
Searching for Common Sense: Populating Cyc™ from the Web

Cynthia Matuszek, Michael Witbrock, Robert C. Kahlert,
John Cabral, Dave Schneider, Purvesh Shah, Doug Lenat

Cycorp, Inc.
3721 Executive Center Drive, Suite 100, Austin, TX 78731

{cynthia, witbrock, rck, jcabral, daves, shah, lenat}@cyc.com

Abstract
The Cyc project is predicated on the idea that effective
machine learning depends on having a core of knowl-
edge that provides a context for novel learned informa-
tion – what is known informally as “common sense.”
Over the last twenty years, a sufficient core of common
sense knowledge has been entered into Cyc to allow it
to begin effectively and flexibly supporting its most
important task: increasing its own store of world
knowledge. In this paper, we present initial work on a
method of using a combination of Cyc and the World
Wide Web, accessed via Google, to assist in entering
knowledge into Cyc. The long-term goal is automating
the process of building a consistent, formalized repre-
sentation of the world in the Cyc knowledge base via
machine learning. We present preliminary results of this
work and describe how we expect the knowledge acqui-
sition process to become more accurate, faster, and
more automated in the future.

1 Introduction
The idea of building a very large-scale knowledge base that
can be used as a foundation for automated knowledge acqui-
sition has been present in artificial intelligence research for
more than twenty years [Lenat et al., 1983]. In that time, an
enormous amount of progress has been made [Thrun et al.,
1998]; techniques developed under the umbrella of machine
learning have been successfully applied to work ranging
from robotics, to voice recognition, to bioinformatics. In all
of these fields, the use of preexisting knowledge is wide-
spread. Much of this work relies on either programming an
inductive bias into a learning system (e.g., in systems like
AM [Lenat, 1976]); or on providing an inductive bias in the
form of training examples [Brown, 1996].

Also in that time, the Web has emerged as a huge reposi-
tory of electronically available knowledge, and indexing
systems such as Google have made that knowledge progres-
sively more accessible [Brin and Page, 1998]. Work that
relies on the web in general, and Google in particular, for
information extraction is proving to be a fertile research area
[Ghani, 2000; Kwok et al. 2001; Etzioni et al. 2004].

The purpose of the Cyc project is to provide computers
with a store of formally represented “common sense”: real

world knowledge that can provide a basis for additional
knowledge to be gathered and interpreted automatically
[Lenat, 1995]. In the last twenty years, over three million
facts and rules have been formally represented in the Cyc
knowledge base by ontologists skilled in CycL, Cyc’s for-
mal representation language. Tools have been developed
which allow subject matter experts to contribute directly
[Panton et al., 2002; Witbrock et al., 2003; Belasco et al.,
2004]. In addition, natural language generation and parsing
capabilities have been developed to provide support for
learning from English corpora [Witbrock et al., 2004].

As a result, the Cyc knowledge base now contains enough
knowledge to support experimentation with the acquisition
of additional knowledge via machine learning. In this paper,
we describe a method for gathering and verifying facts from
the World Wide Web. The knowledge acquisition procedure
is described at both an overview level and in detail. The
work focuses on three novel approaches: using knowledge
already in the Cyc KB to focus the acquisition of further
knowledge; representing acquired knowledge in the knowl-
edge base; and using Google in two distinct ways, to find
facts and, separately, to verify them.

While this research is at an early stage, the initial results
are promising in terms of both the acquisition speed and
quality of results. Even in its preliminary form, the mecha-
nism described is a useful tool for reducing the cost of
manually entering knowledge into Cyc; the level of exper-
tise required to enable a person to contribute to the KB is
reduced, and many of the necessary steps are handled auto-
matically, reducing the total time required. The number of
sentences that can be acquired in this way and reviewed for
accuracy by an untrained reviewer outstrips the rate at
which sentences can be hand-authored by a trained ontolo-
gist, and the verification steps reduce the amount of work
required of a human reviewer by approximately 90%.

