments with pure AR(1) errors and
the lag length fixed at its true value 1. The results are presented in Table 13. Consider,
for instance, the case with an autoregressive coefficient p = —0.4 with large outliers. The
size of the unit root test corrected using 7. is .19 with k fixed at 1 instead of .10 with &
selected using the sequential t-test procedure. Hence, it is clear that the failure to account
for all outliers present can be compensated by the selection of a larger lag length. Yet, as
the results for the size of the unit root test corrected using 7, show, a good method to select

outliers does a better job at reducing size distortions.

7 Empirical applications

The procedures analyzed in the last sections were applied to two series of real-exchange
rates for US/Finland. The first series covers the period 1900-1988 and it is constructed
using the Consumption Price Index (C'PI). The other series spans the years 1900-1987 and
is constructed using the Gross Domestic Product (GDP) deflator. The series are shown in
Figures 1 and 2, respectively. These are the same series used by Vogelsang (1999), Franses
and Haldrup (1994) and Perron and Vogelsang (1992) and are described in more details in
Appendix A.

Franses and Haldrup (1994) used the TRAM program (Time Series Regression With
ARIM A Noise and Missing Values) written by Gémez and Maravall (1992b) to search for
outliers in these two real-exchange rate series. They considered two types of outliers, additive
outliers and outliers that produce temporary changes, denoted AO and T'C' outliers, respec-
tively. For the US/Finland real-exchange rate series based on the C'PI index, they found
four additive outliers at dates 1918, 1922, 1945 and 1948. The observations associated with
the years 1917, 1932 and 1949 were found to be outliers that produce temporary changes
(T'C outliers). For the US/Finland real-exchange rate series based on the GDP deflator,
an additive outlier was found only at date 1918, whereas outliers that produce temporary
changes were found at dates 1917, 1932, 1949 and 1957.

Table 14 reports the empirical results from applying the procedures discussed in this
paper using 5% and 10% significance levels. Vogelsang (1999) presents results for additive
outliers only for the US/Finland real-exchange rate series based on the C'PI index. The
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dates he found (using the procedure 7) were 1917-1919, 1921 and 1932. When appropriately
corrected, Vogelsang’s (1999) method finds outliers only for the year 1918 at the 5% level
and for 1918 and 1919 at the 10% level, illustrating the fact that when it is not corrected
it tends to select more outliers than warranted. The procedure based on first-differenced
data (74) finds outliers at dates 1917, 1918, 1919, 1932 and 1948 at both the 5% and 10%
significance levels. This illustrates how this latter method is more powerful.

For the US/Finland real-exchange rate series based on the GDP deflator, the method
based on 7. finds no outlier. As mentioned by Vogelsang (1999), this may be due to the
presence of a shift in the mean of the series as documented by Perron and Vogelsang (1992).
The procedure based on first-differenced data (7,) is, nevertheless, able to identify the years
1918 and 1948 as outliers at the 5% level ®. These two dates are not associated with the
change in mean identified by Perron and Vogelsang (1992) as occurring in 1937. The fact
that our procedure identifies the year 1918 as an outlier is comforting since visual inspection

clearly points in that direction.

8 Conclusions

We analyzed in this paper the size and power properties of some test procedures for multiple
outliers in series with an autoregressive unit root. We showed, via simulations, that the
procedure suggested by Vogelsang (1999) has indeed the right size when applied to detect a
single outlier but that it finds an excessive number of outliers when applied in an iterative
fashion. We showed this iterative method to be theoretically incorrect and we derived the
appropriate limiting distribution for each step of the iterations. We also showed that, whether
corrected or not such outlier detection methods based on the level of the data have very low
power unless the magnitude of the outliers is unrealistically large. Our suggestion was to
use a procedure based on first-differenced data which was shown to have considerably more
power. Our analysis remained in the tradition of sequential searches for outliers. It may well
be the case that a global procedure might perform better. Work is under way to investigate

this issue.

