
Journal of Artificial Intelligence Research 18 (2003) 445-490 Submitted 04/02; published 05/03

Searching for Bayesian Network Structures in the Space of

Restricted Acyclic Partially Directed Graphs

Silvia Acid acid@decsai.ugr.es

Luis M. de Campos lci@decsai.ugr.es

Departamento de Ciencias de la Computación e I.A.

E.T.S.I. Informática, Universidad de Granada

18071 - Granada, SPAIN

Abstract

Although many algorithms have been designed to construct Bayesian network struc-
tures using different approaches and principles, they all employ only two methods: those
based on independence criteria, and those based on a scoring function and a search pro-
cedure (although some methods combine the two). Within the score+search paradigm,
the dominant approach uses local search methods in the space of directed acyclic graphs
(DAGs), where the usual choices for defining the elementary modifications (local changes)
that can be applied are arc addition, arc deletion, and arc reversal. In this paper, we
propose a new local search method that uses a different search space, and which takes
account of the concept of equivalence between network structures: restricted acyclic par-
tially directed graphs (RPDAGs). In this way, the number of different configurations of
the search space is reduced, thus improving efficiency. Moreover, although the final result
must necessarily be a local optimum given the nature of the search method, the topology of
the new search space, which avoids making early decisions about the directions of the arcs,
may help to find better local optima than those obtained by searching in the DAG space.
Detailed results of the evaluation of the proposed search method on several test problems,
including the well-known Alarm Monitoring System, are also presented.

1. Introduction

Nowadays, the usefulness of Bayesian networks (Pearl, 1988) in representing knowledge
with uncertainty and efficient reasoning is widely accepted. A Bayesian network consists of
a qualitative part, a directed acyclic graph (DAG), and a quantitative one, a collection of
numerical parameters, usually conditional probability tables. The knowledge represented in
the graphical component is expressed in terms of dependence and independence relationships
between variables. These relationships are encoded using the presence or absence of links
between nodes in the graph. The knowledge represented in the numerical part quantifies
the dependences encoded in the graph, and allows us to introduce uncertainty into the
model. All in all, Bayesian networks provide a very intuitive graphical tool for representing
available knowledge.

Another attraction of Bayesian networks is their ability to efficiently perform reasoning
tasks (Jensen, 1996; Pearl, 1988). The independences represented in the DAG are the
key to this ability, reducing changes in the knowledge state to local computations. In
addition, important savings in storage requirements are possible since independences allow
a factorization of the global numerical representation (the joint probability distribution).

c©2003 AI Access Foundation. All rights reserved.

Acid & de Campos

There has been a lot of work in recent years on the automatic learning of Bayesian
networks from data. Consequently, there are a great many learning algorithms which may
be subdivided into two general approaches: methods based on conditional independence
tests (also called constraint-based), and methods based on a scoring function1 and a search
procedure.

The algorithms based on independence tests perform a qualitative study of the depen-
dence and independence relationships among the variables in the domain, and attempt to
find a network that represents these relationships as far as possible. They therefore take a
list of conditional independence relationships (obtained from the data by means of condi-
tional independence tests) as the input, and generate a network that represents most of these
relationships. The computational cost of these algorithms is mainly due to the number and
complexity of such tests, which can also cause unreliable results. Some of the algorithms
based on this approach obtain simplified models (de Campos, 1998; de Campos & Huete,
1997; Geiger, Paz & Pearl, 1990, 1993; Huete & de Campos, 1993), whereas other are de-
signed for general DAGs (de Campos & Huete, 2000a; Cheng, Bell & Liu, 1997; Meek, 1995;
Spirtes, Glymour & Scheines, 1993; Verma & Pearl, 1990; Wermuth & Lauritzen, 1983).

The algorithms based on a scoring function attempt to find a graph that maximizes
the selected score; the scoring function is usually defined as a measure of fit between the
graph and the data. All of them use a scoring function in combination with a search
method in order to measure the goodness of each explored structure from the space of
feasible solutions. During the exploration process, the scoring function is applied in order to
evaluate the fitness of each candidate structure to the data. Each algorithm is characterized
by the specific scoring function and search procedure used. The scoring functions are
based on different principles, such as entropy (Herskovits & Cooper, 1990; Chow & Liu,
1968; de Campos, 1998; Rebane & Pearl, 1987), Bayesian approaches (Buntine, 1994, 1996;
Cooper & Herskovits, 1992; Friedman & Koller, 2000; Friedman, Nachman & Peér, 1999;
Geiger & Heckerman, 1995; Heckerman, 1996; Heckerman, Geiger & Chickering, 1995;
Madigan & Raftery, 1994; Ramoni & Sebastiani, 1997; Steck, 2000), or the Minimum
Description Length (Bouckaert, 1993; Friedman & Goldszmidt, 1996; Lam & Bacchus,
1994; Suzuki, 1993, 1996; Tian, 2000).

There are also hybrid algorithms that use a combination of constraint-based and scoring-
based methods: In several works (Singh & Valtorta, 1993, 1995; Spirtes & Meek, 1995; Dash
& Druzdzel, 1999; de Campos, Fernández-Luna & Puerta, 2003) the independence-based
and scoring-based algorithms are maintained as separate processes, which are combined
in some way, whereas the hybridization proposed by Acid and de Campos (2000, 2001) is
based on the development of a scoring function that quantifies the discrepancies between
the independences displayed by the candidate network and the database, and the search
process is limited by the results of some independence tests.

In this paper, we focus on the scoring+search approach. Although algorithms in this
category have commonly used local search methods (Buntine, 1991; Cooper & Herskovits,
1992; Chickering, Geiger & Heckerman, 1995; de Campos et al., 2003; Heckerman et al.,
1995), due to the exponentially large size of the search space, there is a growing inter-
est in other heuristic search methods, i.e. simulated annealing (Chickering et al., 1995),

1. Some authors also use the term scoring metric.

446

Searching Bayesian network structures in the space of RPDAGs

tabu search (Bouckaert, 1995; Muntenau & Cau, 2000), branch and bound (Tian, 2000),
genetic algorithms and evolutionary programming (Larrañaga, Poza, Yurramendi, Murga
& Kuijpers, 1996; Myers, Laskey & Levitt, 1999; Wong, Lam & Leung, 1999), Markov
chain Monte Carlo (Kocka & Castelo, 2001; Myers et al., 1999), variable neighborhood
search (de Campos & Puerta, 2001a; Puerta, 2001), ant colony optimization (de Campos,
Fernández-Luna, Gámez & Puerta, 2002; Puerta, 2001), greedy randomized adaptive search
procedures (de Campos, Fernández-Luna & Puerta, 2002), and estimation of distribution
algorithms (Blanco, Inza & Larrañaga, 2003).

All of these employ different search methods but the same search space: the space of
DAGs. A possible alternative is the space of the orderings of the variables (de Campos,
Gámez & Puerta, 2002; de Campos & Huete, 2000b; de Campos & Puerta, 2001b; Friedman
& Koller, 2000; Larrañaga, Kuijpers & Murga, 1996). In this paper, however, we are more
interested in the space of equivalence classes of DAGs (Pearl & Verma, 1990), i.e. classes
of DAGs with each representing a different set of probability distributions. There is also a
number of learning algorithms that carry out the search in this space (Andersson, Madigan
& Perlman, 1997; Chickering, 1996; Dash & Druzdzel, 1999; Madigan, Anderson, Perlman
& Volinsky, 1996; Spirtes & Meek, 1995). This feature reduces the size of the search space,
although recent results (Gillispie & Perlman, 2001) confirm that this reduction is not as
important in terms of the DAG space as previously hoped (the ratio of the number of DAGs
to the number of equivalence classes is lower than four). The price we have to pay for this
reduction is that the evaluation of the candidate structures does not take advantage of an
important property of many scoring functions, namely decomposability, and therefore the
corresponding algorithms are less efficient.

In this paper we propose a new search space which is closely related to the space of
equivalence classes of DAGs, and which we have called the space of restricted acyclic partially
directed graphs (RPDAGs). We define a local search algorithm in this space, and show
that by using a decomposable scoring function, we can evaluate locally the score of the
structures in the neighborhood of the current RPDAG, thus obtaining an efficient algorithm
while retaining many of the advantages of using equivalence classes of DAGs. After the
original submission of this paper, Chickering (2002) proposed another learning algorithm
that searches in the space of equivalence classes of DAGs and which can also score the
candidate structures locally, using a canonical representation scheme for equivalence classes,
called completed acyclic partially directed graphs (CPDAGs).

The rest of the paper is organized as follows: section 2 discusses some preliminaries and
the advantages and disadvantages of carrying out the search process in the spaces of DAGs
and equivalence classes of DAGs. Section 3 describes the graphical objects, RPDAGs, that
will be included in the proposed search space. In Section 4, a detailed description of the
local search method used to explore this space is provided. Section 5 shows how we can
evaluate RPDAGs efficiently using a decomposable scoring function. Section 6 contains the
experimental results of the evaluation of the proposed algorithm on the Alarm (Beinlich,
Suermondt, Chavez & Cooper, 1989), Insurance (Binder, Koller, Russell & Kanazawa,
1997) and Hailfinder (Abramson, Brown, Murphy & Winkler, 1996) networks, as well as
on databases from the UCI Machine Learning Repository. We also include an empirical
comparison with other state-of-the-art learning algorithms. Finally, Section 7 contains the
concluding remarks and some proposals for future work.

447

Acid & de Campos

2. DAGs and Equivalence Classes of DAGs

The search procedures used within Bayesian network learning algorithms usually operate
on the space of DAGs. In this context, the problem can be formally expressed as: Given
a complete training set (i.e. we do not consider missing values or latent variables) D =
{u1, . . . ,um} of instances of a finite set of n variables, U , find the DAG H∗ such that

H∗ = arg max
H∈Hn

g(H : D) (1)

where g(H : D) is a scoring function measuring the fitness of any candidate DAG H to the
dataset D, and Hn is the family of all the DAGs with n nodes2.

Many of the search procedures, including the commonly used local search methods, rely
on a neighborhood structure that defines the local rules (operators) used to move within
the search space. The standard neighborhood in the space of DAGs uses the operators of
arc addition, arc deletion and arc reversal, thereby avoiding (in the first and the third case)
the inclusion of directed cycles in the graph.

The algorithms that search in the space of DAGs using local methods are efficient
mainly because of the decomposability property that many scoring functions exhibit. A
scoring function g is said to be decomposable if the score of any Bayesian network structure
may be expressed as a product (or a sum in the log-space) of local scores involving only one
node and its parents:

g(H : D) =
∑

y∈U

gD(y, PaH(y)) (2)

gD(y, PaH(y)) = g(y, PaH (y) : Ny,PaH(y)) (3)

where Ny,PaH(y) are the statistics of the variables y and PaH(y) in D, i.e. the number of
instances in D that match each possible instantiation of y and PaH(y). PaH(y) will denote
the parent set of y in the DAG H, i.e. PaH(y) = {t ∈ U | t→ y ∈ H}.

A procedure that changes one arc at each move can efficiently evaluate the improvement
obtained by this change. Such a procedure can reuse the computations carried out at
previous stages, and only the statistics corresponding to the variables whose parent sets have
been modified need to be recomputed. The addition or deletion of an arc x→ y in a DAG
H can therefore be evaluated by computing only one new local score, gD(y, PaH∪{x}(y)) or
gD(y, PaH\{x}(y)), respectively. The evaluation of the reversal of an arc x→ y requires the
computation of two new local scores, gD(y, PaH\{x}(y)) and gD(x, PaH∪{y}(x)).

It should be noted that each structure in the DAG space is not always different from
the others in terms of its representation capability: if we interpret the arcs in a DAG as
causal interactions between variables, then each DAG represents a different model; however,
if we see a DAG as a set of dependence/independence relationships between variables (that
permits us to factorize a joint probability distribution), then different DAGs may represent
the same model. Even in the case of using a causal interpretation, if we use observation-
only data (as opposed to experimental data where some variables may be manipulated), it

2. For reasons of simplicity, the set of nodes which are in one-to-one correspondence with the variables in
U will also be denoted by U .

448

Searching Bayesian network structures in the space of RPDAGs

is quite common for two Bayesian networks to be empirically indistinguishable. When two
DAGs H and H ′ can represent the same set of conditional independence assertions, we say
that these DAGs are equivalent3 (Pearl & Verma, 1990), and we denote this as H ≃ H ′.

When learning Bayesian networks from data using scoring functions, two different (but
equivalent) DAGs may be indistinguishable, due to the existence of invariant properties on
equivalent DAGs, yielding equal scores. We could take advantage of this in order to get a
more reduced space of structures to be explored.

The following theorem provides a graphical criterion for determining the equivalence of
two DAGs:

Theorem 1 (Pearl & Verma, 1990) Two DAGs are equivalent if and only if they have
the same skeleton and the same v-structures.

The skeleton of a DAG is the undirected graph that results from ignoring the directionality
of every edge. A v-structure in a DAG H is an ordered triplet of nodes, (x, y, z), such that
(1) H contains the arcs x→ y and y ← z, and (2) the nodes x and z are not adjacent in H.
A head-to-head pattern (shortened h-h) in a DAG H is an ordered triplet of nodes, (x, y, z),
such that H contains the arcs x → y and y ← z. Note that in an h-h pattern (x, y, z) the
nodes x and z can be adjacent.

