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Abstract

An unbinned method to search for localized cosmic particle sources is presented. The ex-
pected source shape, the measured background shape, and the estimated angular resolution
of individual tracks are used to construct a likelihood function. Estimates of the flux, the
positition and - in particular - the significance of a source can be readily obtained. A full
confidence belt construction to deduce flux limits is presented. General statistical issues
when searching for sources of unknown position are discussed.
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1 Introduction

This paper describes a procedure to search for localized cosmic particle sources
in a given set of events. The procedure will be discussed in the context of a neu-
trino point source search done with a neutrino telescope stationed at the geographic
South Pole (AMANDA [3] and IceCube [1]). Modifications to either search for
extended objects or to use neutrino or cosmic ray experiments at other locations
should be straight forward.

The discussion is limited to the case of only one source in the field of view of the
detector, the flux and position of which is to be determined. Again extensions to
more complicated cases should not be problematic.

In contrast to the standardbinned searchused in the field ([2]), the method pre-
sented does not use a search grid on the sky. Hence it does not suffer from efficiency
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losses due to the bin size or a fixed search grid. An unbinned search tremendously
improves the accuracy of the measurement of the source position.

In addition, the method introduces an elegant way to weight single events depend-
ing on individual properties, which is impossible in a binned approach, where an
event is eitherinsideor outsidea predefined search bin. That makes it possible to
make use of information in addition to the mere direction like the reconstructed
energy or the angular resolution of an event.

The paper is organized as follows. First it discusses the information being used
as input (section 2). This includes the construction of functions that describe the
assumed signal and measured background shapes. In section 3 the likelihood func-
tion is constructed and the statistical estimates for source flux, source location,
and significancêζ are obtained. The latter is discussed in some detail in section 4.
Section 5 shows an example for a significance estimate with and without a source
present. Usinĝζ as a measured quantity, section 6 details the construction of con-
fidence plots to arrive at flux limits. Section 7 discusses the accuracy of the source
position measurement. Section 8 presents statistical issues and solution ansatzes
associated with the search for cosmic particle sources of unknown location. The
paper closes with a brief discussion (section 9).

2 Input

The data set this search method is applied to consists of a set of events. For each
event only a limited set of properties is used, i.e. its direction represented by its
declinationδ ∈ [−90◦, 90◦] and its right ascensionα ∈ [0h, 24h[, and its angular
resolutionσ. This uncertainty in directional reconstruction is described by a two-
dimensional Gaussian covariance matrix, corresponding to a1 σ confidence ellipse.

Next the normalized distributions of background eventsB = B(α, δ) and signal
eventsS = S(α, δ, σ;x0) shall be constructed, withx0 describing the position of
the source. The knowledge of these distributions is sufficient to arrive at a signifi-
cance estimate. In order to obtain confidence limits on the flux, the respective con-
fidence belts need to be constructed using a Monte Carlo simulation (see section 6).
The required additional information is discussed in subsection 2.2.

The coordinate system appropriate for the background function corresponds to the
surface of a sphere described byα, δ, as detailed above. For a localized source it is
advisable to uselocal coordinates that describe the vicinity of the source accurately
well, but avoid the pitfalls that come with curved surfaces. The system used has its
origin at the assumed location of the source and neglects the curvature. This can
be envisioned as approximating the surface of the sphere by a tangent plane. For
small distances (up to5◦ or 10◦) the introduced differences are negligable (less than
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0.03% or 1.3%, respectively). As a convention, the vertical axes in the local systems
are always chosen such that they point towards the North Pole.

2.1 Background and signal distributions

The background distribution is obtained from the data, based on the assumption
that a possible signal is small in comparison and will not distort the background.
Alternatively, particular areas of the sky that correspond to known sources or to the
search region could be omitted when determining the background.

The signal distribution is a convolution of three functions describing the source
extension, a possible distortion introduced by the messenger, and the detector res-
olution.

The appropriate coordinate system to carry out the convolution is a local system
around the position of the source, as discussed at the beginning of this section1 .

As the resolution is different for each event, so is the shape of the signal distribution.

Note that the convolution discribed above is only required in the case of the sig-
nal distribution. For the background themeasureddistribution is used, hence the
convolution has already been carried out by nature.