6At the 10% significance level, the outliers found are for the years 1917, 1918, 1919, 1921, 1932, 1947,
1948 and 1957.
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9 Appendix: The Data

The US/Finland real-exchange rate series based on the C'PI index and the GDP defla-
tor were kindly provided by Tim Vogelsang. They are the same series used in Vogelsang
(1999), Franses and Haldrup (1994) and Perron and Vogelsang (1992). The US/Finland
real-exchange rate series based on the C'PI index is annual from 1900 to 1988, whereas that
based on the GDP deflator is from 1900 to 1987. The details of the sources is as follows
(see appendix A of Perron and Vogelsang (1992)): Nominal exchange rate series —1900-1988
from the Bank of Finland; C'PI —1900-1985 from the Bank of Finland, 1986-1988 from the
IMF (1988); GDP deflator —1900-1985 from the Bank of Finland, 1986-1987 from IMF
(1988). The sources of the U.S. data are: for the GNP deflator —1869-1975 from Friedman
and Schwartz (1982), 1976-1988 from [ M F' (1988); for the CPI —1860-1970 from the U.S.
Bureau of the Census (1976) and 1971-1988 from /M F' (1988).
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Table 1: Exact size of single outlier detection

MA Case AR Case
Constant Time trend Constant Time trend
T 0 5.0% | 10.0% | 5.0% | 10.0% T P 5.0% | 10.0% | 5.0% | 10.0%
100 | -0.80 | 0.184 | 0.332 | 0.137 | 0.241 100 | -0.80 | 0.073 | 0.149 | 0.068 | 0.135
-0.60 | 0.101 | 0.191 | 0.095 | 0.177 -0.60 | 0.064 | 0.121 [ 0.061 [ 0.118
-0.40 | 0.067 | 0.125 | 0.068 | 0.126 -0.40 | 0.053 | 0.107 | 0.055 [ 0.106
-0.20 | 0.050 | 0.104 | 0.051 | 0.097 -0.20 | 0.046 | 0.091 [ 0.048 [ 0.094
0.00 | 0.043 | 0.082 | 0.043 | 0.082
0.20 | 0.038 | 0.076 | 0.037 | 0.075 0.20 | 0.031 | 0.073 | 0.036 | 0.071
0.40 | 0.037 | 0.072 | 0.035 | 0.069 0.40 | 0.034 | 0.064 | 0.032 [ 0.063
0.60 | 0.037 | 0.069 | 0.035 | 0.067 0.60 | 0.023 | 0.050 | 0.029 [ 0.053
0.80 | 0.037 | 0.060 | 0.035 | 0.066 0.80 | 0.020 | 0.042 | 0.029 [ 0.047
200 | -0.80 | 0.227 [ 0.400 | 0.177 | 0.327 200 | -0.80 [ 0.080 [ 0.154 | 0.076 | 0.151
-0.60 | 0.105 | 0.205 | 0.102 | 0.198 -0.60 | 0.064 | 0.126 [ 0.065 [ 0.124
-0.40 | 0.065 | 0.131 | 0.068 | 0.127 -0.40 | 0.055 | 0.110 [ 0.056 [ 0.109
-0.20 | 0.050 | 0.102 | 0.051 | 0.099 -0.20 | 0.048 | 0.097 | 0.049 [ 0.096
0.00 | 0.042 | 0.086 | 0.042 | 0.084
0.20 | 0.038 | 0.079 | 0.038 | 0.075 0.20 | 0.037 | 0.077 | 0.036 | 0.073
0.40 | 0.037 | 0.076 | 0.036 | 0.072 0.40 | 0.034 | 0.067 | 0.030 [ 0.062
0.60 | 0.037 | 0.074 | 0.034 | 0.069 0.60 | 0.029 | 0.055 | 0.025 [ 0.052
0.80 | 0.037 | 0.074 | 0.034 | 0.069 0.80 | 0.022 | 0.043 | 0.022 | 0.041