Another characterization of equivalent DAGs was presented by Chickering (1995), to-
gether with proof that several scoring functions used for learning Bayesian networks from
data give the same score to equivalent structures (such functions are called score equivalent
functions).

The concept of equivalence of DAGs partitions the space of DAGs into a set of equiva-
lence classes. Whenever a score equivalent function is used, it seems natural to search for
the best configuration in this new space of equivalence classes of DAGs. This change in the
search space may bring several advantages:

• The space of equivalent classes is more reduced than the space of DAGs (although it
is still enormous). We could therefore expect to obtain better results (with the same
search effort).

• As we do not spend time generating (using the operators defined to move between
neighboring configurations in the search space) and evaluating (using the scoring
function) equivalent DAGs, we could obtain more efficient algorithms. However, as the
ratio of the number of equivalence classes to the number of DAGs seems (empirically)
to asymptote to 0.267 (Gillispie & Perlman, 2001), the efficiency improvement may
be small.

• The search in the space of DAGs may be easily trapped in a local optimum, and the
situation worsens as the operators defined for this space can move between config-
urations corresponding to equivalent DAGs (which will be evaluated with the same
score). This difficulty can be partially avoided if we search in the space of equivalence
classes.

3. Several authors also use the term independence equivalent, and reserve the term distribution equivalent

(wrt some family of distributions F) for the more restricted case where the two DAGs can represent the
same probability distributions. In the common situation where all the variables are discrete and F is
the family of unrestricted multinomial distributions, these two concepts of equivalence coincide.

449

Acid & de Campos

The disadvantages are that, in this space of equivalence classes, it is more expensive
to generate neighboring configurations, because we may be forced to perform some kind of
consistency check, in order to ensure that these configurations represent equivalence classes4;
in addition, the evaluation of the neighboring configurations may also be more expensive if
we are not able to take advantage of the decomposability property of the scoring function.
Finally, the new search space might introduce new local maxima that are not present in
DAG space.

In order to design an exploring process for the space of equivalence classes we could
use two distinct approaches: the first consists in considering that an equivalence class is
represented by any of its components (in this case, it is necessary to avoid evaluating more
than one component per class); and the second consists in using a canonical representation
scheme for the classes.

The graphical objects commonly used to represent equivalence classes of DAGs are
acyclic partially directed graphs (Pearl & Verma, 1990) (known as PDAGs). These graphs
contain both directed (arcs) and undirected (links) edges, but no directed cycles. Given a
PDAG G defined on a finite set of nodes U and a node y ∈ U , the following subsets of nodes
are defined:

• PaG(y) = {t ∈ U | t→ y ∈ G}, the set of parents of y.

• ChG(y) = {t ∈ U | y → t ∈ G}, the set of children of y.

• NeG(y) = {t ∈ U | y—t ∈ G}, the set of neighbors of y.

• AdG(y) = {t ∈ U | t → y ∈ G, or y → t ∈ G or y—t ∈ G}, the set of adjacents to y.
Obviously AdG(y) = PaG(y) ∪ ChG(y) ∪NeG(y).

An arc x → y in a DAG H is compelled if it appears in every DAG belonging to the same
equivalence class as H. An arc x → y in H is said to be reversible if it is not compelled,
i.e. there is a DAG H ′ equivalent to H that contains the arc x ← y. As every DAG in a
particular equivalence class has the same set of compelled and reversible arcs, a canonical
representation of an equivalence class is the PDAG consisting of an arc for every compelled
arc in the equivalence class, and a link for every reversible arc. This kind of representation
has been given several names: pattern (Spirtes & Meek, 1995), completed PDAG (CPDAG)
(Chickering, 1996), essential graph (Andersson et al., 1997; Dash & Druzdzel, 1999). As
a consequence of theorem 1, a completed PDAG possesses an arc x → y if and only if a
triplet of nodes (x, y, z) forms a v-structure or the arc x→ y is required to be directed due
to other v-structures (to avoid forming a new v-structure or creating a directed cycle) (see
Figure 1).

Note that an arbitrary PDAG does not necessarily represent some equivalence class
of DAGs, although there is a one-to-one correspondence between completed PDAGs and
equivalence classes of DAGs. Nevertheless, completed PDAGs are considerably more com-
plicated than general PDAGs. A characterization of the specific properties that a PDAG
must verify in order to be a completed PDAG was obtained by Andersson et al. (1997):

4. Note that the operators of addition and reversal of an arc in the DAG space also need a consistency
check, but in this case we simply test the absence of directed cycles.

450

Searching Bayesian network structures in the space of RPDAGs

z

y

w

z

y

w

(a) (b)

x u x u

Figure 1: (a) Dag and (b) completed PDAG. The arcs z → x, y → x and x → u are
compelled; the arc y → w is reversible

Theorem 2 (Andersson et al., 1997) A PDAG G is a completed PDAG if and only if
it satisfies the following conditions:

1 G is a chain graph, i.e. it contains no (partially) directed cycles.

2 The subgraph induced by every chain component5 of G is chordal (i.e. on every undi-
rected cycle of length greater than or equal to 4 there are two non-consecutive nodes
connected by a link).

3 The configuration x→ y—z does not occur as an induced subgraph of G.

4 Every arc x → y ∈ G occurs in at least one of the four configurations displayed in
Figure 2 as an induced subgraph of G.

z

y

x zx z

y

x z

y

x

y t

(a) (b) (c) (d)

Figure 2: The four different configurations containing an arc x→ y in a completed PDAG

Let us illustrate the advantages of searching in the space of equivalence classes of DAGs
rather than the space of DAGs with a simple example. Figure 3 displays the set of possible
DAGs involving three nodes {x, y, z}, with arcs between z and x, and between y and x.
The first three DAGs are equivalent. In terms of independence information, they lead to
the same independence statement I(y, z|x) (y and z are conditionally independent given x),
whereas the statement I(y, z|∅) (y and z are marginally independent) corresponds to the
fourth one. The four DAGs may be summarized by only two different completed PDAGs,
shown in Figure 4.

451

Acid & de Campos

y

x

z

y z

x

(a) (b) (c) (d)

z

y

x

x

y z

Figure 3: Four different DAGs with three nodes and two arcs

zz

(a) (b)

x

x

y y

Figure 4: Two different equivalence classes of DAGs

As we can see, the search space may be reduced by using PDAGs to represent the classes:
in our example, to two classes instead of four configurations; it can be seen (Andersson et al.,
1997) that the ratio of the number of DAGs to the number of classes is 25 / 11 for three
nodes, 543 / 185 for four nodes and 29281 / 8792 for five nodes; in more general terms, the
results obtained by Gillispie and Perlman (2001) indicate that this ratio approaches a value
of less than four as the number of nodes increases. The use of equivalence classes therefore
entails convenient savings in exploration and evaluation effort, although the gain is not
spectacular.

On the other hand, the use of a canonical representation scheme allows us to explore
the space progressively and systematically, without losing any unexplored configuration
unnecessarily. Returning to our example, let us suppose that the true model is the DAG
displayed in Figure 4.b and we start the search with an empty graph (with no arcs). Let
us also assume that the search algorithm identifies that an edge between x and y produces
the greatest improvement in the score. At this moment, the two alternatives, x → y and
x ← y (case 1 and case 2 in Figure 5, respectively), are equivalent. Let us now suppose
that we decide to connect the nodes x and z; again we have two options: x→ z or x← z.
Nevertheless, depending on the previous selected configuration, we obtain different outcomes
that are no longer equivalent (see Figure 5).

If we had chosen case 1 (thus obtaining either case 1.1 or case 1.2), we would have
eliminated the possibility of exploring the DAG z → x ← y, and therefore the exploring
process would have been trimmed. As the true model is precisely this DAG (case 2.1 in
Figure 5), then the search process would have to include another arc connecting y and z

5. A chain component of G is any connected component of the undirected graph obtained from G by
removing all the arcs.

452

Searching Bayesian network structures in the space of RPDAGs

(cases 1.1.1, 1.2.1 or 1.2.2), because y and z are conditionally dependent given x. At this
moment, any local search process would stop (in a local optimum), because every local
change (arc reversal or arc removal) would make the score worse.

z x y

z x y

z x yCase 1

1.1.1

1.1

1.2

1.2.1

1.2.2

Case 2

2.1

2.2

z x y

z x y

z x y

z x y

z x y

z x y

Figure 5: Local search in the space of DAGs is trapped at a local optimum

Consequently, our purpose consists in adding or removing edges (either links or arcs) to
the structure without pruning the search space unnecessarily. We could therefore introduce
links instead of arcs (when there is not enough information to distinguish between different
patterns of arcs), which would serve as templates or dynamic linkers to equivalence patterns.
They represent any valid combination of arcs which results in a DAG belonging to the same
equivalence class.

Looking again at the previous example, we would proceed as follows: assuming that in
our search space the operators of link addition and creation of h-h patterns are available, we
would first include the link x—y; secondly, when considering the inclusion of a connection
between x and z, we would have two options, shown in Figure 4: the h-h pattern z → x← y
and the pattern z—x—y. In this case the scoring function would assign the greatest score
to the h-h pattern z → x← y, thus obtaining the correct DAG.

3. Restricted Acyclic Partially Directed Graphs

The scheme of representation that we will use is slightly different from the formalism of
completed PDAGs. It is not necessary for each configuration of our search space (which
we call restricted PDAG or RPDAG) to correspond to a different equivalence class; two
different RPDAGs may correspond to the same equivalence class. The main reason for this
is efficiency: by allowing an equivalence class to be represented (only in some cases) by
different RPDAGs, we will gain in efficiency to explore the space. Before explaining this in
greater detail, let us define the concept of RPDAG:

Definition 1 (restricted PDAG) A PDAG G is a restricted PDAG (RPDAG) if and
only if it satisfies the following conditions:

1 ∀y ∈ U , PaG(y) 6= ∅ ⇒ NeG(y) = ∅.

2 G does not contain any directed cycle.

453

Acid & de Campos

3 G does not contain any completely undirected cycle, i.e. a cycle containing only links.

4 If x→ y exists in G then either |PaG(y)| ≥ 2 or PaG(x) 6= ∅.

This condition states that an arc x→ y exists in G only if it is either part of an h-h
pattern or there is another arc (originated by an h-h pattern) going to x.

As an RPDAG is a PDAG, it could be considered to be a representation of a set of
(equivalent) DAGs. We therefore must define which the set of DAGs is represented by a
given RPDAG G, i.e. how direction may be given to the links in G in order to extend it to
a DAG. The following definition formalizes this idea.

Definition 2 (Extension of a PDAG) Given a PDAG G, we say that a DAG H is an
extension of G if and only if:

1 G and H have the same skeleton.

2 If x→ y is an arc in G then x→ y is also an arc in H (no arc is redirected).

3 G and H have the same h-h patterns (i.e. the process of directing the links in G in
order to produce H does not generate new h-h patterns).

We will use Ext(G) to denote the set of DAGs that are extensions of a given PDAG G.

Proposition 1 Let G be an RPDAG. Then:

(a) Ext(G) 6= ∅ (G can be extended to obtain a DAG, i.e. the extension of an RPDAG is
well-defined).

(b) ∀H,H ′ ∈ Ext(G) H ≃ H ′ (i.e. all the different DAGs that can be obtained from G
by extending it are equivalent).

Proof:
(a) As G has no directed cycle (condition 2 in Definition 1), then either G is already a
DAG or it has some links. Let us consider an arbitrary link x—y. Using condition 1 in
Definition 1, neither x nor y can have a parent. We can then direct the link x—y in either
direction without creating an h-h pattern. If we direct the link x—y as x→ y and y is part
of another link y—z, then we direct it as y → z (in order to avoid a new h-h pattern). We
can continue directing the links in a chain in this way, and this process cannot generate
a directed cycle because, according to condition 3 in Definition 1, G has no completely
undirected cycle.
(b) The extension process of G does not modify the skeleton and does not create new
h-h patterns. Therefore, all the extensions of G have the same skeleton and the same v-
structures (a v-structure is a particular case of h-h pattern), hence they are equivalent.

It should be noted that condition 4 in Definition 1 is not necessary to prove the results
in Proposition 1. This condition is included to ensure that the type of PDAG used to
represent subsets of equivalent DAGs is as general as possible. In other words, condition 4

454

Searching Bayesian network structures in the space of RPDAGs

guarantees that an RPDAG is a representation of the greatest number of equivalent DAGs,
subject to the restrictions imposed by conditions 1-3 in Definition 1. As we will see in the
next proposition, this is achieved by directing the minimum number of edges. For example,
z—x→ y → u would not be a valid RPDAG. The RPDAG that we would use in this case
is z—x—y—u.

Proposition 2 Let G be a PDAG verifying the conditions 1-3 in Definition 1. There is
then a single RPDAG R such that Ext(G) ⊆ Ext(R).

Proof:
The proof is constructive. We shall build the RPDAG R as follows: the skeleton and the
h-h patterns of R are the same as those in G. An arc x→ y in G shall now be considered
such that PaG(x) = ∅ and PaG(y) = {x} (if such an arc does not exist, then G itself would
be an RPDAG): we convert the arc x→ y into the link x—y. This process is then repeated.
Obviously, the PDAG R obtained in this way has no directed cycle and verifies condition
4 in Definition 1. Moreover, we cannot obtain a configuration z → x—y as a subgraph of
R because PaG(x) = ∅ (we only remove the direction of arcs whose initial nodes have no
parent). In addition, R cannot have any completely undirected cycle because either the arc
x→ y is not part of any cycle in G or it is part of a cycle in G that must contain at least
one h-h pattern (and the directions of the arcs in this pattern will never be removed). R is
therefore an RPDAG.