2.2 Additional information

If one wants tosimulatea set of events, some more information is required.

First the resolution distributions for signal and background need to be known. For
the latter they can be obtained from the data, for the former one relies on Monte
Carlo simulations. Due to the detector geometry, the resolution may depend on the
direction of an event.

Next, the relation between an incident total (neutrino) signal fluxΦν
sg and a resulting

number of detected eventsµsg observed during the livetimeTL must be known:

µsg = Φν
sg · Āν

eff · TL · εbin . (1)

1 Note that the local coordinate system attached to the source location and the one used
to obtain the detector resolution confidence ellipse need not be identical, as the first cor-
responds to the tangent plane at the source and the second to the tangent plane at each
respective event. In both cases the local vertical axes point towards the North Pole. Thus
typically they will be connected by a rotation (and a translation due to the different origins).
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The constant of proportionalitȳAν
eff is called energy-averaged effective area. It de-

pends on the assumed energy spectrum and the direction (declination). A bin effi-
ciencyεbin has been added. For the method presentedεbin = 1 in contrast to binned
searches.

Last but not least the number of background eventsNbg is needed. For each simu-
lated set of events it is drawn from a Poisson distribution with an expectation value
equal to the observed number of events in the data set under study.

2.3 The distributions used in this paper

All plots shown in this paper have been made using a toy Monte Carlo simulation,
modelled to resemble AMANDA data as presented in [2].

For telescopes at the geographic South Pole all distributions are independent of
right ascension. In particular, the background can be described by the histogram of
declination values of the observed events. It can be smoothed by an appropriate fit
function in order to minimize fluctuations2 .

The search is restricted to a point source signal, represented by a delta distribution.
In case of charged currentνµ interactions, the messenger distortion is due to the an-
gle between the incident muon neutrino and the muon direction of flight. For sake
of simplicity, the messenger distortion is approximated as a spherically symmetric
Gaussian. The detector resolution is derived for each reconstructed track individ-
ually (as detailed in [9]). The convolution discussed in section 2.1 corresponds to
adding the respective covariance matrices.

The average number of background events is taken to be eitherNbg = 700 or
Nbg = 3500, corresponding to one year or five years of AMANDA data, respec-
tively. Their declination distribution (over the Northern hemisphere, i.e.δ ≥ 0◦) is
parameterized by a higher order polynomial (not shown).

The resolution functions for signal and background are taken to be identical. The
error ellipses can be represented in several ways (see [9]). Here the parametersσ,
which is connected to the area of the ellipse3 , the excentricity of the ellipseε and
the angleα between major axis and right ascension are used.

Bothσ andε can be fit by a Moyal distribution

M(x; m, s) =
1√
2π

· e−
1
2(λ+e−λ) with λ =

x−m

s
. (2)

2 Such a fit is only justified, if the selection criteria are continous functions of the declina-
tion.
3 I.e.σ =

√
σ1 · σ2, with σ1 andσ2 denoting the major and minor axes of the ellipse.
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The values used aremσ = 1.81◦, sσ = 0.36◦ andmε = 1.22, sε = 0.11. The
distribution of the angleα is parameterized by a polynomial.

3 The likelihood formula

The probability of an event to be a signal event corresponds to the (average) fraction
of signal events in the total sample. The parameter describing this probability is
denoted ass.

With x0 describing the position of the source sought, the likelihood function for a
single event of measured positionxi and errorσi is:

Li(s, x0; xi, σi) = s · S(x0; xi, σi) + (1− s) · B(xi) . (3)

As in an ensemble all events are independent of each other, the combined likelihood
functionL(s, x0) is obtained by multiplication over all eventsN :

L(s, x0) =
N∏
i

Li(s, x0; xi, σi) (4)

or

log L = − logL(s, x0) = −
N∑
i

logLi(s, x0; xi, σi) . (5)

The only free parameters ofL andlog L arex0 ands, corresponding to the position
and strength of the source.

3.1 Estimators

For each positionx0, the estimatês for s is obtained as usual by demanding that

∂ log L

∂s
!
= 0 . (6)

The mathematical structure oflog L guarantees that such a minimum exists, if there
is at least one event withS > B and one event withS < B. That is due tolog L
being a polynomial of orderN with N − 1 real zeroes (for a more detailed discus-
sion see [8]). The case withS < B for all events is technically troublesome and
corresponds to no events being close to the signal hypothesis. This will be further
discussed in section 4.

