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Genetic studies have revealed thousands of loci predisposing to
hundreds of human diseases and traits, revealing important biological
pathways and defining novel therapeutic hypotheses. However, the
genes discovered to date typically explain less than half of the
apparent heritability. Because efforts have largely focused on
common genetic variants, one hypothesis is that much of the missing
heritability is due to rare genetic variants. Studies of common variants
are typically referred to as genomewide association studies, whereas
studies of rare variants are often simply called sequencing studies.
Because they are actually closely related, we use the terms common
variant association study (CVAS) and rare variant association study
(RVAS). In this paper, we outline the similarities and differences
between RVAS and CVAS and describe a conceptual framework for
the design of RVAS. We apply the framework to address key
questions about the sample sizes needed to detect association, the
relative merits of testing disruptive alleles vs. missense alleles,
frequency thresholds for filtering alleles, the value of predictors of
the functional impact of missense alleles, the potential utility of
isolated populations, the value of gene-set analysis, and the utility of
de novo mutations. The optimal design depends critically on the
selection coefficient against deleterious alleles and thus varies across
genes. The analysis shows that common variant and rare variant
studies require similarly large sample collections. In particular,
a well-powered RVAS should involve discovery sets with at least
25,000 cases, together with a substantial replication set.
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Genomic studies over the last half decade have shed light on
the genetic basis of common polygenic human diseases and

traits, identifying thousands of loci and revealing key biological
pathways. Nonetheless, the genetic variants identified thus far
appear to explain less than half of the estimated heritability in
most diseases and traits. The sources of the so-called missing
heritability remain unclear (1). This article is our second paper
exploring the mystery of missing heritability.
In our first paper (2), we explored a methodological issue. We

showed that genetic interactions, if present, could account for
substantial missing heritability. Still, this is likely to be only a
partial explanation. In this paper, we turn to the search for ad-
ditional genetic variants underlying common human diseases,
focusing on rare genetic variants.
The discovery of genes underlying common diseases depends on

association studies (except in special cases where Mendelian sub-
types of common diseases show clear segregation in large families).
Association studies involve testing whether the frequency of a set of
one or more alleles differs between cases and a control population,
indicating that the set of alleles is associated with the disease.
Association studies to date have largely focused on studying in-
dividual common variants, because they could be more readily
assayed with initial genomic technologies. However, association
studies are increasingly being applied to sets of rare variants as well.

Association studies of individual common variants are often
referred to as genomewide association studies (GWAS), whereas
association studies of sets of rare variants in coding regions are
often described as exome-sequencing studies. This nomenclature
is unfortunate because it conflates statistical methodology (as-
sociation testing) and laboratory methodology (DNA sequenc-
ing). To highlight the parallelism, we will use the terms common
variant association study (CVAS) and rare variant association
study (RVAS). Ideally, the term GWAS should encompass both
types of association studies.

CVAS. By common variants, we mean those that occur often
enough that it is practical to test each variant individually by
estimating its frequency in cases and controls. Given the feasi-
bility of collecting many thousands of cases, common variants
will be operationally defined as those with frequency ≥0.5% (one
carrier per 100 people).
The theory and practice of CVAS is well advanced. Catalogs

of common variants in human populations are nearing comple-
tion, and tens of thousands (and in some cases, hundreds of
thousands) of cases and controls have been genotyped for many
traits and diseases. Studies to date have largely used genotyping
arrays and linkage disequilibrium patterns, but will increasingly
use inexpensive massively parallel sequencing.