Let us now prove that Ext(G) ⊆ Ext(R): if H ∈ Ext(G) then H and G have the same
skeleton and h-h patterns, hence H and R also have the same skeleton and h-h patterns.
Moreover, as all the arcs in R are also arcs in G, if x → y ∈ R then x → y ∈ G, which in
turn implies that x→ y ∈ H. Therefore, according to Definition 2, H ∈ Ext(G).

Finally, let us prove the uniqueness of R: we already know that any other RPDAG R′

verifying that Ext(G) ⊆ Ext(R′) has the same skeleton and h-h patterns as R. According
to condition 1 in Definition 1, the edges that are not part of any of these h-h patterns but
are incident to the middle node y in any h-h pattern x → y ← z must be directed away
from y (in order to avoid new h-h patterns). The remaining edges that are not part of any
h-h pattern must be undirected, in order to satisfy condition 4 in Definition 1. There is
therefore only one RPDAG that matches a given skeleton and a set of h-h patterns, so R
is the only RPDAG verifying that Ext(G) ⊆ Ext(R). Figure 6 shows an example of the
construction process.

The following proposition ensures that the concept of RPDAG allows us to define a
partition in the space of DAGs.

Proposition 3 Let G and G′ be two different RPDAGs. Then Ext(G) ∩ Ext(G′) = ∅.

Proof:
Let H be any DAG. Then H itself is a PDAG and obviously H = Ext(H). By applying the
result in Proposition 2, we can assert that there is a single RPDAG G such that H ⊆ Ext(G).

In the proposition below, we show the properties which are common to all the DAGs
belonging to the same extension of an RPDAG.

455

Acid & de Campos

(a) (b) (c) (d)

a

b

c

y

d

x

e

a

b

c

y

d

x

e

a

b

c

y

d

x

e

a

b

c

y

d

x

e

Figure 6: Illustrating the construction process in Proposition 2: (a) PDAG G; (b) undirect-
ing the arc a→ y; (c) undirecting the arc y → x; (d) undirecting the arc x→ e,
thus obtaining the RPDAG R

Proposition 4 Two DAGs belong to the extension of the same RPDAG if and only if they
have the same skeleton and the same h-h patterns.

Proof:
The necessary condition is obvious. Let us prove the sufficient condition: let H and H ′

be two DAGs with common skeleton and h-h patterns. We shall construct a PDAG G as
follows: the skeleton and the h-h patterns of G are the same as those in H and H ′; the
edges that have the same orientation in H and H ′ are directed in G in the same way; the
other edges in G remain undirected. From Definition 2, it is clear that H,H ′ ∈ Ext(G).

G has no directed cycles because H and H ′ are DAGs. G has no completely undirected
cycles, since all the cycles in H and H ′ share at least the h-h patterns. In addition,
x→ y—z cannot be a subgraph of G because this would imply the existence of the subgraphs
x→ y ← z and x→ y → z in H and H ′, respectively, and therefore these two DAGs would
not have the same h-h patterns.

Therefore, the PDAG G satisfies conditions 1-3 in Definition 1. By applying Propo-
sition 2, we can then build a single RPDAG R such that Ext(G) ⊆ Ext(R), hence
H,H ′ ∈ Ext(R).

A characterization of the extension of an RPDAG that will be useful later is:

Proposition 5 Given an RPDAG G and a DAG H, then H is an extension of G if and
only if the following conditions hold:

1 G and H have the same skeleton.

2 ∀y ∈ U , if PaG(y) 6= ∅ then PaH(y) = PaG(y).

3 ∀y ∈ U , if PaG(y) = ∅ and PaH(y) 6= ∅ then |PaH(y)| = 1.

Proof:
• Necessary condition:

456

Searching Bayesian network structures in the space of RPDAGs

– PaG(y) 6= ∅: Let x ∈ PaG(y), i.e., x → y ∈ G. Then, from condition 2 in Definition 2,
x→ y ∈ H, i.e., x ∈ PaH(y). Moreover, z ∈ PaG(y)⇔ x→ y ← z is an h-h pattern in G.
From condition 3 in Definition 2, this occurs if and only if x→ y ← z is an h-h pattern in
H, which is equivalent to z ∈ PaH(y). Therefore, PaH(y) = PaG(y).

– PaG(y) = ∅ and PaH(y) 6= ∅: Let x ∈ PaH(y). If there is another node z ∈ PaH(y),
then x→ y ← z is an h-h pattern in H and therefore it is also an h-h pattern in G, which
contradicts the fact that PaG(y) = ∅. So, y cannot have more than one parent in H, hence
|PaH(y)| = 1.

• Sufficient condition:

– If x → y ∈ G then PaG(y) 6= ∅. From condition 2 we have PaH(y) = PaG(y), hence
x→ y ∈ H.

– If x→ y ← z is an h-h pattern in G, once again from condition 2, PaH(y) = PaG(y) and
therefore x→ y ← z is an h-h pattern in H.

– If x → y ← z is an h-h pattern in H, then |PaH(y)| 6= 1 and PaH(y) 6= ∅. So, from
condition 3, we obtain PaG(y) 6= ∅ and, from condition 2, PaG(y) = PaH(y). Therefore
x→ y ← z is an h-h pattern in G.

3.1 Restricted PDAGs and Completed PDAGs

Let us now examine the main differences between the different representations: a represen-
tation based on PDAGs ensures that every equivalence class has a unique representation,
but there are PDAGs that do not correspond to any equivalence class (in other words, the
mapping from equivalence classes to PDAGs is injective). On the other hand, our repre-
sentation based on RPDAGs guarantees that every RPDAG corresponds to an equivalence
class (proposition 1) but does not ensure that every equivalence class has a single represen-
tation (the mapping from equivalence classes to RPDAGs is onto). However, the mapping
from equivalence classes to CPDAGs is bijective. Figures 7.a, 7.b and 7.c show the three
RPDAGs corresponding to the same equivalence class; the associated completed PDAG is
shown in Figure 7.d. In this example, the number of DAGs in the equivalence class is 12.

(a) (b) (d)(c)

Figure 7: (a), (b) and (c) Three RPDAGs corresponding to the same equivalence class; (d)
the associated completed PDAG

As we can see, the difference appears when there are triangular structures. If we compare
the definition of RPDAG (Definition 1) with the characterization of CPDAGs (Theorem 2),

457

Acid & de Campos

we may observe that the essential difference is that a CPDAG may have completely undi-
rected cycles, but these cycles must be chordal. In RPDAGs, undirected cycles are therefore
forbidden, whereas in CPDAGs undirected non-chordal cycles are forbidden.

It should be noted that we could also define RPDAGs by replacing condition 3 in Def-
inition 1 for its equivalent: The subgraph induced by every chain component of G is a tree
(which is a specific type of chordal graph). In this way, the similarities and differences
between CPDAGs and RPDAGs are even clearer. Any of the RPDAGs in the same equiv-
alence class is obtained from the corresponding CPDAG by removing some of the links
(converting them into arcs) in order to obtain a tree structure.

Examining the problem from another perspective, from Theorem 1 and Proposition 4
we can see that the role played by the v-structures in CPDAGs is the same as that played
by the h-h patterns in RPDAGs.

It is also interesting to note that the number of DAGs which are extensions of a given
RPDAG, G, can be calculated very easily: the subgraph induced by each chain component
of G is a tree, and this tree can be directed in different ways by selecting any of the nodes as
the root node. Moreover, we can proceed independently within each chain component. The
number of DAGs in Ext(G) is therefore equal to the product of the number of nodes within
each chain component of G. Regarding the number of RPDAGs that represent the same
equivalence class, this number grows exponentially with the size of the undirected cliques
in the CPDAG. For example, if the subgraph induced by a chain component in a CPDAG
consists of a complete subgraph of m nodes, then the number of RPDAG representations is
m!
2 . This obviously does not mean that a search method based on RPDAGs must explore

all these equivalent representations.

Our reason for using RPDAGs is almost exclusively practical. In fact, RPDAGs do not
have a clear semantics (they are a somewhat hybrid creature, between DAGs and completed
PDAGs). We can only say that RPDAGs would correspond to sets of equivalent DAGs
which share all the causal patterns where an effect node has at least two causes (and only
the causal patterns where a single cause provokes an effect are not determined). This is
not problematic when we are performing model selection but it becomes critical if we are
doing model averaging: without a semantic understanding of the class of RPDAGs, it will
be quite difficult to assign a prior to them.

Our intention is to trade the uniqueness of the representation of equivalence classes of
DAGs (CPDAGs) for a more manageable one (RPDAGs): testing whether a given PDAG
G is an RPDAG is easier than testing whether G is a completed PDAG. In the first case,
the consistency check involves testing for the absence of directed and completely undirected
cycles (the complexity of these tests and those necessary to verify whether a directed graph
is a DAG is exactly the same), whereas in the second case, in addition to testing for the
absence of directed and partially directed cycles, we also need to perform chordality tests
and check that each arc is part of one of the induced subgraphs displayed in Figure 2. The
price we have to pay for using RPDAGs is that we may occasionally need to evaluate an
equivalence class more than once. In the next section, we will examine how a local search
method which uses RPDAGs can also take advantage of the decomposability property of a
scoring function in order to efficiently evaluate neighboring structures.

458

Searching Bayesian network structures in the space of RPDAGs

4. The Search Method

We will use a local method to explore the search space of RPDAGs. The starting point of
the search process will be an empty RPDAG (corresponding to an empty DAG). Neverthe-
less, we could start from another configuration if we have some prior knowledge about the
presence or absence of some edges or v-structures. We must then define the operators to
move from one configuration to another neighboring configuration.

4.1 Overview

Our basic operators are the inclusion of an edge between a pair of non-adjacent nodes and
the removal of an existing edge between a pair of adjacent nodes in the current configuration.
These edges may be either directed or undirected.

The inclusion of an isolated link x—y will serve as a template for the arcs x → y and
x← y; however, the link x—y together with another link x—z represent any combination of
arcs except those that create new h-h patterns (the DAGs (a), (b) and (c) in Figure 3). In the
case of adding an arc, we may obtain several different neighboring configurations, depending
on the topology of the current RPDAG and the direction of the arc being included. As we
will see, if we are testing the inclusion of an edge between two nodes x and y, this may
involve testing some of the different valid configurations obtained by the inclusion of the
link x—y, the arc x → y, the arc x ← y, the h-h pattern x → y ← z or the h-h pattern
z → x ← y (where z in the last two cases would be any node such that either the link
y—z or the link z—x exists in the current configuration). However, the removal of an
edge will always result in only one neighboring configuration. Other operators, such as arc
reversal (Chickering, 1996), will not be used by our search method. The set of neighboring
configurations of a given RPDAG G will therefore be the set of all the different RPDAGs
obtained from G by adding or deleting a single edge (either directed or undirected).

Before explaining the details of the search method, let us illustrate the main ideas by
means of the following example: consider the RPDAG in Figure 8, which represents the
current configuration of the search process (this figure only displays the part of the RPDAG
corresponding to the neighborhood of the nodes x and y), and assume that we shall include
an edge between the nodes x and y.

yx

Figure 8: Node x has one parent and one child, y does not have any parents and has two
neighbors

In this situation, we cannot introduce the link x—y because we would violate one of
the conditions defining RPDAGs (condition 1). We may introduce the arc x → y and in
this case, again in order to preserve condition 1, the two neighbors of y must be converted

459

Acid & de Campos

into children. We can also include the arc x← y. Finally, we may include two different h-h
patterns x→ y ← z, where z is a neighbor of y (the other neighbor must be converted into
a child, once again in order to preserve condition 1). These four different configurations are
displayed in Figure 9.

yx x y

x y x y

Figure 9: Neighboring configurations obtained by including an edge between x and y in the
configuration of Fig. 8

4.2 Neighboring Configurations

In order to design a systematic way to determine which neighboring RPDAGs arise from
the inclusion or the removal of an edge in an RPDAG, it is sufficient to consider some local
parameters of the two nodes to be connected. First, some additional notation is introduced.
If | · | represents the cardinality of a set, given a node x in a PDAG G, we define:

• pG(x) = |PaG(x)|, • cG(x) = |ChG(x)|

• nG(x) = |NeG(x)|, • aG(x) = |AdG(x)|

Observe that for any RPDAG G, the following two properties hold:

• pG(x) + cG(x) + nG(x) = aG(x)

• if pG(x) 6= 0⇒ nG(x) = 0 (hence pG(x) + cG(x) = aG(x))

4.2.1 Adding Edges

The number and type of neighboring configurations that can be obtained from the inclusion
in the current RPDAG of an edge between x and y can be determined from the parameters
above. The resultant casuistry may be reduced to seven states, which we have labeled

460

Searching Bayesian network structures in the space of RPDAGs

from A to G. In order to facilitate its description, we shall use the decision tree shown in
Figure 106.

 nnGG(x)=0 and nGG(y)=0?

nn
GG
(x)=0 and n

GG
(y)=0 nn

GG
(x)≠≠0 or n

GG
(y)≠≠00

ppGG(x)=0 and pGG(y)=0 ? ppGG(x)=0 and pGG(y)=0 ?