2 Cyc and CycL
The Cyc system is made up of three distinct components,

all of which are crucial to the machine learning process: the
knowledge base (KB), the inference engine, and the natural
language system. The Cyc KB contains more than 3.2 mil-
lion assertions (facts and rules) describing more than
280,000 concepts, including more than 12,000 concept-

AAAI-05 / 1430

interrelating predicates. Facts stored in the Cyc KB may be
atomic (making them Ground Atomic Formulæ, or GAFs),
or they may be complex sentences. Depending on the predi-
cate used, a GAF can describe instance-level or type-level
knowledge. All information in the KB is asserted into a hi-
erarchical graph of microtheories, or reasoning contexts
[Guha, 1991; Lenat, 1998].

CycL queries are syntactically legal CycL sentences,
which may be partially bound (that is, contain one or more
variables). The Cyc inference engine is responsible for using
information in the KB to determine the truth of a sentence
and, if necessary, find provably correct variable bindings.

Sample instance-level GAF:
(foundingDate Cyc (YearFn 1985))

Sample entity-to-type and type-to-type GAFS:
(sellsProductType SaudiAramco PetroleumProduct)
(conditionAffectsPartType CutaneousAnthrax Skin) Figure 1: Learning is a process of selecting interesting

questions, searching for that information on the web, pars-
ing the results, performing verification and consistency
checks with the document corpus and the KB, reviewing,
and asserting that knowledge into the KB.

Sample non-atomic sentence:
(or (foundingDate AlQaida (YearFn 1987)))

(foundingDate AlQaida (YearFn 1988)))

Sample query:
3. Parsing results: The relevant components of sentences
are identified by their location relative to the search string.
The terms are then parsed into CycL via the natural lan-
guage parsing process described in section 3.3, resulting in
one or more GAFs such as:

(foundingAgent PalestineIslamicJihad ?WHO)
The natural language component of the system consists of a
lexicon, and parsing and generation subsystems. The lexicon
is a component of the knowledge base that maps words and
phrases to Cyc concepts, while various parsers provide
methods for translating English text into CycL. The system
also has a relatively complete ability to render CycL sen-
tences into English, although the phrasing can be somewhat
stilted when longer sentences are generated.

(foundingAgent PalestineIslamicJihad Terrorist-Nafi)
4. KB consistency checking: Some of the results retrieved
during the search process are disprovable, because they are
inconsistent with knowledge already present in the knowl-
edge base; others are already known or trivially provable,
and therefore redundant. Any GAF found via inference to be
inconsistent or redundant is discarded.

The work described in this paper targets the automatic
acquisition of GAFs. Simple facts are more likely to be
readily found on the web, and this approach minimizes dif-
ficulties in generating and parsing complex natural language
constructs. 5. Google verification: During search, the largest possible

set of candidate GAFs is created. Those GAFs that are not
discarded during KB consistency checking are re-rendered
into English search strings, such as:

2.1 Overview of the Learning Cycle
Gathering information from the web proceeds in six stages,
as illustrated in Figure 1:

“Bashir Nafi is a founder of Palestine Islamic Jihad“
and a second Google search over those strings is performed.
Any GAF that results in no retrieved documents during this
phase is discarded.

1. Choosing a query: Because the number of concepts in
the KB is so large, the number of possible CycL queries is
enormous; choosing interesting, productive queries auto-
matically is a necessary step in automating the knowledge
acquisition process. An example of such a query might be:

6. Reviewing and asserting: The remaining GAFs are as-
serted into special hypothetical contexts in the knowledge
base. An ontologist or human volunteer reviews them for
accuracy, using a tool specific to that task [Witbrock et al.,
2005], and the ones found to be correct are asserted into the
knowledge base.

(foundingAgent PalestineIslamicJihad ?WHO)

2. Searching: Once a query is selected, it is translated into
one or more English search strings. The query above might
be rendered into strings such as:

3 Implementation of the Learning Cycle “PIJ, founded by ”
“Palestine Islamic Jihad founder ”

These strings are passed on to the Google API. The appro-
priate sections of any resulting documents are downloaded,
and the relevant section is extracted (e.g., “PIJ founder
Bashir Musa Mohammed Nafi is still at large…”).