Significance

Discovering the genetic basis of common diseases, such as di-
abetes, heart disease, and schizophrenia, is a key goal in bio-
medicine. Genomic studies have revealed thousands of common
genetic variants underlying disease, but these variants explain
only a portion of the heritability. Rare variants are also likely to
play an important role, but few examples are known thus far,
and initial discovery efforts with small sample sizes have had
only limited success. In this paper, we describe an analytical
framework for the design of rare variant association studies of
disease. It provides guidance with respect to sample size, as
well as the roles of selection, disruptive and missense alleles,
gene-specific allele frequency thresholds, isolated populations,
gene sets, and coding vs. noncoding regions.
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Some missing heritability is clearly due to additional common
variants that remain to be discovered. First, CVAS to date has
used genotyping arrays with good coverage of variants with fre-
quency 5–50% but poorer coverage of the range 0.5–5%. [The
potential importance of these low-frequency common variants,
sometimes called “Goldilocks” alleles (3), is demonstrated by
nonsense mutations of PCSK9, which have led to new thera-
peutics for decreasing LDL cholesterol (4, 5).] Second, CVAS
has been limited by sample size; studies with larger sample sizes
continue to reveal many new loci (6–8). Third, indirect statistical
methods indicate that association with common variants can
explain at least 30% (and likely more) of the heritability for
a number of diseases and traits (9–11).

RVAS. Rare variants may also make a major contribution to
missing heritability, although much less is known at present. The
theoretical case for an important role of rare variants is that alleles
that strongly predispose to disease are likely to be deleterious and
thus kept at low frequencies by purifying selection (12–14). More-
over, rare variants with strong effects are valuable, because they may
enable clinical studies in individual patients and reveal protective
null alleles that define targets for pharmaceutical intervention.
RVAS differs from CVAS in two key respects. First, rare var-

iants are too numerous to catalog comprehensively and so must be
directly enumerated in every sample by DNA sequencing rather
than by genotyping known variants. The importance of this dis-
tinction is fading, however: with the plummeting cost of DNA
sequencing, both CVAS and RVAS will increasingly use direct
DNA sequencing. Second and more fundamentally, rare variants
occur too infrequently to allow association tests of individual
variants. RVAS thus require aggregating rare variants into sets
and comparing the aggregate frequency distribution in cases vs.
controls (15).
The need to aggregate variants poses a challenge: which var-

iants to aggregate? Ideally, one would aggregate only damaging
alleles and ignore benign alleles. Unfortunately, one cannot
perfectly distinguish the former from the latter. To enrich for
harmful alleles, RVAS typically focuses on (i) nonsynonymous
variants in protein-coding regions, ignoring the rest of the ge-
nome; and (ii) variants with frequency below a specified threshold
T. Even with these limitations, the resulting variants remain a
mixture of damaging and benign alleles.
The practice of RVAS is still in its infancy. In pioneering studies

of the genetics of obesity, O’Rahilly and colleagues studied un-
related cases with a common disease to look for rare variants in
candidate genes related to the disease (16). Hobbs and Cohen
subsequently applied this approach to well-established candidate
genes for lipid-related phenotypes, showing, for example, that
PCSK9, in which gain-of-function alleles caused a Mendelian hy-
percholesterolemia syndrome, also harbored rare loss-of-function
alleles that lowered LDL cholesterol (4).
The challenge, however, has been to move beyond handfuls of

candidate gene studies to unbiased gene discovery. Some early
efforts organized by the US National Institutes of Health were
premised on the notion that rare variants underlying common
diseases could be reliably identified in small collections of 50–
100 cases. However, results have made clear that RVAS, like
CVAS, requires much larger samples.
The few discoveries from RVAS to date have largely emerged

from candidate gene studies rather than unbiased surveys and, in
some cases, have reached only nominal rather than genomewide
significance (17–24). However, exomewide studies of large
samples are now underway for several diseases.
Given the early stage of the field, the analytical methodology for

RVAS remains in flux. Many authors have proposed a rich collec-
tion of possible statistics (reviewed in refs. 25 and 26 and tests
compared in ref. 27; SI Appendix, Section 3.4). Our goal here is
neither to evaluate their relative merits nor to propose alternatives.