Yes No

nn
GG
(x)=0 and n

GG
(y)=0

State AA

nn
GG
(x)=0 and n

GG
(y)=0

pp
GG
(x)≠≠0 or p

GG
(y)≠≠0

State BB

Yes No

pp
GG
(x)=0 and p

GG
(y)=0

nn
GG
(x)≠≠0 or n

GG
(y)≠≠00

nnGG(x)≠≠0 and nGG(y)≠≠0 ?

nn
GG
(x)≠≠0 or n

GG
(y)≠≠0

pp
GG
(x)≠≠0 or p

GG
(y)≠≠00

nnGG(x)=0 ?

Yes No

pp
GG
(x)=0 and p

GG
(y)=0

nn
GG
(x)≠≠0 and n

GG
(y)≠≠00

State C

pp
GG
(x)=0 and p

GG
(y)=0

nn
GG
(x)≠≠0 xor n

GG
(y)≠≠00

nnGG(x)=0 ?

pp
GG
(x)=0 and p

GG
(y)=0

State DD

pp
GG
(x)=0 and p

GG
(y)=0

State EE

pp
GG
(x)≠≠0 and p

GG
(y)== 00 pp

GG
(x)=0 and p

GG
(y)≠≠00

nn
GG
(x)≠≠0 and n

GG
(y)=0

State FF State GG

Yes No Yes

Yes

No

No

None

pp
GG
(x)=0 and p

GG
(y)=0

nn
GG
(x)==0 and n

GG
(y)≠≠00

nn
GG
(x)==0 and n

GG
(y)≠≠00 nn

GG
(x)≠≠0 and n

GG
(y)=0

Figure 10: The tree of possible states that may result by adding an edge between nodes x
and y

6. This tree could be organized differently in order to improve the efficiency in the location of the current
state. However, this particular tree was selected so as to clarify the presentation.

461

Acid & de Campos

In this tree, the lower box of each non-terminal vertex contains a test (about the number
of parents or the number of neighbors of nodes x and y). The lower box of each terminal
vertex contains the label of the state resulting from following the path from the root to that
terminal vertex. The description of each state (i.e. the different neighboring configurations
that can be obtained in this case) can be found in Table 1. The upper boxes of all the
vertices in the tree show the restrictions imposed on each intermediate or terminal state.
For example, state B corresponds to a situation where both nodes x and y do not have
neighbors and at least one of them has some parent. Although the tree has seven different
states, there are only five truly different states, since states D and E, and states F and G
are symmetrical.

State Number of Added edges Directed Undirected Completing ?
configurations Cycles ? Cycles ?

A 1 x—y No No No

B 2
x→ y
x← y

Yes(1)

Yes(2)
No
No

No
No

C nG(x) + nG(y) + 1
x—y
x→ y ← z
z → x← y

No

Yes(3)

Yes(4)

Yes
No
No

No

Yes(3)

Yes(4)

D nG(y) + 1
x—y
x→ y ← z

No
No

No
No

No

Yes(3)

E nG(x) + 1
x—y
z → x← y

No
No

No
No

No

Yes(4)

F nG(y) + 2
x← y
x→ y
x→ y ← z

No
Yes

Yes(3)

No
No
No

No
Yes

Yes(3)

G nG(x) + 2
x→ y
x← y
z → x← y

No
Yes

Yes(4)

No
No
No

No
Yes

Yes(4)

(1) only if pG(x) 6= 0 and cG(y) 6= 0 (3) only if nG(y) ≥ 2
(2) only if pG(y) 6= 0 and cG(x) 6= 0 (4) only if nG(x) ≥ 2

Table 1: Table of states that may result by adding an edge between nodes x and y

In Table 1, each row corresponds to a state: the first column contains the labels of the
states; the second column displays the total number of neighboring configurations that can
be obtained for each state; the third column shows the different types of edges that, for
each state, can be added to the current configuration; columns four, five and six will be
discussed later.

Using the example in Figure 8, we shall explain the use of the decision tree as well as
the instantiation of the information in Table 1. Following the decision tree, at level 1 (the
root vertex), the test is false since y has two neighbors. At level 2, the test is also false as
x has one parent. At level 3 the test is true, since x has no neighbor. At level 4 we reach

462

Searching Bayesian network structures in the space of RPDAGs

a terminal vertex. Our current configuration therefore corresponds to state F. Then, by
examining state F in Table 1, we can confirm that we reach four different configurations
(nG(y) = 2): G∪{x← y}, G∪{x→ y} without new h-h patterns, and two G∪{x→ y ← z}
which produce new h-h patterns. So, these are the only structures that our algorithm must
evaluate when considering the inclusion of the candidate edge x—y. In Figure 14, we show
an example for each of the five non-symmetrical states (once again, these examples only
display the part of the RPDAGs corresponding to the neighborhood of the nodes x and y).

We therefore have a systematic way to explore all the neighboring configurations which
result from adding an edge. However, it will sometimes be necessary to perform some
additional steps since the configurations obtained must be RPDAGs:

• First, we must maintain the condition 1 (pG(y) 6= 0 ⇒ nG(y) = 0). It is therefore
necessary to complete the configuration for some of the described states, i.e. some of
the links must be converted into arcs. The completing process consists in firing an
orientation in cascade, starting from the links y—t such that the arc just introduced
is x → y. Let us consider the situation in Figure 11, where we want to connect the
nodes x and y, a case corresponding to state D. Among the three possible neighboring
configurations, let us suppose that we are testing the one which introduces the h-h
pattern x → y ← z. The RPDAG obtained from the completing process is also dis-
played in Figure 11. The sixth column in Table 1 shows which states and neighboring
configurations may require the completing process.

x yx yx yx yx y
w w

z z

Figure 11: Transformation of a configuration after including the pattern x → y ← z and
completing

• Secondly, it is possible that some of the neighboring configurations must be rejected, as
they give rise to directed or completely undirected cycles (conditions 2 and 3 defining
RPDAGs). For example, let us consider the situation displayed in Figure 12, which
corresponds to state F. In this case, the configuration obtained after including the
arc x → y and completing would generate a directed cycle. This configuration must
therefore be rejected. The columns four and five in Table 1 show which states and
configurations may require a detection of directed or completely undirected cycles,
respectively.

463

Acid & de Campos

x yx yx yx yx yx y

Figure 12: Neighboring configuration that gives rise to a directed cycle

4.2.2 Deleting Edges

The other basic operator, the removal of an edge (either link or arc) is much simpler than
the addition of an edge, since only one neighboring configuration is obtained when we
delete an edge. Moreover, it is not necessary to perform any test for detecting directed or
undirected cycles. However, in this case we need to preserve condition 4 in the definition
of RPDAG (if x → y exists in G ⇒ |PaG(y)| ≥ 2 or PaG(x) 6= ∅), that could be violated
after an arc is deleted. This situation may appear only when we are going to remove an
arc x → y and either PaG(y) = {x} or PaG(y) = {x, u}: in the first case, all the children
of y that do not have other parents than y must be converted into neighbors of y, and this
process is repeated starting from each of these children; in the second case, if PaG(u) = ∅
then in addition to the previous process, the arc u → y must be converted into the link
u—y. Figure 13 illustrates these situations. This procedure of transforming arcs into links
is exactly the same as the one described in the proof of Proposition 2.

x yx yx yx yx y

u u

Figure 13: Transforming arcs into links after removing the arc x→ y

4.3 The Operators

Although the previous description of the operators that define the neighborhood of an
RPDAG is quite convenient from a practical (implementation) point of view, for the sake
of clarity, we shall describe them in another way. In fact, we shall use five operators:

• A arc(x, y), addition of an arc x→ y.

464

Searching Bayesian network structures in the space of RPDAGs

x y x yA

x y x y x yor
B

x y x y

or

orx y

or x yx y

C

x y

x yor

orx y x yD, analogous to E

x y

x y x y

or

orx y

or x y

F, analogous to G

Figure 14: For each state of the decision tree in Fig. 10, an example of the neighboring
configurations of an RPDAG that can be obtained after adding an edge between
nodes x and y

465

Acid & de Campos

• A link(x, y), addition of a link x—y.

• D arc(x, y), deletion of an arc x→ y.

• D link(x, y), deletion of a link x—y.

• A hh(x, y, z), addition of an arc x→ y and creation of the h-h pattern x→ y ← z by
transforming the link y—z into the arc y ← z.

The conditions that the current RPDAG G must verify so that each of these operators
can be applied in order to obtain a valid neighboring RPDAG are shown in Table 2. These
conditions can be easily derived from the information in Figure 10 and Table 1. In Table 2,
UC(x—y) represents a test for detecting completely undirected cycles after inserting the link
x—y in the current RPDAG. Note that we can perform this test very easily without actually
inserting the link: it is only necessary to check the existence of a path between x and y
exclusively formed by the links. Similarly, DC(x→ y) and DC(x→ y ← z) represent tests
for detecting directed cycles after inserting the arc x→ y and the h-h pattern x→ y ← z in
the current RPDAG, respectively (and perhaps completing). It should also be noted that
we can perform these tests without inserting the arc or the h-h pattern: in this case we
only need to check the existence of a path from y to x containing only either links or arcs
directed away from y (a partially directed path from y to x). Table 2 also shows which
operators may require a post-processing step in order to ensure that the corresponding
neighboring configuration of G is an RPDAG. In Table 2, Complete(y) and Undo(y) refer
to the procedures that preserve conditions 1 and 4 in Definition 1, respectively. Note that
both UC(x—y) and Complete(y) take time O(ly) in the worst case, where ly is the number
of links in the subgraph induced by the chain component of G that contains y; Undo(y) takes
time O(dy) in the worst case, where dy is the number of arcs in the subgraph induced by the
set of descendants of y in G that only have one parent; DC(x → y) and DC(x → y ← z)
both take time O(dly) in the worst case, where dly is the number of edges (either arcs or
links) in the subgraph induced by the nodes in the chain component of G that contains y
together with their descendants.

5. The Exploring Process and the Evaluation of Candidate Structures

The search method we have described may be applied in combination with any score equiv-
alent function g (for example the AIC, BIC, MDL and BDe scoring functions are score
equivalent). An easy (but inefficient) way to integrate our search method with a score
equivalent function would be as follows: given an RPDAG G to be evaluated, select any
extension H of G and compute g(H : D). We could also use other (non-equivalent) scoring
functions, although the score of G would depend on the selected extension.

However, let us consider the case of a decomposable scoring function g: the DAG ob-
tained by adding or removing an arc from the current DAG H can be evaluated by modifying
only one local score:

g(H ∪ {x→ y} : D) = g(H : D)− gD(y, PaH(y)) + gD(y, PaH(y) ∪ {x})

g(H \ {x→ y} : D) = g(H : D)− gD(y, PaH(y)) + gD(y, PaH(y) \ {x})

466

Searching Bayesian network structures in the space of RPDAGs

Operator Conditions Post-processing

x 6∈ AdG(y); pG(x) 6= 0 or pG(y) 6= 0; if pG(x) 6= 0 and nG(y) 6= 0
A arc(x, y) if (pG(x) 6= 0 and (cG(y) 6= 0 or nG(y) 6= 0)) then Complete(y)

then DC(x→ y) = False

x 6∈ AdG(y); pG(x) = 0 and pG(y) = 0;
A link(x, y) if (nG(x) 6= 0 and nG(y) 6= 0) None

then UC(x—y) = False

D arc(x, y) x ∈ PaG(y) if pG(y) ≤ 2
then Undo(y)

D link(x, y) x ∈ NeG(y) None

x 6∈ AdG(y); z ∈ NeG(y);
A hh(x, y, z) pG(y) = 0 and nG(y) 6= 0; if nG(y) ≥ 2

if (nG(y) ≥ 2 and (pG(x) 6= 0 or nG(x) 6= 0)) then Complete(y)
then DC(x→ y ← z) = False

Table 2: The operators, their conditions of applicability, and post-processing requirements

Using decomposable scoring functions, the process of selecting, given an RPDAG, a
representative DAG and then evaluating it may be quite inefficient, since we would have
to recompute the local scores for all the nodes instead of only one local score. This fact
can make a learning algorithm that searches in the space of equivalence classes of DAGs
considerably slower than an algorithm that searches in the space of DAGs (this is the case
of the algorithm proposed by Chickering, 1996).

Our search method can be used for decomposable scoring functions so that: (1) it is not
necessary to transform the RPDAG into a DAG, the RPDAG can be evaluated directly,
and (2) the score of any neighboring RPDAG can be obtained by computing at most two
local scores. All the advantages of the search methods on the space of DAGs are therefore
retained, but a more reduced and robust search space is used.