3.1 Selecting Queries
While it is often useful in an application context to look

for the answer to a specific question, or automatically popu-
late a class of information (such as founders of groups, or

AAAI-05 / 1431

prime ministers of countries), satisfying the ultimate goal of
populating the Cyc KB via machine learning relies in part
on automatically selecting suitable sentences. There are a
number of challenges that must be met in this regard. Que-
ries should have reasonable probability of having interesting
bindings and of being findable in the corpus (in this case, on
the web). Some searches are unlikely to be productive for
semantic reasons: some argument positions are of an infinite
or continuous type, such as Time-Quantity, and could there-
fore yield an infinite number of mostly-uninteresting
searches, such as (age ?OBJECT (YearsDuration 300)).
Other queries are guaranteed to be redundant.

We initially limited searches to a set of 134 binary predi-
cates which, when used to generate search strings, tended to
maximize useful results from web searches.1 The algorithm
for proceeding through those predicates was as follows:

For a given search run, a depth of D is selected. D is the
maximum number of different values that can be used for
each argument of a predicate. For each binary predicate pi in
our test set P (where |P| = 134), we retrieve from the KB the
type constraints on each of its two arguments. Unless the
type generalizes to an infinite class, we retrieve the D most
fully represented values from the knowledge base – that is,
those that appear in the most assertions, and therefore about
which the most is known. These are assumed to be the most
interesting terms of that type, and therefore the ones most
likely to be found by a web search. For pi we then have
types Ti1 and Ti2. The D best represented values would be
(ti1

1 … ti1
D) and (ti2

1 …t12
D). If neither of a predicate’s ar-

guments took values of a continuous type, there would be
2D*|P| queries generated:

(p1 t11
1 ?VAR) … (p1 t11

D ?VAR)
(p1 ?VAR t12

1) … (p1 ?VAR t12
D)

…
(p|P| t|P|1

1 ?VAR) … (p|P| t|P|1
D ?VAR)

(p|P| ?VAR t|P|2
1) … (p|P| ?VAR t|P|2

D)
For example, a set of the predicates foundingAgent and
foundingDate, given a depth of 1, would produce three queries:

(foundingAgent AlQaida ?WHO)
(foundingAgent ?WHAT Terrorist-Salamat)
(foundingDate AlQaida ?WHEN)

The fourth permutation is not produced, because the argu-
ment constraint, Date, is of a continuous type.
This approach is not without problems. It relies heavily on
the nature of the type constraints placed on predicates; for
some predicates, such as foundingDate, this works well,
while for others the argument constraints are too broad. For
example, the predicate sellsProductType takes a constant of
type somethingExisting in its second argument position,
because almost anything can be sold. The proposed way to
address this problem is with a predicate typicalArgIsa, which

1 Examples: foundingAgent, foundingDate, sellsPro-
ductType, primeMinister, lifeExpectancy, awardWinners.
Productive predicates were found via manual trial and error, from a
set of domains selected to span a broad portion of the KB (terror-
ism, medical technology, conceptual works, global politics, family
relationships, and sales).

would connect predicates such as sellsProductType with the
collections to which they typically refer (in this case, Com-
modityProduct)2.

 Another problem lies with the assumption that the
members of a class about which Cyc knows the most are the
most interesting ones, which is only sometimes correct. The
best-described instances of the class Person, for example,
tend to be the ontologists who work at Cycorp, rather than,
for example, heads of state. Future work will involve using
Google in the selection of appropriate queries. Rather than
using the top D most supported terms in the KB of type T, it
should be possible to retrieve the hit count for up to several
thousand members of T, and seek information about the D
terms of T for which the most information is available.

3.2 Search

Generating Search Strings
Once the system has selected a query, it generates a series of
search strings. The existing NL generation machinery is
applied to 233 manually created special generation tem-
plates for the 134 predicates. 3 Several factors motivated the
construction of specialized search generation templates
within the NL system. In addition to the fact that productive
search strings are often unlike standard English, CycL gen-
erations tend to be somewhat stilted, since ontologists have
preferred unambiguous expression of CycL meanings over
naturalness. In addition, the KB generally contains one or
two generation templates for any given predicate, while
there may be many common ways of expressing the infor-
mation that may be useful for searching.