Rather, the goal of this paper is to offer a simple conceptual
framework that provides insight into the design of RVAS and to
apply it to address some fundamental questions:

i. Choice of variants. What are the relative merits of disruptive
alleles (stop, frameshift, and splice-site mutations, which se-
verely disrupt protein structure) vs. missense alleles?

ii. Frequency threshold. What is the optimal threshold T for
filtering alleles? Is it constant or does it vary with the prop-
erties of each gene?

iii. Sample sizes. How many cases are needed to detect associa-
tion by RVAS? How does the answer depend on the proper-
ties of the gene, the relative risk of harmful alleles, and the
strategic choices above?

iv. Other strategies. What approaches might be used to increase
power, such as studying special populations, specific gene
sets, or de novo mutations?

v. Whole genome analysis. Can RVAS be extended from the
exome to include the noncoding portion of the genome?

To gain intuition, we focus on a simple situation. We consider
a binary trait (e.g., a disease, such as schizophrenia, or the tail of
a quantitative phenotype, such as LDL cholesterol above 200
mg/dL) analyzed with burden tests (which compare the number, or
‘burden’, of variants in cases and controls), where the variants
studied are those with frequency below a fixed threshold. We
assume a ‘two-class model’, wherein all alleles are either null
(abolishing gene function) or neutral (having no effect on gene
function). Although the model is simple, it can provide clear in-
sight into the many alternative methods for RVAS.
Below, we show how the answers depend crucially on the se-

lection coefficient of each gene; more modestly on the pro-
portion of missense mutations that are null; and in some cases on
population history. Results are summarized in the main text and
supported by mathematical formulas, proofs, simulations, graphs
and tables in the extensive Supplementary Information.

Results
Designing an Association Study. A burden test for association with
a disease examines whether a class C of alleles in a gene G is
enriched or depleted in cases vs. random controls from the
general population, with individuals assumed to be unrelated
so that events are independent. (Although we consider ran-
dom population controls, one can alternatively compare cases
with disease-free controls.) The class of alleles may be selected
in many ways. It could, for example, consist of a single allele (as
in CVAS), all nonsense alleles, all missense variants with fre-
quency <1%, or all variants at evolutionarily conserved nucleotides
in a given gene.
The power of an association study depends on two key quan-

tities: (i) fC, the combined allele frequency (CAF) of class C,
meaning the expected number of alleles present in a haploid ge-
nome in the population; and (ii) λC, the excess relative risk of
disease conferred by alleles in the class, meaning that a heterozy-
gous carrier has a (1 + λC)-fold higher risk of disease than a ran-
dom member of the population.† By Bayes’ theorem, (1 + λC)-fold
is also the expected enrichment of such alleles in cases vs. the
overall population [SI Appendix: Eq. 3.1]. Consequently, λC can
be directly estimated from the excess enrichment in cases (SI
Appendix, Section 3.1). Enrichment of alleles in cases can be tested
with likelihood ratio tests (LRTs) (SI Appendix, Section 3.2).

†We focus on risk to heterozygous carriers. Our calculations implicitly assume that the risk
to individuals carrying two null alleles (λC*) is the same as the risk to heterozygous
carriers (λC). Although such individuals may well have higher risk, they are much rarer
than heterozygous carriers (because fC is small) and thus their impact on RVAS is typically
negligible. [The effective relative risk is increased by fC(λC*/λC), which is �1 unless λC*/λC
is huge; this case would essentially be a monogenic recessive trait.]
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The number of cases‡ needed to detect an association using an
LRT is given by a formula (SI Appendix, Eq. 3.6) that is well
approximated, when fC is small, by

na;b ≈
νa;b

4fC gðλCÞ: [1]

Here, gðλÞ is a simple function§ and νa;b is a constant that con-
trols the false-positive rate a and false-negative rate b. For 90%
power (b = 10%), νa;b= 10.5 when testing a single hypothesis
(a = 0.05) and νa;b= 35.9 when correcting for multiple hypoth-
esis testing of 20,000 genes (a = 2.5 × 10−6). The values for 50%
power are νa;b= 3.8 and 22.2, respectively. Calculations below as-
sume multiple hypothesis correction.
Although discussions of RVAS often contemplate alleles that

increase disease risk, the formulas apply equally well to alleles
that decrease disease risk—that is, protective alleles. In this case,
λC is a negative number between −1 and 0. (For example, pro-
tective alleles that decrease risk by fourfold have λC = −0.75.)
To maximize the power of an association study, we want fC, the

combined allele frequency, and jλCj, the absolute value of the
excess relative risk, to be as large as possible. Unfortunately,
these goals sometimes pull in opposite directions. For example,
expanding the alleles under study m increases fC but dilutes λC.
Below, we explore six strategies for RVAS. To lay the foun-

dation, we start by considering several issues related to alleles
and their frequencies.