For the investigation of a well known source candidate at positionx0, this minimi-
zation is sufficient. If searching for a source of unknown position, one first carries
out the minimization with respect tos for all x0 and then considers the resulting
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Figure 1. Distribution of the significance estimator at a declination ofδ = 40◦ for the case
of no signal source. For the left plotNbg = 3500 events and for the right plotNbg = 700
are distributed over the Northern hemisphere.

function log L(x0, ŝ(x0)). The most likely position of a sourcêx0 is then at the
extremum of this function with respect tox0.

Multiplication of ŝ with N leads to an estimate for the number of signal events

n̂S = ŝ ·N , (7)

which can by use of equation 1 be converted into a flux estimateΦ̂S .

The logarithmic likelihood function has another interesting property. The interval
around its minimum, where the function value changes by0.5, corresponds to the
1 σ error - at least for the strictly Gaussian case. This can be used to control the
uncertainty, when measuring the position of a source (see section 7). More impor-
tantly, it serves to construct an estimate for the significance of a detection

ζ̂ =
ŝ

σ̂ŝ

. (8)

Since the functionlog L(s) is known in its entirety, there are several ways to ex-
tract ζ̂. It has proven to be most robust to adjust a parabola with a minimum in
(ŝ, log L(ŝ)) and passing through(0, log L(0). This leads to

ζ̂ = sign(ŝ)

√√√√2 · ln L(ŝ)

L(0)
. (9)

This quantity must not be confused with the so calledsignificance parameterξ =
− logL(ŝ) used elsewhere.
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4 Significance properties

The construction of̂ζ is based on a Gaussian assumption, which need not be correct
a priori. For the example based on the distributions shown in section 2 withNbg =
3500 background events, this assumption is fully justified, as can be seen in figure 1
(left). The distribution of̂ζ follows a Gaussian distribution centered aroundµ = 0
with unit width (σ = 1), as expected for a significance.

The situation is more complicated, if there are fewer events in the data sample.
This corresponds to a scenario where one cannot find an event in the vicinity of
the assumed source position. In this case the calculation ofζ̂ returns too negative
values for the significance. This is, however, not a real problem: if there are no
events, then there is probably also no source.

Technically this feature needs to be controlled, though. The correspondingζ̂ dis-
tribution is shown in figure 1 (right). For positive values ofζ̂ the curve is nicely
Gaussian, as is indicated by an approriate fit4 . The values outside the Gaussian
fit are then identified by the cut̂nS > −6 (see eq. 7). Everytime this condition is
violated, one instead useŝζ = 0, i.e. one conservatively sets the significance to
zero.

This worsens the sensitivity by a few percent, but the situation is under control.

As soon as a simulated source signal is added, theζ̂ distributions are well described
by a Gaussian. The difficulty above doesn’t arise, because usually there is an event
close to the source hypothesis. The Gaussian nature is convenient to construct con-
fidence plots. This will be discussed in section 6.

5 An example

Figure 2 shows an example from a toy Monte Carlo simulation to illustrate the
presented technique. An area around the position of Markarian 421 (α = 11.07 h,
δ = 38.2◦) is displayed. All graphs show local2h × 30◦ maps around the selected
source position, as indicated on the left and the top of each figure. The dotted lines
within the plots indicate lines of constant declination or right ascension, as indi-
cated on the right and the bottom.

The two pictures on top represent the event positions. Figure 2 a) uses dots to in-
dicate the positions only. This information is used in a binned search. A typical

4 The integral of the fit is fixed to the integral of the histogram and then fit to the positive
side of the curve.
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Figure 2. An example of the method showing event positions and significance estimates on
a local map. See text.

search bin is depicted by the circle in the center of the graph. In Figure 2 b) the el-
lipses corresponding to the angular resolution are shown. Their information cannot
be used by a binned approach.

On top of the background5 , ten signal events have been added. They are marked
by the open/dashed symbols.