For example, for the query (foundingAgent PalestineIs-
lamicJihad ?X), the system generates the following set of
search strings:

Palestine Islamic Jihad founder ____
Palestinian Islamic Jihad founder ____
PIJ founder ____
Palestine Islamic Jihad, founded by ____
Palestinian Islamic Jihad, founded by ____
PIJ, founded by ____

All possible searches were generated from the Cartesian
product of the generation templates with all English render-
ings of the arguments. In this example, Cyc knows three
names for PalestineIslamicJihad, and has two templates for
foundingAgent, resulting in six search strings. To simplify
match detection, argument positions were only allowed at
the beginning or end of the template string. In order to carry
out the actual search, the “___” placeholders were stripped

2 In most cases, these constraints will be learned from analysis

of common usage in the existing corpus.
3 Slightly fewer than half of the predicates have only one asso-

ciated search template. Many obvious templates exist but have not
been represented; in future work, an analysis of the search strings
will be performed to determine what types of strings produce good
results. That information will be used for automatically generating
search strings for other predicates.

AAAI-05 / 1432

off, and the remaining string was submitted as a quoted
string to Google.

Searching via Google
The search string is used with an interface to the Google
API to retrieve a tuple consisting of the URL, the Google
ranking, the match position and the web page text, which is
then handed off to a parser that attempts to convert it into a
meaningful CycL entity.

3.3 Parsing into CycL
Once a document is retrieved, the answer must be found and
interpreted. First, the system searches for the exact text of
the query string, and returns the search string plus either the
beginning or the end of the sentence, depending on the posi-
tion of the “___” in the generated string. The resulting string
is searched for phrases that can be interpreted as a CycL
concept that meets the type constraints imposed by the
predicate. For example, in the string “PIJ founder Bashir
Musa Mohammed Nafi is still …”, “Bashir Musa Moham-
med Nafi” is recognized as a person, and therefore as a can-
didate for the arg2 position of foundingAgent. For predicates
that require strings (such as nameString, which relates an
entity to its name), a named entity recognizer [Prager et al.,
2000] is used to find a suitable candidate.

In other cases, standard parsing techniques are used to try
to find a useful interpretation, including looking up strings
in Cyc lexicon, interpreting them as noun compounds or
dates, and compositional interpretation. For speed, composi-
tional interpretation is only attempted for terms judged to be
constituents by a probabilistic CFG parser [Charniak, 2001].
This has the effect of eliminating a few correct answers
(mostly where the parser produces an incorrect syntactic
parse), but also decreases the total time spent on analysis by
at least 50%.

Creating candidate CycL Sentences
The result of parsing the matched section in the web page is
a set of candidate CycL terms, usually constants such as
Terrorist-Nafi. Substituting these terms into the original in-
complete CycL query produces a set of candidate GAFs.

3.4 Checking Cyc KB Consistency
In principle, any useful fact added to the system should nei-
ther disprovable nor trivially provable. For example, the
sentence:

(foundingAgent PalestineIslamicJihad Terrorist-AlShikaki)
is not novel, because Cyc already knows this. Meanwhile,

(foundingAgent PalestineIslamicJihad AugusteRodin)
is novel, but trivially disprovable, as Cyc knows he died in
1917 (72 years before the PIJ was founded).

If the Cyc KB already contains knowledge that renders a
new fact redundant or contradictory, that fact will be dis-
carded. This is checked via inference; each new fact is
treated as a query, and inference is performed to determine
whether it can be proven false (inconsistent) or true (redun-
dant.) Cyc provides justifications for facts used to produce
query results, as in Figure 2, and it is helpful for redundant

facts to be marked as additionally confirmed via search-
based learning. Previous work suggests that one-step infer-
ence is sufficient to identify duplicate information or dis-
prove contradictions during typical knowledge acquisition
tasks [Panton et al., 2002].

Figure 2: Justifications for the claim that a 2001 attack on
Ankara meets the criteria for the query being run.