Mutation Rates for Observable Classes. First, we need to un-
derstand the rate at which various types of mutations are born.
For protein-coding regions, three classes of mutations can be
directly observed: silent (S), missense (M), and disruptive (D,
defined as nonsense, splice site, and frameshift changes, which
severely disrupt protein structure). For any human gene, we can
obtain good estimates of the mutation rates for these observable
classes (μS, μM, μD) based on (i) the length and sequence com-
position of the gene and (ii) the rate and mutational spectrum
for point mutations in the local region. (The latter quantities can
be estimated from comparative genomics, medical genetics or
large-scale human parent-offspring trio sequencing studies.) (SI
Appendix, Section 2.6). Below, we will focus on a typical human
gene with the median mutation rate and a coding region of 1,500
bp. (One could readily incorporate gene-specific rates, if de-
sired.) For this typical gene, the mutation rates for silent, mis-
sense, and disruptive mutations are 5.6 × 10−6, 12.8 × 10−6, and
1.7 × 10−6 per gene copy per generation, respectively (Table 1).

Two-Class Model for Impact of Mutations. Second, we need to
consider the impact of mutations on gene function. We will
adopt a simple two-class model in which mutations in protein-
coding regions are either (i) neutral, having no effect on func-
tion, or (ii) null, abolishing gene function. Null alleles cause
excess relative risk λ= λnull ≥ 0 and have selection coefficient s=
snull ≥ 0, which is assumed to have been constant.
We will assume that (i) all silent mutations are neutral, (ii) all

disruptive mutations are null (which is reasonable, at least if one

excludes disruptive mutations occurring late in a coding region),
and (iii) missense mutations are a mixture of null and neutral
alleles, with proportion α being null and 1 − α being neutral.
Our model is clearly a simplification, because we ignore the

possibility of alleles with intermediate effects. Evolutionary studies
and analysis of mutations responsible for Mendelian diseases sug-
gest that ∼25% of missense mutations are strongly deleterious
(essentially equivalent to disruptive mutations, with selection coef-
ficients in the range of 10−2 and below); ∼50% are weakly delete-
rious (hypomorphic alleles, with selection coefficients in the range
10−3–10−4); and ∼25% are truly neutral (13, 28–30). [Some studies
have suggested slightly different proportions for strongly deleterious
mutations (31–33).] In our two-class model, we will ignore the hy-
pomorphic mutations, treating them as being effectively neutral. We
also ignore the possibility of countervailing alleles; e.g., protective
alleles if null alleles are deleterious or vice versa (4, 5). Discussion
elaborates on the reasons for and limitations of the model.
Our analyses below will primarily use the value α = 25%, be-

cause it is the average value reported for human genes. Of course,
the actual proportion α varies across genes. For example, the de-
pletion of missense alleles relative to silent alleles suggests values
α ≈ 5% for BRCA2 but 50% for CHD8 (SI Appendix, Section 2.1).
To illustrate the impact of varying proportions of null missense

alleles, we sometimes compare results for four values: α = 10%,
25%, 33%, or 60%. For these values, Table 1 shows that (i) the
mutation rates for all null alleles (disruptive plus missense) are 3.0,
5.0, 6.0, and 9.4 × 10−6; (ii) the ratio of all null alleles to disruptive
alleles is 1.8-, 2.8-, 3.5-, and 5.5-fold; and (iii) disruptive alleles
comprise 57%, 34%, 29%, and 18% of all null alleles.