Table 2: Expected number of outliers found using multiple outliers detection

MA Case AR Case
Constant Time trend Constant Time trend
T 0 50% | 10.0% | 5.0% | 10.0% T P 5.0% | 10.0% | 5.0% | 10.0%
100 | -0.80 | 0.216 | 0.447 | 0.154 | 0.291 100 | -0.80 | 0.124 | 0.278 | 0.091 | 0.198
-0.60 | 0.139 | 0.306 | 0.109 | 0.220 -0.60 | 0.128 | 0.272 | 0.086 | 0.181
-0.40 | 0.132 | 0.285 | 0.094 | 0.194 -0.40 | 0.127 | 0.286 | 0.088 [ 0.192
-0.20 | 0.129 | 0.292 | 0.092 | 0.196 -0.20 | 0.129 | 0.292 | 0.091 | 0.199
0.00 | 0.129 | 0.293 | 0.096 | 0.205
0.20 | 0.127 | 0.295 | 0.097 | 0.208 0.20 | 0.128 | 0.294 | 0.097 | 0.204
0.40 | 0.130 | 0.296 | 0.097 | 0.205 0.40 | 0.129 | 0.293 | 0.105 | 0.207
0.60 | 0.133 | 0.288 | 0.101 | 0.207 0.60 | 0.136 | 0.294 | 0.110 | 0.227
0.80 | 0.132 | 0.293 | 0.101 | 0.206 0.80 | 0.147 | 0.297 | 0.146 | 0.278
200 | -0.80 [ 0.295 [ 0.638 | 0.206 | 0.428 200 | -0.80 | 0.195 [ 0.487 | 0.126 | 0.296
-0.60 | 0.197 | 0.478 | 0.141 | 0.311 -0.60 | 0.203 | 0.499 | 0.133 | 0.301
-0.40 | 0.200 | 0.494 | 0.138 | 0.308 -0.40 | 0.206 | 0.505 | 0.141 [ 0.319
-0.20 | 0.214 0.515 0.144 0.324 -0.20 | 0.217 0.519 0.143 0.328
0.00 | 0.209 | 0.520 | 0.142 | 0.331
0.20 | 0.214 | 0.509 | 0.147 | 0.338 0.20 | 0.217 | 0.505 | 0.145 | 0.337
0.40 | 0.212 | 0.505 | 0.147 | 0.341 0.40 | 0.217 | 0.494 | 0.145 | 0.332
0.60 | 0.214 | 0.503 | 0.147 | 0.338 0.60 | 0.225 | 0.495 | 0.150 | 0.345
0.80 | 0.216 | 0.500 | 0.148 | 0.339 0.80 | 0.221 | 0.488 | 0.183 | 0.359
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Table 3: Asymptotic critical values of the test 7,

[e% i Model 1 Model 2
Zy = {1} Zy = {1,t}
0.05 1 2.99 3.33
2 3.69 4.86
3 4.29 13.16
4 4.43 18.20
0.10 1 2.81 3.11
2 3.38 3.94
3 3.88 6.08
4 4.33 14.43
5 4.78 36.44
020 1 2.61 2.87
2 3.05 3.41
3 3.43 4.05
4 3.79 5.40
5 4.12 8.88
6 4.42 18.04
7 4.73 33.41

Table 4: Finite sample critical values of the test 74

Level of Model 1 Model 2
significance z = {1} 2z ={1,t}
T=100 T =200 7T =100 1T =200
1.0% 4.14 4.20 4.13 4.19
2.5% 3.87 3.95 3.85 3.94
5.0% 3.65 3.75 3.63 3.74
10.0% 3.44 3.56 3.42 3.55
Table 5: Exact Size of the test based on 74
Probability to find
First outlier = Second outlier  Third outlier ~ Fourth outlier
1.2.d. Case 0.047 0.002 0.000 0.000
MA Case 6= —-0.80 0.053 0.003 0.000 0.000
0 =—-040 0.052 0.002 0.000 0.000
0 =0.40 0.034 0.003 0.001 0.000
# =0.80 0.021 0.005 0.001 0.001
AR Case p=-0.80 0.029 0.003 0.000 0.000
p= —0.40 0.053 0.002 0.000 0.000
p= 0.40 0.039 0.003 0.001 0.000
p= 0.80 0.029 0.007 0.005 0.004
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Table 6: Size and Power of the tests to detect for additive outliers: MA (1) errors