The two pictures in the lower row show the significance estimateζ̂ without (Fig-
ure 2 c) and with added signal events (Figure 2 d) as a function of the source
position hypothesis. Only values witĥζ ≥ 0 are shown. The source appears as a
circular area with highest significance close to the true source position.

5 Corresponding toNbg = 700 events in the whole Northern hemisphere
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Figure 3. Example of a confidence plot constructed for a source declination ofδ = 40◦

and90% confidence level. On the horizontal axisζ̂ is used as observable. On the vertical
axis both the signal expectationµS (left) and the signal fluxΦS (right) are shown. Since
a discovery shall only be claimed if the5σ lower boundary exceeds zero, an additional
overcoverage has been introduced indicated by the dark shaded area.

The values at the source positionx0 areζ̂ = 4.4 andζ̂ = 0.7 for the cases with and
without the additional signal, respectively.

6 Limits on the flux

The appropriate method to obtain limits on the signal flux is to construct confidence
belts. The unknown but fixed parameter describing the signal can either be the
expected number of signal eventsµS or the signal fluxΦS itself. This is shown
on the vertical axes in figure 3. The observable used on the horizontal axis is the
significance estimatêζ as defined by eq. 9.

As shown above, thêζ distributions are Gaussian with their expectation valuesµ
and their standard deviationsσ being functions ofµS . These functions have been
evaluated for several fixed values ofµS and source declination valuesδ (see fig-
ure 4). They are well described by low order polynomials, so that values ofµS not
explicitly simulated in the toy MC, can be interpolated.

With theζ̂ distributions being well known for each value ofµS (ΦS), the confidence
belt construction can be carried out following the unified approach with likelihood
ratio ordering ([5]) with the adaption that the width of Gaussian depends on the
signal parameter. Figure 3 shows an example of a confidence plot such obtained.

The following comments can be made:
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Figure 4. Meanµ and widthσ of Gaussian fits to distributions of̂ζ for different source
declinationsδ and different source strengths (expectation valueµS). The markers indicate
results of Monte Carlo simulations. The fits are second order polynomials. These graphs
have been obtained within the simulation usingNbg = 700 background events.

(1) The two quantitiesµS andΦS are proportional (see equation 1). The resulting
confidence plot can thus be labeled twice on the y-axis, as is shown in the
figure. Usually the effective area is not exactly known. The inclusion of the
corresponding systematic uncertainty into the confidence belt construction is
subject of ongoing research for the case of Poissonian statistics [4, 6]. The
adaption to the Gaussian case should be straight forward.

(2) One would not announce a discovery if the lower limit at90% confidence level
exceeds zero. Rather one typically claims a discovery, if the5 σ lower bound-
ary is positive. Then upper and lower limits at90% CL can be quoted. This
approach is indicated in figure 3. It corresponds to the artificial introduction
of overcoverage as indicated in the graph.

(3) In the construction of the confidence belts above the observableζ̂ is always
taken at the same fixed source positionx0. If instead one searches in an ex-
tended area and uses e.g. the maximum value ofζ̂, the resulting distributions
will be different and appropriate confidence plots need to be constructed. This
will be discussed separately in section 8, as the problem is not specific to the
search algorithm presented here.

(4) It should be emphasized that no simulations are necessary to arrive at the
significance estimatêζ itself, once the detector resolution and the messenger
distortion are known. In contrast to flux limits, the significance can be obtained
directly from the data.

7 Measuring the position of the source

The precision with which the position of a point source can be measured is limited
by the width of the signal point spread shapeS. The precision improves with the
number of signal events and it worsens with more background. If there were no
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Figure 5. Accuracy of the position measurement as a function of the number of signal
events. The example has been simulated for a source declination ofδ = 40◦. These results
have to be compared to the assumed average resolution of a single event of approximately
2.3◦.

background, the total signal resolution would approximately be∼ 1√
n
σ̄. The fact,

that there are events of different resolution in the sample improves this estimate,
since those with better resolution receive a stronger than average weight.

For the example of section 2 (including backgroundNbg = 700 events) figure 5
illustrates the uncertainty achieved with the likelihood method. In contrast to the
binned search the uncertainty improves with the number of signal events.6

If investigating a source candidate another test option arises. Consider the case that
one finds a significant excesscloseto the positition of the source to be investigated.
By studying the shape of the likelihood function around its minimum, it is possible
to determine the probability that this excess is consistent with the assumed position
x0.