3.5 Google Verification
In order to guard against parser errors and excessively gen-
eral search terms (such as ambiguous acronyms), a second
Google search is performed, in order to determine whether
search strings generated from the new GAF will produce
results. Search strings are generated from the candidate
GAF that was learned, but any string containing an acronym
or abbreviation (e.g., “PIJ” for “Palestian Islamic Jihad”) is
supplemented with the disambiguation term: the least com-
mon word (based on Google hit counts) of the expanded
acronym. In this case, the string “Palestine” is added as a
term, since it is the least common word in the set ‘Pales-
tine,’ ‘Palestinian,’ ‘Islamic,’ and ‘Jihad.’ The resulting
verification search string is:

“PIJ founder Bashir Nafi” +“Palestine”
Any fact for which this verification step returns no results is
considered unverified, and will not be presented to a re-
viewer.

3.6 Review and Assertion
In the final step, learned sentences are reviewed by a human
curator, and, if correct, asserted into the Cyc KB. Currently,
suggested sentences are presented to the reviewer in no par-
ticular order; in future, sorting methods will be implemented
and tested. The most straightforward approaches involve
making greater use of information already retrieved from
Google: since information about the searches underlying a
candidate sentence is stored in the KB, it should be possible
and productive to give priority to sentences that are sup-
ported by a larger total number of documents. In effect, the
numerical values returned during the verification step could
be used to sort the most widely supported sentences up-

AAAI-05 / 1433

wards in the review process. Another possibility, if several
contradictory facts are found, is giving review priority to
those found in documents with the highest Google ranking.

4 Results
Statistics were gathered for a case in which 134 predicates
in P were used, and D was set to 20.4 The majority of the
searches expended, about 80%, were performed in the veri-
fication phase rather than the initial search phase. The re-
sults were as follows:

Queries: 348
Searches expended: 4290 (817 initial, 3477 verification)

 GAFs found: 1016
 … and rejected due to KB inconsistency: 4
 … and already known to the KB: 384
 … and rejected by Google verification: 566
 Novel GAFS found and verified: 61

A human reviewer then went through the verified GAFs,
and a sample of 53 of the unverified GAFs, and determined
their actual correctness rate. The results were as follows:

Verified Unverified
True (correct) 32 8**

False (incorrect) 29* 45

 Total novel facts: 114
 Novel, correct facts discovered: 77
 Incorrect facts discovered: 37

 Facts categorized correctly: 68%
 Facts categorized incorrectly: 32%
 … * false positives (false but verified): 25%
 … ** false negatives (true but unverified): 7%

Examples of these result types:

Query: (#$hasBeliefSystems #$Iran ?X)
Search string: "Iran adheres to "
Candidate GAF: (#$hasBeliefSystems #$Iran #$Islam)
Verification search strings:

"Islamic Republic of Iran adheres to Islam"
"Iran adheres to Islam"
"Iran believes in Islam" (found)
"Islamic Republic of Iran believes in Islam" (found)

Example GAFs already known to the KB:
(#$vestedInterest #$Iran #$Iraq
(#$inhabitantTypes #$Lebanon #$EthnicGroupOfKurds)

Example GAFs rejected due to KB inconsistency:
(#$northOf #$Iran #$Iran)
(#$geopoliticalSubdivision #$Iraq #$Iran)

4 It takes between four and five hours to exhaust an allotment

of 3,000 searches per day through the Google API.

Correct, verified GAF:

(foundingDate AfricanNationalCongress (YearFn 1912))
*Incorrect but verified GAF:

(foundingDate JewishDefenseLeague (DecadeFn 198))
Incorrect, rejected GAF:

(objectFoundInLocation KuKluxKlan GillianAnderson)
**Correct but rejected GAF:

(foundingDate KarenNationalUnion
(MonthFn April (YearFn 1947)))

The verification step produces comparatively few false
negatives (in which a true fact is incorrectly classified as
false); in this run, 80% of the novel, correct facts retrieved
were correctly identified as such. Given this, it is reasonable
to reject all unverifiable sentences, especially given the
wealth of possible queries and the size and breadth of the
corpora available. Only 61% of the incorrect facts retrieved
were identified, suggesting that substantial work in decreas-
ing the occurrence of false positives will be necessary be-
fore the need for human review is eliminated; this is unsur-
prising, as the Internet contains large amounts of unstruc-
tured, unchecked information.