Before these assertions are proved, let us examine an example. Consider the RPDAG G
in Figure 15 and the three neighboring configurations produced by the inclusion of an edge
between x and y, G1, G2 and G3 (also displayed in Figure 15).

a

b

c

y

d

x

a

b

c

y

d

x

a

b

c

y

d

x

a

b

c

y

d

x

G G G G1 2 3

Figure 15: An RPDAG G and three neighboring configurations G1, G2 and G3

467

Acid & de Campos

The score of each of these RPDAGs is equal to the score of any of their extensions.
Figure 16 displays one extension for each neighboring configuration.

a

b

c

y

d

x

a

b

c

y

d

x

a

b

c

y

d

x

H H H1 2 3

Figure 16: Extensions H1, H2 and H3 of the RPDAGs G1, G2 and G3 in Fig. 15

We can therefore write:

g(G1 : D) = g(H1 : D) = gD(x, ∅) + gD(a, {xb}) + gD(b, c) + gD(c, y) + gD(y, x) + gD(d, y)

g(G2 : D) = g(H2 : D) = gD(x, ∅) + gD(a, {xb}) + gD(b, c) + gD(c, y) + gD(y, {xd}) + gD(d, ∅)

g(G3 : D) = g(H3 : D) = gD(x, ∅) + gD(a, {xb}) + gD(b, c) + gD(c, ∅) + gD(y, {xc}) + gD(d, y)

For each extension Hi of any neighboring configuration Gi, it is always possible to find
an extension HGi of the current RPDAG G such that the scores of Hi and HGi only differ
in one local score (Figure 17 displays these extensions). We can then write:

g(G : D) = g(HG1 : D) = gD(x, ∅) + gD(a, {xb}) + gD(b, c) + gD(c, y) + gD(y, ∅) + gD(d, y)

g(G : D) = g(HG2 : D) = gD(x, ∅) + gD(a, {xb}) + gD(b, c) + gD(c, y) + gD(y, d) + gD(d, ∅)

g(G : D) = g(HG3 : D) = gD(x, ∅) + gD(a, {xb}) + gD(b, c) + gD(c, ∅) + gD(y, c) + gD(d, y)

a

b

c

y

d

x

a

b

c

y

d

x

H H

a

b

c

y

d

x

H G1 G2 G3

Figure 17: Three different extensions HG1, HG2 and HG3 of the RPDAG G in Fig. 15

Taking into account the previous expressions, we obtain:

g(G1 : D) = g(G : D)− gD(y, ∅) + gD(y, x)

468

Searching Bayesian network structures in the space of RPDAGs

g(G2 : D) = g(G : D)− gD(y, d) + gD(y, {xd})

g(G3 : D) = g(G : D)− gD(y, c) + gD(y, {xc})

Therefore, the score of any neighboring configuration may be obtained from the score
of G by computing only two local scores. Note that some of these local scores may have
already been computed at previous iterations of the search process: for example, gD(y, ∅)
had to be used to score the initial empty RPDAG, and either gD(y, d) or gD(y, c) could
have been computed when the link y—d or y—c was inserted into the structure.

Proposition 6 Let G be an RPDAG and G′ be any RPDAG obtained by applying one
of the operators described in Table 2 to G. Let g be a score equivalent and decomposable
function.

(a) If the operator is A link(x, y) then

g(G′ : D) = g(G : D)− gD(y, ∅) + gD(y, {x})

(b) If the operator is A arc(x, y) then

g(G′ : D) = g(G : D)− gD(y, PaG(y)) + gD(y, PaG(y) ∪ {x})

(c) If the operator is A hh(x, y, z) then

g(G′ : D) = g(G : D)− gD(y, {z}) + gD(y, {x, z})

(d) If the operator is D link(x, y) then

g(G′ : D) = g(G : D)− gD(y, {x}) + gD(y, ∅)

(e) If the operator is D arc(x, y) then

g(G′ : D) = g(G : D)− gD(y, PaG(y)) + gD(y, PaG(y) \ {x})

Proof:

(1) First, we shall prove that we can construct an extension H ′ of G′ and another extension
H of G, such that H and H ′ differ in only one arc (this arc being x→ y).

• Consider the cases (a), (b), and (c), which correspond to the addition of an edge between
x and y: in case (a), G′ = G∪{x—y} and let H ′ be an extension of G′ that contains the arc
x→ y; in case (b), where G′ = G∪{x→ y}, and in case (c), where G′ = (G\{y—z})∪{x→
y ← z}, let H ′ be any extension of G′ (which will contain the arc x→ y). In all three cases,
let H = H ′ \ {x→ y}. We shall prove that H is an extension of G:

– First, it is obvious that G and H have the same skeleton.

– Secondly, if u→ v ∈ G (in either case u→ v 6= x→ y), then u→ v ∈ G′. As H ′ is an
extension of G′, then u→ v ∈ H ′, and this implies that u→ v ∈ H. Therefore, all the arcs

469

Acid & de Campos

in G are also arcs in H. This result also ensures that every h-h pattern in G is also an h-h
pattern in H.

– Thirdly, if u → v ← w is an h-h pattern in H (in either case u → v ← w 6= x →
y ← w), then u → v ← w ∈ H ′. Once again, as H ′ is an extension of G′, we can see that
u→ v ← w ∈ G′, and then u→ v ← w ∈ G. So, G and H have the same h-h patterns.

H is therefore an extension of G, according to Definition 2. Note that ∀u 6= y PaH(u) =
PaH′(u) and PaH(y) = PaH′(y) \ {x}.

• Let us now consider cases (d) and (e), which correspond to the deletion of an edge
between x and y (either a link or an arc, respectively): in case (d), let H be an extension
of G containing the arc x→ y; in case (e), let H be any extension of G. In both cases, let
H ′ = H \ {x→ y}. We will prove that H ′ is an extension of G′:

– First, it is clear that G′ and H ′ have the same skeleton.

– Secondly, if u → v ∈ G′ (note that u → v 6= x → y), then u → v ∈ G. As H is an
extension of G, then u→ v ∈ H, and therefore u→ v ∈ H ′. So, all the arcs in G′ are also
arcs in H ′. Moreover, every h-h pattern in G′ is also an h-h pattern in H ′.

– Thirdly, if u → v ← w is an h-h pattern in H ′ (and we know that u → v ← w 6=
x → y ← w), then u → v ← w ∈ H. As H is an extension of G, then u → v ← w ∈ G.
Therefore, u→ v ← w ∈ G′ (the removal of the arc x→ y cannot destroy any h-h pattern
where x→ y is not involved). So, G′ and H ′ have the same h-h patterns.

In this way, H ′ is an extension of G′. Moreover, we can see that ∀u 6= y PaH′(u) =
PaH(u) and PaH′(y) = PaH(y) \ {x}.

(2) The scores of G and G′ are the same as the scores of H and H ′ respectively, since g is
score equivalent. Moreover, as g is decomposable, we can write

g(G′ : D) = g(H ′ : D) =
∑

u gD(u, PaH′(u)) =
∑

u 6=y gD(u, PaH′(u)) + gD(y, PaH′(y)) =∑
u 6=y gD(u, PaH(u)) + gD(y, PaH(y))− gD(y, PaH(y)) + gD(y, PaH′(y)) =∑

u gD(u, PaH(u)) − gD(y, PaH(y)) + gD(y, PaH′(y)) =
g(H : D)− gD(y, PaH(y)) + gD(y, PaH′(y)) =

g(G : D)− gD(y, PaH(y)) + gD(y, PaH′(y))
(4)

Let us now consider the five different cases:

(a) In this case, we know from Table 2 that PaG(y) = ∅. Moreover, PaG′(y) = ∅ (because
we are inserting a link) and PaH′(y) 6= ∅ (because H ′ is an extension of G′ that contains
the arc x → y). Then, from Proposition 5 we obtain |PaH′(y)| = 1, i.e. PaH′(y) = {x}.
Moreover, PaH(y) = PaH′(y) \ {x} = ∅. So, Eq. (4) becomes

g(G′ : D) = g(G : D)− gD(y, ∅) + gD(y, {x})

(b) From Table 2 we get PaG(y) 6= ∅ or PaG(x) 6= ∅.

If PaG(y) 6= ∅, from Proposition 5 we obtain PaH(y) = PaG(y). Moreover, PaH′(y) =
PaH(y) ∪ {x} = PaG(y) ∪ {x}.

If PaG(y) = ∅ then PaG′(y) = {x} (because we are adding the arc x → y). From
Proposition 5 we obtain PaH′(y) = PaG′(y) = {x} = PaG(y) ∪ {x}. Moreover, PaH(y) =
PaH′(y) \ {x} = ∅ = PaG(y).

470

Searching Bayesian network structures in the space of RPDAGs

In either case, Eq. (4) becomes

g(G′ : D) = g(G : D)− gD(y, PaG(y)) + gD(y, PaG(y) ∪ {x})

(c) In this case, PaG(y) = ∅ and PaG′(y) = {x, z}. From Proposition 5 we obtain PaH′(y) =
{x, z}. Moreover, PaH(y) = PaH′(y) \ {x} = {z}. Then, Eq. (4) becomes

g(G′ : D) = g(G : D)− gD(y, {z}) + gD(y, {x, z})

(d) As PaG(y) = ∅ and H is an extension of G containing the arc x→ y, from Proposition 5
we get PaH(y) = {x}. Moreover, PaH′(y) = PaH(y)\{x} = ∅. In this case Eq. (4) becomes

g(G′ : D) = g(G : D)− gD(y, {x}) + gD(y, ∅)

(e) In this case, as PaG(y) 6= ∅, Proposition 5 asserts that PaH(y) = PaG(y). Moreover,
PaH′(y) = PaH(y) \ {x} = PaG(y) \ {x}. Therefore, Eq. (4) becomes

g(G′ : D) = g(G : D)− gD(y, PaG(y)) + gD(y, PaG(y) \ {x})

5.1 Comparison with Other Approaches

As we have already mentioned, there are several works devoted to learning Bayesian net-
works, within the score+search approach, which use the space of completed PDAGs to carry
out the search process. There is a slight difference between the operators considered in the
different works: the addition and deletion of edges is considered by Madigan et al. (1996),
within a Markov Chain Monte Carlo process, which also performs Monte Carlo sampling
from the space of the orderings of the variables compatible with the current CPDAG. Edge
addition and deletion is also used by Spirtes and Meek (1995), but within a greedy process
that first grows the structure by adding edges and then thins it by deleting edges. Addi-
tional operators are considered by Chickering (1996), including arc reversal and creation of
v-structures.

All these methods move through the space of completed PDAGs in the following way:
given the current CPDAG G, after selecting an operator, applying it to G and obtaining a
neighboring PDAG G′, they generate a consistent extension H ′ of G′ (a DAG belonging to
the equivalence class represented by the PDAG), if one exists. If this is the case (otherwise
G′ is not a valid configuration), then G′ is evaluated by computing the score of H ′, g(H ′ : D).
The completed PDAG representation of G′ is then recovered from its consistent extension
H ′.

The process of checking the existence of a consistent extension and generating it is carried
out with a procedure called PDAG-to-DAG (Dor & Tarsi, 1992), which runs in time O(n ·e)
in the worst case, where e denotes the number of edges in the PDAG. Another procedure,
called DAG-to-PDAG, is invoked in order to obtain the completed PDAG representation
of the new valid configuration. There are different implementations of DAG-to-PDAG
(Andersson et al., 1997; Chickering, 1995; Meek, 1995; Pearl & Verma, 1990). For example,
the time complexity of the algorithm proposed by Chickering (1995) is O(e) on the average
and O(n · e) in the worst case.

Our search method does not need to use any of these two procedures: in order to check
the validity of a neighboring configuration of an RPDAG G, it is only necessary, in some

471

Acid & de Campos

cases, to perform a test to detect either an undirected path or a partially directed path
between two nodes in G (implemented by procedures UC() and DC() in Section 4.3). On
the other hand, once the search process has explored the neighborhood of G and determined
the best neighboring configuration G′, G′ is not always an RPDAG, and we must generate
its RPDAG representation. This generation procedure is also very simple: it consists in
firing, starting from a single node y, a cascaded process that either directs links away from
y or undirects arcs (implemented by procedures Complete() and Undo() in Section 4.3).
Note that all these procedures used by our search method are less time-consuming than
PDAG-to-DAG and DAG-to-PDAG.

More importantly, our search method can take advantage of the decomposability of
many scoring functions, and each RPDAG (except the initial one) can be evaluated by
computing only two local scores. However, the methods based on completed PDAGs need
to recompute all the local scores, although the algorithm proposed by Muntenau and Cau
(2000), which operates on completed PDAGs and uses three insertion operators (for arcs,
links and v-structures) is also able to score any neighboring configuration using two local
scores; however, the validity conditions of some of these operators are not correct.

Finally, Chickering (2002)7 describes an algorithm that searches in the space of com-
pleted PDAGs and is also able to evaluate configurations by computing only (up to four)
local scores. It uses six operators, link and arc addition, link and arc deletion, creation of
v-structures by directing two already existing links, and reversal of arcs. All the operators
can be evaluated using two local scores, except reversal and creation of v-structures, that
require four local scores. The validity conditions of the operators are established essentially
in terms of two conditions: (1) the absence of semi-directed or undirected paths between
two nodes that do not pass through certain set of nodes, S, and (2) the fact that a certain
set of nodes forms a clique. Link insertion and creation of v-structures need the first type of
condition, link and arc deletion need the second one, whereas arc insertion and arc reversal
require both conditions. The “path” validity conditions take time O(|S| + e) in the worst
case, and the “clique” conditions take time O(|S|2), also in the worst case. This algorithm
also requires the PDAG-to-DAG and DAG-to-PDAG procedures to be used.