8 Searching in an area

This line of thought leads to the following interesting point. In the construction
of the confidence plots in section 6, the observableζ̂ is the significance estimate
at the hypothesis positionx0. Another possible choice could have been themaxi-
mumsignificance in a certain (small) regionaroundx0. It is evident that the latter
choice leads to systematically higher values. But for either case one can construct
confidence belts and obtain comparable results for the flux limits.

For the search in a larger region of the sky - typically the complete field of view

6 For the binned search the uncertainty of a position measurement is of the order of the
radius of the bin. In the Gaussian case the three sigma ellipse contains78% of all signal
events. Therefore a typical bin radius is about three times as large as the typical resolution
for a single event.
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of the detector - the areas with the highest significance are of course those of most
interest. A single observable that probes, whether a point source has been found, is
the highest significance valuêζmax obtained over the whole search region. This vari-
able has on average higher values thanζ̂, which corresponds to a single pre-selected
source hypothesis position. Therefore it is necessary to construct new confidence
plots for this particular observable.

With this demand a particular difficulty arises. The detector response usually differs
for different source positions. This can e.g. be seen in Figure 4, where the expecta-
tion values and standard deviations ofζ̂ are plotted vs. the signal expectation. The
fact that the three curves for the three different declinations are not identical shows
the difference in detector response. Additionally, the interrelation of flux and signal
expectation, i.e. the effective area, is direction dependent, too (eq. 1). This makes
the construction of a single confidence plot with the flux (or the signal expectation)
being the only parameter and̂ζmax being the only observable impossible, because
the knowledge of where the source is becomes a prerequisite to the construction of
the plot.7

The general solution is to extend the confidence plot to also include the position of
the source as a unkown parameter and the position ofζ̂max as part of the observ-
able. This ansatz is time consuming and a somewhat ardous task and has not been
investigated in detail yet.

There are two special cases though, where this problem doesn’t play a role. These
will be discussed below.

8.1 Regions of uniform detector response

One can restrict the area to a region, where the detector response is uniform. In the
case of AMANDA, this would correspond to azimuthal bands of fixed declination.
Here confidence plots can be constructed in a straight forward manner. A source is
placed at an arbitrary position to simulate the distributions for the case including
signal for several fixed source fluxes.

An analytic expression to fit these distributions is obtained in the following way.
Assume there wereN source positions in the search area, withζ̂j measured at
each position, respectively. For now we neglect correlations between theζ̂j. The
distribution of the significance estimates depending on the fluxΦ is well known
and denoted byf(ζ̂ , Φ). Assume that only at one of these positions there truely is a

7 This difficulty is not restricted to the specific choice of variable (i.e.ζ̂max) or even the
search algorithm used, but remains present whenever the corresponding observables have
different distributions for different source positions.
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Figure 6. Distribution of highest significance as defined in equation 10 with signal source
present (figure a) and without signal (figure b). In both graphs the histogram displays the
simulated distribution. The continuous line shows a fit using equations 11 and 12, respec-
tively.

source of strengthΦ, whereas at the other positions there isn’t. The observable

ζ̂max = maxj(ζ̂j) (10)

in this case is given by the expression

fN(ζ̂max) = f(ζ̂max, Φ) ·
(∫ ζ̂max

−∞
f(ζ̂ , 0) dζ̂

)N−1

(11)

+ (N − 1) · f(ζ̂max, 0) ·
∫ ζ̂max

−∞
f(ζ̂ , Φ) dζ̂

(∫ ζ̂max

−∞
f(ζ̂ , 0) dζ̂

)N−2

with the upper line of equation 11 describing the case, whereζ̂max is actually ob-
tained at the true position of the source and the lower line representing the pos-
sibility that the highest significance estimateζ̂max is measured at one of the other
(N − 1) places.