61 =0,60 =0, 61 =1>5,80 =3, 61 = 10,62 =5,
83 = 0,8, =0 b3 = 2,6, =2 83 =56, =5
Probability to find T Te Td T Te Td T Te Td
0 = —0.80 first outlier 0.166 0.242 0.056 0.834 0.865 0.746 0.998 0.999 1.000
second outlier 0.026 0.001 0.002 0.360 0.121 0.179 0.957 0.828 0.921
third outlier 0.004 0.000 0.000 0.094 0.001 0.019 0.865 0.359 0.779
fourth outlier 0.001 0.000 0.000 0.022 0.000 0.002 0.661 0.147 0.518
0 = —0.40 first outlier 0.063 0.098 0.054 0.286 0.342 0.941 0.793 0.823 1.000
second outlier 0.021 0.003 0.002 0.058 0.009 0.396 0.401 0.199 0.997
third outlier 0.011  0.000 0.000 0.013 0.000 0.076 0.194 0.021 0.985
fourth outlier 0.007 0.000 0.000 0.007 0.000 0.007 0.081 0.004 0.912
¢ =0.00 first outlier 0.040 0.065 0.047 0.101 0.135 0.996 0.464 0.516 1.000
second outlier 0.023 0.004 0.002 0.024 0.004 0.674 0.122 0.035 1.000
third outlier 0.015 0.000 0.000 0.014 0.000 0.228 0.038 0.001 1.000
fourth outlier 0.010 0.000 0.000 0.010 0.000 0.040 0.013 0.000 0.998
0 =0.40 first outlier 0.036 0.054 0.038 0.055 0.079 1.000 0.231 0.282 1.000
second outlier 0.024 0.004 0.004 0.022 0.003 0.821 0.044 0.007 1.000
third outlier 0.018 0.000 0.001 0.015 0.000 0.380 0.016 0.001 1.000
fourth outlier 0.012 0.000 0.000 0.010 0.000 0.106 0.010 0.000 1.000
6 =0.80 first outlier 0.036 0.053 0.021 0.042 0.063 0.994 0.130 0.164 1.000
second outlier 0.026  0.004 0.005 0.023 0.003 0.749 0.026 0.004 1.000
third outlier 0.019 0.000 0.001 0.017 0.000 0.297 0.015 0.000 1.000
fourth outlier 0.014 0.000 0.001 0.012 0.000 0.087 0.011 0.000 1.000

Note: The Data Generating Process is: y; = Z?:l 0;D(To,j)t + ur with up = ug_1 + vy and vy = e; + ez
where e; ~ i.i.d. N(0,1). 10,000 replications are used.

Table 7: Size and Power of the tests to detect for additive outliers; AR (1)errors