So, although the validity conditions of the operators in Chickering’s algorithm and
their postprocessing are somewhat more complex than ours, the advantage is that this
algorithm does not have any duplicate representations of the equivalence classes. Whether
the computational cost of moves in the CPDAG space can compensate for the larger number
of RPDAGs (and the larger number of local scores to be computed) is a matter of empirical
evaluation, that will possibly depend on the “sparseness” of the specific domain problem
considered.

6. Experimental Results

In this section we shall describe the experiments carried out with our algorithm, the obtained
results, and a comparative study with other algorithms for learning Bayesian networks. We
have selected nine different problems to test our algorithm, all of which only contain discrete
variables: Alarm (Figure 18), Insurance (Figure 19), Hailfinder (Figure 20), Breast-Cancer,
crx, Flare2, House-Votes, Mushroom, and Nursery.

7. This work appeared after the original submission of this paper.

472

Searching Bayesian network structures in the space of RPDAGs

The Alarm network displays the relevant variables and relationships for the Alarm Mon-
itoring System (Beinlich et al., 1989), a diagnostic application for patient monitoring. This
network, which contains 37 variables and 46 arcs, has been considered as a benchmark for
evaluating Bayesian network learning algorithms. The input data commonly used are sub-
sets of the Alarm database built by Herskovits (1991), which contains 20000 cases that were
stochastically generated using the Alarm network. In our experiments, we have used three
databases of different sizes (the first k cases in the Alarm database, for k = 3000, 5000 and
10000).

1 2 3

25 18 26

17

19 20

10 21

27

28 29

7 8 9

30

32

12

34 35

33 14

22

15

23

13

16

36

24

6 5 4 11

31

37

Figure 18: The Alarm network

Insurance (Binder et al., 1997) is a network for evaluating car insurance risks. The
Insurance network contains 27 variables and 52 arcs. In our experiments, we have used five
databases containing 10000 cases, generated from the Insurance Bayesian network.

Hailfinder (Abramson et al., 1996) is a normative system that forecasts severe summer
hail in northeastern Colorado. The Hailfinder network contains 56 variables and 66 arcs. In
this case, we have also used five databases with 10000 cases generated from the Hailfinder
network.

Breast-Cancer, crx, Flare2, House-Votes, Mushroom, and Nursery are databases avail-
able from the UCI Machine Learning Repository. Breast-Cancer contains 10 variables (9
attributes, two of which have missing values, and a binary class variable) and 286 instances.
The crx database concerns credit card applications. It has 490 cases and 16 variables (15
attributes and a class variable), and seven variables have missing values. Moreover, six of
the variables in the crx database are continuous and were discretized using the MLC++ sys-
tem (Kohavi, John, Long, Manley & Pfleger, 1994). Flare2 uses 13 variables (10 attributes
and 3 class variables, one for the number of times a certain type of solar flare occured in
a 24-hour period) and contains 1066 instances, without missing values. House-Votes stores
the votes for each of the U.S. House of Representatives Congressmen on 16 key votes; it has
17 variables and 435 records and all the variables except two have missing values. Mush-
room contains 8124 cases corresponding to species of gilled mushrooms in the Agaricus and
Lepiota Family; there are 23 variables (a class variable, stating whether the mushroom is
edible or poisonous, and 22 attribute variables) and only one variable has missing values.

473

Acid & de Campos

SocioEcon

GoodStudent RiskAversion

VehicleYear MakeModel

AntiTheft HomeBase

OtherCar

Age

DrivingSkill

SeniorTrain

MedCost

DrivQuality DrivHistRuggedAuto AntilockCarValue Airbag

Accident

ThisCarDam OtherCarCost ILiCost

ThisCarCost

Cushioning

Mileage

PropCost

Theft

Figure 19: The Insurance network

Nursery contains data relative to the evaluation of applications for nursery schools, and has
9 variables and 12960 cases, without missing values. In all of the cases, missing values are
not discarded but treated as a distinct state.

In the first series of experiments, we aim to compare the behavior of our RPDAG-based
local search method (rpdag) with the classical local search in the space of DAGs (dag).
The scoring function selected is BDeu (Heckerman et al., 1995) (which is score equivalent
and decomposable), with the parameter representing the equivalent sample size set to 1
and a uniform structure prior. The starting point of the search is the empty graph in both
cases.

We have collected the following information about the experiments:

BDeu.- The BDeu score (log version) of the learned network.

Edg.- The number of edges included in the learned network.

H.- The Hamming distance, H=A+D+I, i.e. the number of different edges, added (A),
deleted (D), or wrongly oriented (without taking into account the differences between
equivalent structures) (I), in the learned network with respect to the gold standard
network (the original model). This measure is only computed for the three test do-
mains where a gold standard exists.

Iter.- The number of iterations carried out by the algorithm to reach the best network, i.e.
the number of operators used to transform the initial graph into a local optimum.

Ind.- The number of individuals (either DAGs or RPDAGs) evaluated by the algorithm.

474

Searching Bayesian network structures in the space of RPDAGs

Scenario

MvmtFeatures MidLLapse ScenRelAMCIN Dewpoints

ScnRelPlFcst

SfcWndShfDis RHRatioScenRelAMIns WindFieldPln TempDis SynForcng MeanRH LowLLapse

ScenRel3_4

WindFieldMt WindAloft

AMInsWliScen

InsSclInScen

PlainsFcst

InsChange AMCINInScen

CapInScen

CapChange

CompPlFcst

AreaMoDryAir

CldShadeOth

InsInMt

AreaMeso_ALS

CombClouds

MorningCIN

CldShadeConv OutflowFrMt

MountainFcst

WndHodograph

Boundaries

CombMoisture

CurPropConv

N34StarFcst

LoLevMoistAd

MorningBound

AMInstabMt

CombVerMo

LatestCINLLIW

SatContMoistRaoContMoist

Date

R5Fcst

LIfr12ZDENSdAMDewptCalPl

VISCloudCov IRCloudCover

N0_7muVerMo SubjVertMoQGVertMotion

Figure 20: The Hailfinder network

EstEv.- The number of different statistics evaluated during the execution of the algorithm.
This is a useful value to measure the efficiency of the algorithms, because most of

475

Acid & de Campos

the running time of a scoring-based learning algorithm is spent in the evaluation of
statistics from the database.

TEst.- The total number of statistics used by the algorithm. Note that this number can
be considerably greater than EstEv. By using hashing techniques we can store and
efficiently retrieve any previously calculated statistics. It is not therefore necessary to
recompute them by accessing the database, thus gaining in efficiency.

NVars.- The average number of variables that intervene in the different statistics (i.e. the
values Ny,PaH(y) in Eq. (3)) computed. This value is also important because the time
required to compute a statistic increases exponentially with the number of variables
involved.

Time.- The time, measured in seconds, employed by the algorithm to learn the network.
Our implementation is written in the JAVA programming language and runs under
Linux. This value is only a rough measure of the efficiency of the algorithms, be-
cause there are many circumstances that may influence the running time (external
loading in a networked computer, caching or any other aspect of the computer ar-
chitecture, memory paging, use of virtual memory, threading, different code, etc.).
Nevertheless, we have tried to ensure that the two algorithms run under the same
conditions as far as possible, and the two implementations share most of the code.
In fact, the two algorithms have been integrated into the Elvira package (available at
http://www.leo.ugr.es/~elvira).

For the Insurance and Hailfinder domains, the reported results are the average values
across the five databases considered. The results of our experiments for synthetic data, i.e.
Alarm, Insurance and Hailfinder, are displayed in Tables 3, 4 and 5, respectively, where we
also show the BDeu values for the true (TD) and the empty (∅D) networks (with parameters
re-trained from the corresponding database D), which may serve as a kind of scale. The
results obtained for real data are displayed in Table 6.

As we consider there to be a clear difference between the results obtained for the syn-
thetic and the UCI domains, we shall discuss them separately.

• For the synthetic domains (Tables 3, 4 and 5):

– Our RPDAG-based algorithm outperforms the DAG-based one with respect to
the value of the scoring function used to guide the search: we always obtain better
results on the five databases considered. Note that we are using a logarithmic
version of the scoring function, so that the differences are much greater in a
non-logarithmic scale. These results support the idea that RPDAGs are able to
find new and better local maxima within the score+search approach for learning
Bayesian networks in this type of highly structured domains.

– Our search method is also preferable from the point of view of the Hamming
distances, which are always considerably lower than the ones obtained by using
the DAG space.

– Moreover, our search method is generally more efficient: it carries out fewer iter-
ations (on the five cases), evaluates fewer individuals (on four cases), computes

476

Searching Bayesian network structures in the space of RPDAGs

BDeu Edg H A D I Iter Ind EstEv TEst NVar Time

Alarm-3000
RPDAG -33101 46 2 1 1 0 49 63124 3304 123679 2.98 111
DAG -33109 47 7 3 2 2 58 72600 3300 145441 2.88 117
TAlarm3 -33114 46
∅Alarm3 -59890 0

Alarm-5000
RPDAG -54761 46 2 1 1 0 49 62869 3326 123187 2.97 179
DAG -54956 54 16 9 1 6 60 76212 3391 152663 2.93 194
TAlarm5 -54774 46
∅Alarm5 -99983 0

Alarm-10000
RPDAG -108432 45 1 0 1 0 48 61190 3264 120049 2.97 346
DAG -108868 52 13 7 1 5 60 75504 3449 151251 2.94 380
TAlarm10 -108452 46
∅Alarm10 -199920 0

Table 3: Results for the Alarm databases

BDeu Edg H A D I Iter Ind EstEv TEst NVar Time

RPDAG -133071 45 18 4 10 4 48 36790 1990 69965 2.95 202
DAG -133205 49 25 7 10 8 58 36178 2042 72566 3.03 214
TInsur -133040 52
∅Insur -215278 0

Table 4: Average results for the Insurance domain across 5 databases of size 10000

fewer different statistics from the databases (on three cases), uses fewer statistics
(on the five cases), and runs faster (on four cases). On the contrary, the average
number of variables involved in the statistics is slightly greater (on four cases).

• For the UCI domains (Table 6):

– The results in this case are not as conclusive about the advantages of the RPDAG-
based method with respect to the DAG-based one in terms of effectiveness: both

BDeu Edg H A D I Iter Ind EstEv TEst NVar Time

RPDAG -497872 67 24 12 10 2 68 235374 7490 459436 2.92 847
DAG -498395 75 45 21 13 11 81 240839 7313 482016 2.81 828
THail -503230 66
∅Hail -697826 0

Table 5: Average results for the Hailfinder domain across 5 databases of size 10000

477

Acid & de Campos

BDeu Edg Iter Ind EstEv TEst NVar Time

Breast-Cancer
RPDAG -2848 6 7 619 151 1232 2.26 0.673
DAG -2848 6 7 619 148 1284 2.26 0.686

crx
RPDAG -5361 19 20 5318 545 10020 2.75 3.03
DAG -5372 19 20 4559 510 9208 2.61 2.85

Flare2
RPDAG -6728 15 16 2637 329 4887 2.71 3.66
DAG -6733 13 14 2012 310 4093 2.45 3.23

House-Votes
RPDAG -4629 22 23 6370 591 11883 2.80 3.10
DAG -4643 23 24 6094 621 12289 2.66 3.39

Mushroom
RPDAG -77239 92 97 43121 2131 78459 3.99 432
DAG -77208 87 103 39944 2173 80175 3.96 449

Nursery
RPDAG -125717 8 9 415 115 803 2.75 11.91
DAG -125717 8 9 611 133 1269 2.59 13.50

Table 6: Results for the UCI databases

algorithms reach the same solution on two cases from six, rpdag is better than
dag on three cases, and dag is better on one case.

– With respect to the efficiency of the two algorithms, the situation is similar:
neither algorithm clearly outperforms the other with respect to any of the five
efficiency measures considered.

In a second series of experiments, we aim to test the behavior of the search in the
RPDAG space when used in combination with a search heuristic which is more powerful
than a simple greedy search. The heuristic selected is Tabu Search (Glover, 1989; Bouckaert,
1995), which tries to escape from a local maximum by selecting a solution that minimally
decreases the value of the scoring function; immediate re-selection of the local maximum just
visited is prevented by maintaining a list of solutions that are forbidden, the so-called tabu
list (although for practical reasons the tabu list stores forbidden operators not solutions, and
consequently, solutions which have not been visited previously may also become forbidden).

We have implemented two simple versions of tabu search: ts-rpdag and ts-dag, which
explore the RPDAG and DAG spaces, respectively, using the same operators as their re-
spective greedy versions. The parameters used by these algorithms are the length tll of
the tabu list and the number tsit of iterations required to stop the search process. In our
experiments, these values have been fixed as follows: tll = n and tsit = n(n−1), n being the
number of variables in the domain. The scoring function and the initial graph are the same
as in previous experiments, as well as the collected performance measures, with one excep-
tion: as the number of iterations is now fixed (Iter=tsit), we compute the iteration where

478

Searching Bayesian network structures in the space of RPDAGs

the best graph was found (BIter) instead. The results of these experiments are displayed
in Tables 7, 8, 9 and 10.