For the case of no signal this expression simplifies to

fN(ζ̂max, 0) = N · f(ζ̂max, 0) ·
(∫ ζ̂max

−∞
f(ζ̂ , 0) dζ̂

)N−1

. (12)

The assumption of uncorrelated measurements is wrong for neighboring search
points, becausêζ forms a continuous function over the sky. Nevertheless equa-
tions 11 and 12 have successfully been used to describe AMANDA data, if the
parameterN is being left free in the corresponding fit. One arrives at aneffective
number of search positionsNeff , which is roughly of the order of the search area
divided by the size of a typical resolution ellipse.

A comparison of the simulated distribtion of̂ζ with the analytic expressions of
equations 11 and 12, respectively, are shown in figure 6. Both for the case including
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a source (figure 6 a) and for the case of no signal (figure 6 b) the histograms can be
well described by the models.

8.2 Investigating the significance only

Even in the case of non-uniform detector response to signal fluxes, the distribution
of the significance estimatêζ for the case of no signal is identical at all source
positions by definition. It is a Gaussian of unit width centered around zero. This
fact can be used to search for deviations from the background hypothesis. The
distribution of the observablêζmax follows equation 12. For any observed value of
ζ̂max, the probability of it being a background fluctuation can be calculated.

Note though, that in this approach nothing can be said about the strength of a source
so found8 . Only the significance of the discovery can be measured. Nevertheless
if one finds such a spot with extremely high significance in the dataset of a certain
period of observation, one can then do a search at precicely this position in an inde-
pendent dataset, e.g. that of the following year, with the confidence plot constructed
as discussed in section 6 and so avoid the difficulties discussed in this section.

9 Discussion

The method described above has been tested with data from the AMANDA neutrino
telescope. It has been applied to the same data set that serves for the limits presented
in [2]. The resulting upper limits are compatible. Also the sensitivity, defined as the
average upper limit in the case of no signal, is very similar in the two methods (for
details see [8]).

Below we summarize the benefits and possible drawbacks of this unbinned maxi-
mum likelihood method.

9.1 Benefits of the method

(1) The precision to measure the position of a discovered source improves by
about a factor of 4. Whereas in the binned search the uncertainty is of the
order of the bin radius, it drops below the resolution for single events, as one
would intuitively expect.

8 The confidence plot constructed for the position, whereζ̂max has been found, is not
appropriate to be used, and the lower limit derived from it is systematically too high. Nev-
ertheless, the upper limit is conservative.
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(2) There is no arbitrary search grid involved. The bin efficiency is undesirable
in the best case, where the bin is centered on a potential source. It worsens,
if a source of unknown position is close to the border of bins in the search
grid. With the maximum likelihood method a continous function over the sky
is considered and the matter of bin efficiency is of no concern.

(3) The significance estimatêζ is in itself a meaningful observable. In the binned
search the number of events in the search bin serves as variable. This number
becomes meaningful only with knowledge of the background expectation.

(4) The determination of̂ζ is a very simple and robust process. No simulations
are necessary. The only input are the data.

(5) The maximum likelihood approach makes it possible to make use of the reso-
lution measurement for each event.

(6) It is also possible to include other per-event information in the likelihood con-
struction. Most prominently the reconstructed energy of each event could be
included.

9.2 Possible drawbacks of the method

(1) If flux limits are to be obtained, a (toy) Monte Carlo simulation is necessary,
whereas in the binned search the distributions are Poissonian in nature and can
hence be treated analytically. This especially influences the complexity of the
optimization of quality criteria.

(2) Using additional information - such as the resolution estimation - can intro-
duce additional systematics, if the determination of the resolution estimates is
not absolutely correct.

(3) In areas of no events the significance estimateζ̂ overestimates negative fluc-
tuations. This effect and its remedy are discussed in section 4.

(4) The inclusion of systematic errors has yet to be done. Following the work
done on Poissonian statistics ([4, 6]), this should not pose a problem.

9.3 Conclusion

The unbinned maximum likelihood method presented in this paper produces a ro-
bust significance estimate in a fast manner. The determination of flux limits relies
on simulations, rather than pure analytic considerations. The method makes it pos-
sible to include angular resolution or other per-event information.

As the energy spectrum of a neutrino point source is expected to be much harder
than the background of atmospheric neutrinos (see for example [7]), the inclusion
of energy information should fairly improve the analysis power of the method.

When the first extraterrestrial sources are found, the likelihood mechanism will be
used to measure their location with optimal precision.
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