81 =0,6, =0, 81 = 5,069 = 3, 81 = 10,65 = b,
03=10,64,=0 03 =2,64 =2 03 =>5,04=5H
Probability to find T Te Td T Te Td T Te Td
p=—0.80 first outlier 0.069 0.106 0.029 0.301 0.360 0.375 0.824 0.849 0.965
second outlier 0.022 0.002 0.003 0.059 0.010 0.044 0.426 0.210 0.565
third outlier 0.009 0.000 0.001 0.014 0.000 0.003 0.202 0.018 0.279
fourth outlier 0.006 0.000 0.000 0.005 0.000 0.000 0.077 0.003 0.098
p=—0.40 first outlier 0.052 0.083 0.055 0.206 0.254 0.921 0.701 0.738 1.000
second outlier 0.020 0.003 0.002 0.038 0.006 0.361 0.288 0.126 0.993
third outlier 0.013  0.000 0.000 0.013 0.000 0.067 0.119 0.009 0.973
fourth outlier 0.009 0.000 0.000 0.008 0.000 0.006 0.045 0.001 0.880
p=0.40 first outlier 0.033 0.050 0.042 0.042 0.067 1.000 0.159 0.200 1.000
second outlier 0.024 0.004 0.003 0.021 0.003 0.856 0.030 0.004 1.000
third outlier 0.019 0.001 0.001 0.016 0.000 0.429 0.015 0.000 1.000
fourth outlier 0.014 0.000 0.000 0.012 0.000 0.131 0.011 0.000 1.000
p=0.80 first outlier 0.025 0.033 0.030 0.025 0.033 1.000 0.027 0.038 1.000
second outlier 0.022 0.004 0.007 0.022 0.003 0.935 0.021 0.003 1.000
third outlier 0.019 0.001 0.004 0.019 0.001 0.608 0.018 0.001 1.000
fourth outlier 0.017 0.000 0.004 0.016 0.000 0.308 0.015 0.000 1.000

Note: The Data Generating Process is: y; = Z?Zl 8;D(Tyo,j)t + ut with uy = w1 + v and v = pvy_1 + ¢4
where e; ~ i.i.d. N(0,1). 10,000 replications are used.
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Table 8: Size of the tests 7. and 7; with non-unit root processes

Te Td
T=100 T =200 |T7T=100 T =200

Near-Integrated Case c¢= —1.25 0.062 0.065 0.053 0.051
2.5 0.065 0.071 0.053 0.051
5.0 0.083 0.091 0.054 0.051
c=—10.0 0.126 0.145 0.054 0.051
c=-20.0 | 0.206 0.248 0.055 0.050
=—-40.0 | 0.281 0.362 0.056 0.051
i.i.d. Case 0.329 0.501 0.056 0.051

Note: For the Near-Integrated Case, the Data Generating Process is y; = (1 4 ¢/T)y;_1 + e; where

er ~ i.i.d. N(0,1). For the i.i.d. Case, it is y; = e;. 10,000 replications are used.

Table 9: Size and power of 7; and 74 for stationary processes; MA (1) errors

51 =0,00=0, 06,=5,62=3, 06 =10,0=5,
63 =0,6,=0 065=26,=2 63=5061=5

Probability to find T Td T Td Tl Td
# = —0.80 first outlier 0.047 0.055 0.571 0.168 0.999 0.832
second outlier 0.003 0.003 0.089 0.014 0.821 0.239
third outlier 0.000 0.000 0.006 0.001 0.553 0.051
fourth outlier 0.000 0.000 0.001 0.000 0.257 0.001
# = —0.40 first outlier 0.047 0.056 0.798 0.318 1.000 0.974
second outlier 0.003 0.003 0.206 0.035 0.964 0.505
third outlier 0.000 0.000 0.022 0.002 0.862 0.198
fourth outlier 0.000 0.000 0.002 0.000 0.605 0.048
f# = 0.00 first outlier 0.053 0.056 0.876 0.614 1.000 0.999
second outlier 0.002 0.003 0.276 0.113 0.989 0.827
third outlier 0.000 0.000 0.036 0.011 0.946 0.596
fourth outlier 0.000 0.000 0.003 0.000 0.765 0.313
f# = 0.40 first outlier 0.052 0.053 0.807 0.878 1.000 1.000
second outlier 0.002 0.002 0.211 0.283 0.967 0.977
third outlier 0.000 0.000 0.023 0.039 0.868 0.928
fourth outlier 0.000 0.000 0.003 0.003 0.616 0.772
f# = 0.80 first outlier 0.044 0.037 0.595 0.907 0.999 1.000
second outlier 0.004 0.004 0.099 0.323 0.839 0.984
third outlier 0.000 0.000 0.008 0.048 0.570 0.948
fourth outlier 0.000 0.000 0.000 0.001 0.260 0.828