BDeu Edg H A D I BIter Ind EstEv TEst NVar Time

Alarm-3000
TS-RPDAG -33101 46 2 1 1 0 48 1779747 9596 3044392 3.63 286
TS-DAG -33115 51 11 7 2 2 129 1320696 8510 2645091 3.59 391

Alarm-5000
TS-RPDAG -54761 46 2 1 1 0 48 1779579 10471 3031966 3.61 421
TS-DAG -54762 47 3 2 1 0 720 1384990 11113 2773643 3.58 541

Alarm-10000
TS-RPDAG -108432 45 1 0 1 0 47 1764670 10671 3020165 3.66 735
TS-DAG -108442 50 6 5 1 0 284 1385065 11014 2773795 3.60 862

Table 7: Results for the Alarm databases using Tabu Search

BDeu Edg H A D I BIter Ind EstEv TEst NVar Time

TS-RPDAG -133070 45 18 4 10 4 58 458973 2823 751551 3.44 182
TS-DAG -132788 47 18 5 10 3 415 352125 5345 706225 4.16 428

Table 8: Average results for the Insurance domain using Tabu Search

BDeu Edg H A D I BIter Ind EstEv TEst NVar Time

TS-RPDAG -497872 67 24 12 10 2 67 9189526 19918 1.5223387E7 4.07 3650
TS-DAG -498073 70 35 17 13 5 1631 7512114 22184 1.5031642E7 4.07 4513

Table 9: Average results for the Hailfinder domain using Tabu Search

For the synthetic domains, in all the cases, except in one of the insurance databases,
the results obtained by ts-rpdag and rpdag are the same. This phenomenon also appears
for the UCI databases, where only in two databases does ts-rpdag improve the results
of rpdag. Therefore, the Tabu Search does not contribute significantly to improving the
greedy search in the RPDAG space (at least using the selected values for the parameters tll
and tsit). This is in contrast with the situation in the DAG space, where ts-dag improves
the results obtained by dag, with the exception of two UCI databases (equal results) and
Alarm-3000 (where dag performs better than ts-dag).

With respect to the comparison between ts-rpdag and ts-dag, we still consider ts-

rpdag to be preferable to ts-dag on the synthetic domains, although in this case ts-dag

performs better on the insurance domain. For the UCI databases, the two algorithms per-
form similarly: each algorithm is better than the other on two domains, and both algorithms

479

Acid & de Campos

BDeu Edg BIter Ind EstEv TEst NVar Time

Breast-Cancer
TS-RPDAG -2848 6 6 8698 345 14209 3.03 1.96
TS-DAG -2848 6 6 6806 316 13892 2.87 1.98

crx
TS-RPDAG -5361 19 19 61175 908 98574 3.20 9.26
TS-DAG -5362 20 29 44507 1176 89714 3.17 12.23

Flare2
TS-RPDAG -6728 15 15 23363 616 37190 3.47 9.70
TS-DAG -6726 15 129 18098 681 36665 3.27 10.60

House-Votes
TS-RPDAG -4622 24 180 73561 1144 121206 3.32 11.14
TS-DAG -4619 23 252 56570 1364 113905 3.29 15.30

Mushroom
TS-RPDAG -77002 99 495 209556 4021 350625 4.83 883
TS-DAG -77073 90 450 157280 3455 315975 4.57 1725

Nursery
TS-RPDAG -125717 8 8 4352 251 6525 3.09 28.05
TS-DAG -125717 8 8 3898 237 7991 2.95 26.20

Table 10: Results for the UCI databases using Tabu Search

perform equally on the remaining two domains. ts-rpdag is somewhat more efficient than
ts-dag with respect to running time.

We have carried out a third series of experiments to compare our learning algorithm
based on RPDAGs with other algorithms for learning Bayesian networks. In this case, the
comparison is only intended to measure the quality of the learned network. In addition to
the DAG-based local and tabu search previously considered, we have also used the following
algorithms:

• pc (Spirtes et al., 1993), an algorithm based on independence tests. We used an
independence test based on the measure of conditional mutual information (Kullback,
1968), with a fixed confidence level equal to 0.99.

• The K2 search method (Cooper & Herskovits, 1992), in combination with the BDeu
scoring function (k2). Note that k2 needs an ordering of the variables as the input.
We used an ordering consistent with the topology of the corresponding networks.

• Another algorithm, BN Power Constructor (bnpc), that uses independence tests (Cheng
et al., 1997; Cheng, Bell & Liu, 1998).

The two independence-based algorithms, pc and bnpc, operate on the space of equivalence
classes, whereas k2 explores the space of DAGs which are compatible with a given ordering.
We have included the algorithm k2 in the comparison, using a correct ordering and the same
scoring function as the RPDAG and DAG-based search methods, in order to test whether
our method can outperform the results obtained with a more informed algorithm. The

480

Searching Bayesian network structures in the space of RPDAGs

results for the algorithms pc and k2 have been obtained using our own implementations
(which are also included in the Elvira software). For bnpc, we used the software package
available at http://www.cs.ualberta.ca/~jcheng/bnsoft.htm.

The test domains included in these experiments are Alarm, Insurance, and Hailfinder. In
addition to the BDeu values, the number of edges in the learned networks and the Hamming
distances, we have collected two additional performance measures:

BIC.- The value of the BIC (Bayesian Information Criterion) scoring function (Schwarz,
1978) for the learned network. This value measures the quality of the network using
maximum likelihood and a penalty term. Note that BIC is also score-equivalent and
decomposable.

KL.- The Kullback-Leibler distance (cross-entropy) (Kullback, 1968) between the probabil-
ity distribution, P , associated to the database (the empirical frequency distribution)
and the probability distribution associated to the learned network, PG. Notice that
this measure is actually the same as the log probability of the data. We have in
fact calculated a decreasing monotonic linear transformation of the Kullback-Leibler
distance, because this one has exponential complexity and the transformation can be
computed very efficiently: If PG is the joint probability distribution associated to a
network G, then the KL distance can be written in the following way (de Campos,
1998; Lam & Bacchus, 1994):

KL(P,PG) = −HP (U) +
∑

x∈U

HP (x)−
∑

x∈U ,PaG(x)6=∅

MIP (x, PaG(x)) (5)

where HP (Z) denotes Shannon entropy with respect to the distribution P for the sub-
set of variables Z and MIP (x, PaG(x)) is the measure of mutual information between
the two sets of variables {x} and PaG(x). As the first two terms of the expression
above do not depend on the graph G, our transformation consists in calculating only
the third term in equation (5). So, the interpretation of our transformation of the
Kullback-Leibler distance is: the higher this value is, the better the network fits the
data. However, this measure should be handled with caution, since a high KL value
may also indicate overfitting (a network with many edges will probably have a high
KL value).

Although for those algorithms whose goal is to optimize the Bayesian score, BDeu is
really the metric that should be used to evaluate them, we have also computed BIC and
KL because two of the algorithms considered use independence tests instead of a scoring
function.

The results of these experiments are displayed in Table 11. The best value for each
performance measure and each database is written in bold, and the second best value in
italics. These results indicate that our search method in the RPDAG space, in combination
with the BDeu scoring function, is competitive with respect to other algorithms: only the
ts-dag algorithm, which uses a more powerful (and more computationally intensive) search
heuristic in the DAG space, and, to a lesser extent, the more informed k2 algorithm, perform
better than rpdag in some cases. Observe that both ts-dag and k2 perform better than
rpdag in terms of KL on four cases from five.

481

Acid & de Campos

BDeu BIC KL Edg H A D I

Alarm-3000
RPDAG -33101 -33930 9.23055 46 2 1 1 0
DAG -33109 -33939 9.23026 47 7 3 2 2
TS-DAG -33115 -33963 9.23047 51 11 7 2 2
PC -36346 -36691 8.06475 37 10 0 9 1
BNPC -33422 -35197 9.11910 43 7 2 5 0
K2 -33127 -34351 9.23184 46 2 1 1 0

Alarm-5000
RPDAG -54761 -55537 9.25703 46 2 1 1 0
DAG -54956 -55831 9.25632 54 16 9 1 6
TS-DAG -54762 -55540 9.25736 47 3 2 1 0
PC -61496 -61822 7.85435 38 16 2 10 4
BNPC -55111 -55804 9.16787 42 4 0 4 0
K2 -54807 -55985 9.25940 47 3 2 1 0

Alarm-10000
RPDAG -108432 -109165 9.27392 45 1 0 1 0
DAG -108868 -110537 9.27809 52 13 7 1 5
TS-DAG -108442 -109188 9.27439 50 6 5 1 0
PC -117661 -117914 8.31704 38 11 1 9 1
BNPC -109164 -109827 9.18884 42 4 0 4 0
K2 -108513 -109647 9.27549 46 2 1 1 0

Insurance
RPDAG -133071 -134495 8.38502 45 18 4 10 4
DAG -133205 -135037 8.39790 49 25 7 10 8
TS-DAG -132788 -134414 8.41467 47 18 5 10 3
PC -139101 -141214 7.75574 33 23 0 20 3
BNPC -134726 -135832 8.21606 37 26 3 18 5
K2 -132615 -134095 8.42471 44 10 1 9 0

Hailfinder
RPDAG -497872 -531138 20.53164 67 24 12 10 2
DAG -498395 -531608 20.48503 75 45 21 13 11
TS-DAG -498073 -516100 20.59372 70 35 17 13 5
PC -591507 -588638 12.65981 49 50 16 33 1
BNPC -503440 -505160 20.61581 64 28 12 15 1
K2 -498149 -531373 20.51822 67 23 12 11 0

Table 11: Performance measures for different learning algorithms

The fourth series of experiments attempts to evaluate the behavior of the same algo-
rithms on a dataset which is different from the training set used to learn the network. In
order to do so, we have computed the BDeu, BIC, and KL values of the network struc-
ture learned using a database, with respect to a different database: for the Alarm domain,
the training set is the Alarm-3000 database used previously, and the test set is formed by
the 3000 next cases in the Alarm database; for both Insurance and Hailfinder, we selected
one of the five databases that we have been using as the training set and another of these
databases as the test set. The results are shown in Table 12. We can observe that they

482

Searching Bayesian network structures in the space of RPDAGs

are analogous to the results obtained in Table 11, where the same databases were used for
training and testing. However, in this case rpdag also performs better than ts-dag and
k2 in terms of KL. Therefore, the good behavior of our algorithm cannot be attributed to
overfitting.

BDeu BIC KL

Alarm-3000
RPDAG -32920 -33750 9.35839
DAG -32938 -33769 9.35488
TS-DAG -32947 -33793 9.35465
PC -36286 -36632 8.15227
BNPC -33309 -35051 9.23576
K2 -32951 -34165 9.36168

Insurance
RPDAG -132975 -134471 8.44891
DAG -133004 -134952 8.44745
TS-DAG -132810 -134281 8.44538
PC -140186 -143011 7.70182
BNPC -135029 -136125 8.23063
K2 -132826 -134309 8.44671

Hailfinder
RPDAG -497869 -531165 20.58267
DAG -498585 -531913 20.49730
TS-DAG -497983 -505592 20.55420
PC -587302 -584939 12.68256
BNPC -506680 -508462 20.71069
K2 -498118 -531356 20.57876

Table 12: Performance measures for the learning algorithms using a different test set

Finally, we have carried out another series of experiments, which aim to compare our
rpdag algorithm with the algorithm proposed by Chickering (2002), that searches in the
CPDAG space. In this case, we have selected the House-Votes and Mushroom domains
(which were two of the datasets used by Chickering). In order to approximate our ex-
perimental conditions to those described in Chickering’s work, we used the BDeu scoring
function with a prior equivalent sample size of ten, and a structure prior of 0.001f , where
f is the number of free parameters in the DAG; moreover, we used five random subsets
of the original databases, each containing approximately 70% of the total data (304 cases
for House-Votes and 5686 for Mushroom). Table 13 displays the average values across the
five datasets of the relative improvement of the per-case score obtained by rpdag to the
per-case score of dag, as well as the ratio of the time spent by dag to the time spent by
rpdag. We also show in Table 13 the corresponding values obtained by Chickering (using
only one dataset) for the comparison between his cpdag algorithm and dag.

We may observe that the behavior of rpdag and cpdag is somewhat different: although
both algorithms are more efficient than dag, it seems to us that cpdag runs faster than
rpdag. With respect to effectiveness, both rpdag and cpdag obtain exactly the same

483

Acid & de Campos

RPDAG versus DAG CPDAG versus DAG
Relative Time Relative Time

Dataset Improv. Ratio Improv. Ratio
House-Votes 0.0000 1.041 0.0000 1.27
Mushroom 0.0158 1.005 -0.0382 2.81

Table 13: Comparison with Chickering’s work on completed PDAGs

solution as dag in the House-Votes domain (no relative improvement); however, in the
other domain, rpdag outperforms dag (on the five datasets considered) whereas cpdag

performs worse than dag. In any case, the differences are small (they could be a result of
differences in the experimental setup) and a much more systematic experimentation with
these algorithms would be necessary in order to establish general conclusions about their
comparative behavior.

7. Concluding Remarks

We have developed a new local search algorithm, within the score+search approach for
learning Bayesian network structures from databases. The main feature of our algorithm
is that it does not search in the space of DAGs, but uses a new form of representation,
restricted PDAGs, that allows us to search efficiently in a space similar to the space of
equivalence classes of DAGs. For the common situation in which a decomposable scoring
function is used, the set of operators that define the neighborhood structure of our search
space can be scored locally (as it happens in the space of DAGs), i.e. we can evaluate
any neighboring restricted PDAG by computing at most two local scores. In this way,
we maintain the computational efficiency that the space of DAGs offers and, at the same
time, we explore a more reduced search space, with a smoother landscape, which avoids
some early decisions on edge directions. These characteristics may help to direct the search
process towards better network structures.