Slightly over a third of the GAFs discovered were facts
that were already known to the KB, and presumably correct
to a baseline level (i.e., the correctness level achieved by
human ontologists); the total number of correct facts dis-
covered was therefore 425, 42% of the total. Verification
reduces the number of novel sentences that must undergo
human review from 1016 to 61, and the human review proc-
ess, which takes place entirely in English, is quick and
straightforward. An intermediate step towards full automa-
tion would be to identify classes of sentences that can be
asserted without human review.

5 Conclusions
While great strides have been made in machine learning in
the last few decades, automatically gathering useful, consis-
tent knowledge in a machine-usable form is still a relatively
unexplored research area. The original promise of the Cyc
project – to provide a basis of real-world knowledge suffi-
cient to support the sort of learning from language of which
humans are capable – has not yet been fulfilled. In that time,
information has become enormously more accessible, due in
no small part to the widespread popularity of the Web and to
effective indexing systems such as Google. Making use of
that repository requires a store of real-world knowledge and
some facility for natural language parsing and generation.

These results, while extremely preliminary, are encourag-
ing. In particular, using Cyc as a basis for learning is effec-
tive, both in guiding the learning process and in representing
and using the results. Pre-existing knowledge in the KB
supports the construction of meaningful queries and pro-
vides a framework into which learned knowledge can be
asserted and reasoned over. Comparatively shallow natural
language parsing combined with the type constraint and
relation knowledge in the Cyc system allows the retrieval,

AAAI-05 / 1434

verification, and review of unconstrained facts at a higher
rate than that achieved by human knowledge representation
experts working unassisted. Perhaps more importantly, the
kind of knowledge retrieved is exactly the instance-level
knowledge that should not require human experts – it should
instead be obtained, maintained, and reasoned over by tools
that need and use that knowledge. Involving Google in
every stage of the learning process allows us to exploit both
Cyc’s knowledge and the knowledge on the web in an ex-
tremely natural way.

The work being done here is immediately useful as a tool
that makes human knowledge entry faster, easier and more
effective, but it also provides a basis for analysis of what
information can be learned effectively without human inter-
action. Thus, over time, we hope to provide Cyc with a
mechanism to truly acquire knowledge by learning.

Acknowledgments
This research was partially sponsored by ARDA’s
AQUAINT program. Additionally, we thank Google for
allowing access to their API for research such as this.

References
[Belasco et al., 2004] A. Belasco, J. Curtis, RC Kahlert, C.

Klein, C. Mayans, R. Reagan. Representing Knowledge
Gaps Effectively. In Proc. of the 5th International Con-
ference on Practical Aspects of Knowledge Manage-
ment, Vienna, Austria, p.159-164. Dec 2004.

[Brin and Page, 1998] Sergey Brin and Larry Page, Anat-
omy of a Large-scale Hypertextual Search Engine. In
Proc. of the 7th International World Wide Web Confer-
ence, pp 107-117, Brisbane, Australia, Apr 1998.

[Brown, 1996] R.D. Brown, Example-Based Machine
Translation in the Pangloss System. In Proc. of the 16th
International Conference on Computational Linguistics,
pp 169-174. Copenhagen, Denmark, August 5-9, 1996.

[Charniak, 2001] E. Charniak. A Maximum-Entropy-
Inspired Parser. In Proc. of the 1st conference on North
American chapter of the Association for Computational
Linguistics, pp 132-139. Seattle, WA, 2000. Morgan
Kaufmann Publishers.

[Etzioni et al., 2004] O. Etzioni, M. Cafarella, D. Downey,
A, Popescu, T. Shaked, S. Soderland, D. Weld, A. Yates.
Web-scale Information Extraction in KnowItAll. In
Proc. of the 13th international conference on World
Wide Web, pp 100-110, New York, NY, 2004.