Note: The Data Generating Process is: y; = 2?21 8; D(Tyo,5)¢ + us with u; = e, + fe;_; where e; ~ i.i.d.
N(0,1). 10,000 replications are used.
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Table 10: Size and power of 7; and 7,4 for stationary processes; AR (1)errors

01 =0,00 =0, 61=0,00=0, 06 =0,00=0,
03 =0,00 =0 63=0,00=0 03=0,040=0

Probability to find T Td T Td T Td
p=—0.80 first outlier 0.021 0.025 0.315 0.062 0.959 0.397
second outlier 0.003 0.002 0.027 0.003 0.511 0.048
third outlier 0.001 0.000 0.002 0.000 0.197 0.005
fourth outlier 0.000 0.000 0.000 0.000 0.058 0.000
p=—0.40 first outlier 0.046 0.052 0.789 0.287 1.000 0.952
second outlier 0.003 0.003 0.189 0.027 0.957 0.432
third outlier 0.000 0.000 0.021 0.002 0.840 0.141
fourth outlier 0.000 0.000 0.002 0.000 0.567 0.030
p=0.40 first outlier 0.051 0.056 0.804 0.885 1.000 1.000
second outlier 0.003 0.003 0.200 0.283 0.963 0.979
third outlier 0.000 0.000 0.022 0.043 0.855 0.938
fourth outlier 0.000 0.000 0.002 0.004 0.591 0.788
p=0.80 first outlier 0.022 0.055 0.366 0.985 0.975 1.000
second outlier 0.004 0.002 0.034 0.533 0.585 0.999
third outlier 0.001 0.000 0.003 0.129 0.249 0.998
fourth outlier 0.000 0.000 0.000 0.020 0.070 0.986

Note: The Data Generating Process is: y; = Z?=1 0;D(To,j)t + ur With us = pus_1 + e; where e; ~ i.i.d.
N(0,1). 10,000 replications are used.

Table 11: Size of the ADF test; MA (1) errors
(choosing the lag length with the sequential t-sig method)

01 =0,62 =0, 01 =15,02 =3, 61 =10,02 =5,
03 =0,04=0 03 =2,04 =2 03 =5,00=25
T Te Td T Te Td T Te Td
0 =—-0.80 without 0.309 0.274 0.368 0.033 0.024 0.124 0.000 0.000 0.000
with 0.089 0.122 0.021 0.399 0402 0.309 0.380 0.460 0.392
total 0.398 0.396 0.389 0.431 0426 0.433 0.380 0.460 0.392
0 =—0.40 without 0.069 0.062 0.081 0.040 0.031 0.007 0.003 0.001 0.000
with 0.019 0.025 0.005 0.070 0.072 0.081 0.123 0.132 0.074
total 0.088 0.087 0.086 0.110 0.103 0.088 0.125 0.133 0.074
6 =0.00 without  0.038 0.034 0.049 0.048 0.041 0.001 0.011 0.008 0.000
with 0.012 0.016 0.002 0.030 0.035 0.051 0.082 0.079 0.041
total 0.050 0.049 0.051 0.078 0.076 0.052 0.094 0.087 0.041
60 =0.40 without  0.048 0.044 0.057 0.035 0.029 0.000 0.024 0.017 0.000
with 0.010 0.012 0.001 0.016 0.020 0.045 0.055 0.057 0.043
total 0.057 0.056 0.058 0.051 0.049 0.045 0.079 0.074 0.043
68 =0.80 without  0.048 0.045 0.056 0.036 0.031 0.000 0.044 0.037 0.000
with 0.008 0.008 0.001 0.012 0.015 0.050 0.032 0.033 0.043
total 0.056  0.053 0.057 0.047 0.046 0.050 0.076 0.070 0.043
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Table 12: Size of the ADF test; AR (1) errors
(choosing the lag length with the sequential t-sig method)