The experimental results show that our search method based on restricted PDAGs can
efficiently and accurately recover complex Bayesian network structures from data, and can
compete with several state of the art Bayesian network learning algorithms, although it does
not significantly improve them. Our experiments in Section 6, as well as those conducted
by Chickering (2002), seem to point out that search algorithms based on PDAGs can obtain
slightly better results, with respect to both effectiveness and efficiency, than search methods
based on DAGs, especially for highly structured models (i.e., models that can be (almost)
perfectly represented by a DAG). We believe that PDAGs can also be useful in domains
which are complex (contain many variables and complicated dependence patterns) and
sparse (represent many independence relationships).

For future research, we are planning to integrate the techniques developed in this paper
within more powerful search methods, such as the ones considered by Blanco et al. (2003),
de Campos et al. (2002) or de Campos and Puerta (2001a). Additionally, in the light of the
results obtained by our method in combination with Tabu Search, it may be interesting to
incorporate another operator, which could either be a classical arc reversal or some kind of

484

Searching Bayesian network structures in the space of RPDAGs

specific operator to destroy h-h patterns. We also intend to work on the adaptation and
application of our algorithm to real problems in the field of classification.

Acknowledgments

This work has been supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa (MCYT)
and the Junta de Comunidades de Castilla-La Mancha under Projects TIC2001-2973-CO5-
01 and PBC-02-002, respectively. We are grateful to our colleague José M. Puerta for his
invaluable help with the implementation of several algorithms. We are also grateful to the
three anonymous reviewers for useful comments and suggestions.

References

Abramson, B., Brown, J., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A Bayesian
system for forecasting severe weather. International Journal of Forecasting, 12, 57–71.

Acid, S., & de Campos, L. M. (2000). Learning right sized belief networks by means of a
hybrid methodology. Lecture Notes in Artificial Intelligence, 1910, 309–315.

Acid, S., & de Campos, L. M. (2001). A hybrid methodology for learning belief networks:
Benedict. International Journal of Approximate Reasoning, 27, 235–262.

Andersson, S., Madigan, D., & Perlman, M. (1997). A Characterization of Markov equiva-
lence classes for acyclic digraphs. Annals of Statistics, 25, 505–541.

Beinlich, I. A., Suermondt, H. J., Chavez, R. M., & Cooper, G. F. (1989). The alarm
monitoring system: A case study with two probabilistic inference techniques for belief
networks. In Proceedings of the European Conference on Artificial Intelligence in
Medicine, 247–256.

Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks
with hidden variables. Machine Learning, 29, 213–244.

Blanco, R., Inza, I., & Larrañaga, P. (2003). Learning Bayesian networks in the space of
structures by estimation of distribution algorithms. International Journal of Intelli-
gent Systems, 18, 205–220.

Bouckaert, R. R. (1993). Belief networks construction using the minimum description length
principle. Lecture Notes in Computer Science, 747, 41–48.

Bouckaert, R. R. (1995). Bayesian belief networks: from construction to inference. Ph.D.
thesis, University of Utrecht.

Buntine, W. (1991). Theory refinement of Bayesian networks. In Proceedings of the Seventh
Conference on Uncertainty in Artificial Intelligence, 52–60.

Buntine, W. (1994). Operations for learning with graphical models. Journal of Artificial
Intelligence Research, 2, 159–225.

Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data.
IEEE Transactions on Knowledge and Data Engineering, 8, 195–210.

485

Acid & de Campos

Cheng, J., Bell, D. A., & Liu, W. (1997). An algorithm for Bayesian belief network con-
struction from data. In Proceedings of AI and STAT’97, 83–90.

Cheng, J., Bell, D. A., & Liu, W. (1998). Learning Bayesian networks from data: An efficient
approach based on information theory. Tech. rep., University of Alberta.

Chickering, D. M. (1995). A transformational characterization of equivalent Bayesian net-
work structures. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, 87–98.

Chickering, D. M. (1996). Learning equivalence classes of Bayesian network structures.
In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence,
150–157.

Chickering, D. M. (2002). Learning equivalence classes of Bayesian network structures.
Journal of Machine Learning Research, 2, 445–498.

Chickering, D. M., Geiger, D., & Heckerman, D. (1995). Learning Bayesian networks: Search
methods and experimental results. In Preliminary Papers of the Fifth International
Workshop on Artificial Intelligence and Statistics, 112–128.

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with depen-
dence trees. IEEE transactions on Information Theory, 14, 462–467.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic
networks from data. Machine Learning, 9, 309–348.

Dash, D., & Druzdzel, M. (1999). A hybrid anytime algorithm for the construction of causal
models from sparse data. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, 142–149.

de Campos, L. M. (1998). Independency relationships and learning algorithms for singly
connected networks. Journal of Experimental and Theoretical Artificial Intelligence,
10, 511–549.

de Campos, L. M., Fernández-Luna, J. M., Gámez, J. A., & Puerta, J. M. (2002). Ant colony
optimization for learning Bayesian networks. International Journal of Approximate
Reasoning, 31, 291–311.

de Campos, L. M., Fernández-Luna, J. M., & Puerta, J. M. (2002). Local search methods
for learning Bayesian networks using a modified neighborhood in the space of dags.
Lecture Notes in Computer Science, 2527, 182–192.

de Campos, L. M., Fernández-Luna, J. M., & Puerta, J. M. (2003). An iterated local
search algorithm for learning Bayesian networks with restarts based on conditional
independence tests. International Journal of Intelligent Systems, 18, 221–235.

de Campos, L. M., Gámez, J. A., & Puerta, J. M. (in press). Learning Bayesian networks
by ant colony optimisation: Searching in two different spaces. Mathware and Soft
Computing.

de Campos, L. M., & Huete, J. F. (1997). On the use of independence relationships for
learning simplified belief networks. International Journal of Intelligent Systems, 12,
495–522.

486

Searching Bayesian network structures in the space of RPDAGs

de Campos, L. M., & Huete, J. F. (2000). A new approach for learning belief networks using
independence criteria. International Journal of Approximate Reasoning, 24, 11–37.

de Campos, L. M., & Huete, J. F. (2000). Approximating causal orderings for Bayesian
networks using genetic algorithms and simulated annealing. In Proceedings of the
Eighth IPMU Conference, 333–340.

de Campos, L. M., & Puerta, J. M. (2001). Stochastic local and distributed search algorithms
for learning belief networks. In Proceedings of the III International Symposium on
Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Model, 109–
115.

de Campos, L. M., & Puerta, J. M. (2001). Stochastic local search algorithms for learn-
ing belief networks: Searching in the space of orderings. Lecture Notes in Artificial
Intelligence, 2143, 228–239.

Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a
partially oriented graph. Tech. rep. R-185, Cognitive Systems Laboratory, Department
of Computer Science, UCLA.

Friedman, N., & Goldszmidt, M. (1996). Learning Bayesian networks with local structure.
In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence,
252–262.

Friedman, N., & Koller, D. (2000). Being Bayesian about network structure. In Proceedings
of the Sixteenth Conference on Uncertainty in Artificial Intelligence, 201–210.

Friedman, N., Nachman, I., & Peér, D. (1999). Learning Bayesian network structure from
massive datasets: The ”sparse candidate” algorithm. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, 206–215.

Geiger, D., & Heckerman, D. (1995). A characterisation of the Dirichlet distribution with
application to learning Bayesian networks. In Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence, 196–207.

Geiger, D., Paz, A., & Pearl, J. (1990). Learning causal trees from dependence information.
In Proceedings of AAAI-90, 770–776.

Geiger, D., Paz, A., & Pearl, J. (1993). Learning simple causal structures. International
Journal of Intelligent Systems, 8, 231–247.

Gillispie, S. B., & Perlman, M. D. (2001). Enumerating Markov equivalence classes of
acyclic digraphs models. In Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, 171–177.

Glover, F. (1989). Tabu search, Part I. ORSA Journal of Computing, 1, 190–206.

Heckerman, D. (1996). Bayesian networks for knowledge discovery. In U.M. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds.), Advances in Knowledge Discov-
ery and Data Mining. Cambridge: MIT Press, 273–305.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20, 197–243.

Herskovits, E. (1991). Computer-based probabilistic networks construction. Ph.D thesis,
Medical Information Sciences, Stanford University.

487

Acid & de Campos

Herskovits, E., & Cooper, G. F. (1990). Kutató: An entropy-driven system for the con-
struction of probabilistic expert systems from databases. In Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence, 54–62.

Huete, J. F., & de Campos, L. M. (1993). Learning causal polytrees. Lecture Notes in
Computer Science, 747, 180–185.

Jensen, F. V. (1996). An Introduction to Bayesian Networks. UCL Press.

Kocka, T., & Castelo, R. (2001). Improved learning of Bayesian networks. In Proceedings
of the Seventeenth Conference on Uncertainty in Artificial Intelligence, 269–276.

Kohavi, R., John, G., Long, R., Manley, D., & Pfleger, K. (1994). MLC++: A machine
learning library in C++. In Proceedings of the Sixth International Conference on
Tools with Artificial Intelligence, 740–743.

Kullback, S. (1968). Information Theory and Statistics. Dover Publication.

Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks. An approach based on
the MDL principle. Computational Intelligence, 10, 269–293.

Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., & Kuijpers, C. (1996). Structure
learning of Bayesian networks by genetic algorithms: A performance analysis of control
parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18,
912–926.

Larrañaga, P., Kuijpers, C., & Murga, R. (1996). Learning Bayesian network structures
by searching for the best ordering with genetic algorithms. IEEE Transactions on
System, Man and Cybernetics, 26, 487–493.

Madigan, D., Anderson, S. A., Perlman, M. D., & Volinsky, C. T. (1996). Bayesian model
averaging and model selection for Markov equivalence classes of acyclic digraphs.
Communications in Statistics – Theory and Methods, 25, 2493–2520.

Madigan, D., & Raftery, A. (1994). Model selection and accounting for model uncertainty
in graphical models using Occam’s window. Journal of the American Statistics Asso-
ciation, 89, 1535–1546.

Meek, C. (1995). Causal inference and causal explanation with background knowledge.
In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
403–410.

Muntenau, P., & Cau, D. (2000). Efficient score-based learning of equivalence classes of
Bayesian networks. Lecture Notes in Artificial Intelligence, 1910, 96–105.

Myers, J. W., Laskey, K. B., & Levitt, T. (1999). Learning Bayesian networks from incom-
plete data with stochastic search algorithms. In Proceedings of the Fifteenth Confer-
ence on Uncertainty in Artificial Intelligence, 476–485.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. San Mateo: Morgan Kaufmann.

Pearl, J., & Verma, T. S. (1990). Equivalence and synthesis of causal models. In Proceedings
of the Sixth Conference on Uncertainty in Artificial Intelligence, 220–227.

488

Searching Bayesian network structures in the space of RPDAGs

Puerta, J. M. (2001). Métodos locales y distribuidos para la construcción de redes de creencia
estáticas y dinámicas (in Spanish). Ph.D. thesis, Department of Computer Science
and Artificial Intelligence, University of Granada.

Ramoni, M., & Sebastiani, P. (1997). Learning Bayesian networks from incomplete
databases. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, 401–408.

Rebane, G., & Pearl, J. (1987). The recovery of causal poly-trees from statistical data. In
L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence 3,
Amsterdam: North-Holland, 222–228.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

Singh, M., & Valtorta, M. (1993). An algorithm for the construction of Bayesian network
structures from data. In Proceedings of the Ninth Conference on Uncertainty in Ar-
tificial Intelligence, 259–265.

Singh, M., & Valtorta, M. (1995). Construction of Bayesian network structures from data:
A brief survey and an efficient algorithm. International Journal of Approximate Rea-
soning, 12, 111–131.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, Prediction and Search. Lecture
Notes in Statistics 81, New York: Springer Verlag.

Spirtes, P., & Meek, C. (1995). Learning Bayesian networks with discrete variables from
data. In Proceedings of the First International Conference on Knowledge Discovery
and Data Mining, 294–299.

Steck, H. (2000). On the use of skeletons when learning in Bayesian networks. In Proceedings
of the Sixteenth Conference on Uncertainty in Artificial Intelligence, 558–565.

Suzuki, J. (1993). A construction of Bayesian networks from databases based on the MDL
principle. In Proceedings of the Ninth Conference on Uncertainty in Artificial Intelli-
gence, 266–273.

Suzuki, J. (1996). Learning Bayesian belief networks based on the minimum description
length principle: An efficient algorithm using the B&B technique. In Proceedings of
the Thirteenth International Conference on Machine Learning, 462–470.

Tian, J. (2000). A branch-and-bound algorithm for MDL learning Bayesian neworks. In
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, 580–
587.

Verma, T., & Pearl, J. (1990). Causal networks: Semantics and expressiveness. In R.D.
Shachter, T.S. Lewitt, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial In-
telligence, 4, Amsterdam: North-Holland, 69–76.

Wermuth, N., & Lauritzen, S. (1983). Graphical and recursive models for contingence tables.
Biometrika, 72, 537–552.

Wong, M. L., Lam, W., & Leung, K. S. (1999). Using evolutionay computation and min-
imum description length principle for data mining of probabilistic knowledge. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21, 174–178.

489