[Ghani, 2000] R. Ghani, R. Jones, D. Mladenic, K. Nigam,
S. Slattery. Data Mining on Symbolic Knowledge Ex-
tracted from the Web. In Proc. of the 6th International
Conference on Knowledge Discovery and Data Mining
Workshop on Text Mining, pp 29-36, Boston, MA, Aug
2000.

[Guha, 1991] R.V. Guha. Contexts: A Formalization and
Some Applications. PhD thesis, Stanford University,
STAN-CS-91-1399-Thesis, 1991.

[Kwok et al., 2001] C. Kwok, O. Etzioni, D. Weld. Scaling
Question Answering to the Web. In ACM Transactions
on Information Systems, Vol 19, Issue 3, pp 242 – 262.
2001

[Lenat, 1976] D.B. Lenat. AM: An Artificial Intelligence
Approach to Discovery in Mathematics as Heuristic
Search, Ph.D. Dissertation, Stanford University, STAN-
CS-76-570, 1976.

[Lenat et al., 1983] D.B. Lenat, A. Borning, D. McDonald,
C. Taylor, S. Weyer. Knoesphere: Building Expert Sys-
tems with Encyclopedic Knowledge. In Proc. of the 8th
International Joint Conference on Artificial Intelligence,
Vol 1, pp 167–169, Karlsruhe, Germany, August 1983.

[Lenat, 1995] D.B. Lenat. Cyc: a Large-Scale Investment in
Knowledge Infrastructure. In Communications of the
ACM, Vol 38, Issue 11, pp 33-38. Nov 1995.

[Lenat, 1998] D.B. Lenat, The Dimensions of Context-
Space, from http://www.cyc.com/doc/context-space.pdf.

[Panton et al., 2002] K. Panton, P. Miraglia, N. Salay, R.C.
Kahlert, D. Baxter, R. Reagan. Knowledge Formation
and Dialogue Using the KRAKEN Toolset. In Proc. of
the 18th National Conference on Artificial Intelligence,
pp 900-905, Edmonton, Canada, 2002.

[Prager et al., 2000] J. Prager, E. Brown, A. Coden, D.
Radev. Question Answering by Predictive Annotation.
In Proc. of the 23rd Annual International ACM SIGIR
Conference on Research and Development in Informa-
tion Retrieval, pp 184-191. Athens, Greece, 2000.

[Thrun et al., 1998] S. Thrun, C. Faloutsos, T. Mitchell, L.
Wasserman. Automated Learning and Discovery: State-
Of-The-Art and Research Topics in a Rapidly Growing
Field, tech. report CMU-CALD-98-100, Computer Sci-
ence Department, Carnegie Mellon University, 1998.

[Witbrock et al., 2003] M. Witbrock, D. Baxter, J. Curtis,
D. Schneider R.C. Kahlert, P. Miraglia, P. Wagner, K.
Panton, G. Matthews, A. Vizedom. An Interactive Dia-
logue System for Knowledge Acquisition in Cyc. In
Proc. of the 18th International Joint Conference on Arti-
ficial Intelligence, Acapulco, Mexico, 2003.

 [Witbrock et al., 2004] M. Witbrock, K. Panton, S. Reed,
D. Schneider, B. Aldag, M. Reimers and S. Bertolo.
Automated OWL Annotation Assisted by a Large
Knowledge Base. In Workshop Notes of the 2004 Work-
shop on Knowledge Markup and Semantic Annotation at
the 3rd International Semantic Web Conference, Hi-
roshima, Japan, pp 71-80. Nov 2004.

[Witbrock et al., 2005]: M. Witbrock, C. Matuszek, A.
Brusseau, R.C. Kahlert, C.B. Fraser, D. Lenat. “Knowl-
edge Begets Knowledge: Steps towards Assisted Knowl-
edge Acquisition in Cyc,” in Proc. of the AAAI 2005
Spring Symposium on Knowledge Collection from Vol-
unteer Contributors, Stanford, CA, March 2005.

AAAI-05 / 1435

http://www.cyc.com/doc/context-space.pdf