61 =0,60 =0, 61 = 5,00 =3, 61 = 10,69 = 5,
03 =0,0,=0 03 =2,04 =2 03 =5,04=5
T Te Td T Te Td T Te Td
p=—0.80 without 0.040 0.034 0.049 0.034 0.028 0.061 0.001 0.001 0.008
with 0.015 0.016 0.001 0.056 0.053 0.024 0.110 0.118 0.089
total 0.055 0.051 0.050 0.090 0.081 0.085 0.111 0.119 0.097
p=—0.40 without 0.040 0.036 0.050 0.033 0.027 0.006 0.003 0.002 0.000
with 0.013 0.017 0.003 0.042 0.043 0.047 0.099 0.097 0.045
total 0.053 0.053 0.053 0.075 0.070 0.053 0.103 0.099 0.045
p=0.40 without  0.041 0.038 0.050 0.031 0.026 0.000 0.020 0.015 0.000
with 0.009 0.010 0.002 0.012 0.016 0.041 0.032 0.031 0.041
total 0.050 0.048 0.052 0.043 0.042 0.041 0.052 0.046 0.041
p=0.80 without  0.051 0.049 0.056 0.039 0.037 0.000 0.030 0.028 0.000
with 0.004 0.006 0.001 0.004 0.006 0.045 0.004 0.007 0.043
total 0.055 0.055 0.057 0.043 0.043 0.045 0.034 0.035 0.043

Table 13: Size of the ADF test; AR (1) errors
(with the lag length fixed at one)

51 = 0,05 = 0, 51 = 5,00 = 3, 51 = 10,065 = 5,
63 =0,64 =0 53 = 2,64 =2 63 =15,61=5
T Te Td T Te Td T Te Td
p = —0.80 without 0.037 0.031 0.046 0.056 0.046 0.091 0.013 0.009 0.019
with 0.018 0.022 0.001 0.077 0.078 0.033 0.192 0.232 0.163
total 0.055 0.0563 0.047 0.133 0.124 0.124 0.205 0.241 0.182
p = —0.40 without 0.034 0.029 0.045 0.051 0.041 0.010 0.017 0.011 0.000
with 0.016 0.021 0.002 0.058 0.058 0.057 0.159 0.177 0.050
total 0.050 0.050 0.047 0.109 0.099 0.067 0.176 0.188 0.050
p = 0.00 without  0.034 0.030 0.046 0.035 0.030 0.000 0.021 0.015 0.000
with 0.013 0.018 0.002 0.029 0.031 0.048 0.094 0.089 0.046
total 0.047 0.048 0.048 0.064 0.061 0.048 0.115 0.104 0.046
p = 0.40 without 0.038 0.034 0.048 0.019 0.014 0.000 0.017 0.012 0.000
with 0.009 0.013 0.002 0.011 0.015 0.041 0.023 0.025 0.045
total 0.047 0.047 0.050 0.030 0.029 0.041 0.040 0.037 0.045
p= 0.80 without  0.047 0.045 0.052 0.023 0.021 0.000 0.028 0.025 0.000
with 0.005 0.008 0.001 0.004 0.008 0.036 0.004 0.008 0.047
total 0.052 0.053 0.053 0.027 0.029 0.036 0.032 0.033 0.047

Table 14: Empirical results; Logarithm of the US/Finland real exchange rate

Significance level  Test CPI-based series GDP-based series
1900-1988 1900-1987
5.0% Te 1918 no outliers
Td 1917,1918,1919,1932,1948 1918, 1949
10.0% Te 1918,1919 no outliers

T4 1917,1918,1919,1032,1948  1917,1918,1919,1021,1932,1947,1948,1957

24



O [T TP T T T T T T T T
|

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

— 2.8

Figure 1. Logarithm of the US/Finland Real Exchange Rate based
on the Consumer Price Index (CPI); Annual from 1900 to 1988
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Figure 2. Logarithm of the US/Finland Real Exchange Rate
based on the GDP Defator; Annual from 1900 to 1987