CAF. Third, we need to understand the properties of the CAF.
For this purpose, we focus on classes where all alleles have the
same selection coefficient s.
The ancestral human population that existed ∼1,000 gen-

erations ago is typically modeled as being at equilibrium with a
constant effective population size Neq of ∼10,000 (34). For a
population at equilibrium, classical population genetics (35–37)
provides a precise formula for the expected CAF (SI Appendix,
Proposition 2), which is well approximated by

fC ≈
�

μC=s
4μCNeq

for 4Neqs �1 ðsignificant selectionÞ
for 4Neqs �1 ðnearly neutralÞ ; [2]

where μC is the rate per chromosome per generation of new
mutations in class C.
Modern human populations have undergone massive expan-

sions, interrupted in some cases by bottlenecks. Although no
simple formulas are available, the value of f can be found by

Table 1. Mutation rates per gamete

Mutation type

Absolute mutation rate (×10−6)

α = 10% 25% 33% 60%

Silent 5.6 5.6 5.6 5.6
Missense 12.8 12.8 12.8 12.8

Null 1.3 3.2 4.2 7.7
Neutral 11.5 9.6 8.6 5.1

Disruptive 1.7 1.7 1.7 1.7
Nonsense, splice 0.9 0.9 0.9 0.9
Frameshift 0.8 0.8 0.8 0.8

All null 3.0 5.0 6.0 9.4
Disruptives: All nulls
Ratio 1: 1.8 1: 2.8 1: 3.5 1: 5.5
Percentage 57% 34% 29% 18%

For a typical gene as defined in the text, with α being the proportion of
newborn missense alleles that are null.

‡We focus on the number n of cases needed when the frequency fC in the population is
known perfectly based on an (infinitely) large population survey. We make this assump-
tion in the belief that very large datasets will become available in the coming years and
that shared population controls can be used across studies. In the meanwhile, one can
estimate fD within a study based on the frequency in either unaffected or random
individuals. If a study involves cases and unaffecteds in proportion r and 1 − r, one
requires approximately n/(1 − r) cases and n/r controls to detect association, where n is
the number of cases given in Eq. 1 (SI Appendix, Section 3.3). For a balanced design, this
corresponds to 2n cases and 2n controls.

§gðλÞ ¼ ½ðλþ 1Þlnð1þ λÞ− λ�, which is approximately λ2=2 for small λ (0 ≤ λ< 1) and cλlnðλÞ
for larger λ (with c in the range 0.7–0.8 for 2< λ< 100).
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simulation. We analyzed various population histories (SI Ap-
pendix, Section 1.3), including two models of uninterrupted
expansions (denoted expansions 1 and 2) and models meant to
represent Europe (bottleneck of 1,550 chromosomes occurring
1,250 generations ago), Finland (100 chromosomes, 100 gen-
erations), and Iceland (1,000 chromosomes, 50 generations).
Importantly, the expected value of the CAF is essentially un-

affected by the vast changes in the size or structure of human
populations over the last ∼1,000 generations [Fig. 1A]. The
reason is intuitively clear: (i) for alleles under significant selec-
tion, the expected CAF is held at μC/s by mutation-selection
balance (38), whereas (ii) for nearly neutral alleles, a simple
back-of-the-envelope argument shows that the expected CAF
increases from the equilibrium value of 4μCNeq at an extremely
slow rate.¶ Eq. 2 thus provides a good approximation for the
expected CAF in modern human populations. (Note: although
the expected CAF is constant, the variance across genes varies
across populations; see RVAS strategy 4 below.)
The CAF depends strongly on the selection coefficient, with

the expected value falling precipitously as selection increases:
fC ∼ 40,000μC, 13,000μC, 1,000μC, 100μC, and 10μC for s= 0, 10−4,
10−3, 10−2, and 10−1, respectively (see Eq. 2 and SI Appendix,
Proposition 2 for exact formula). If their birth rates were iden-
tical, neutral alleles would thus outnumber deleterious alleles by
400-fold if s = 10−2 and by 4,000-fold if s = 10−1.
Using the mutation rate for disruptive alleles in our typical

gene (1.7 × 10−6) and the approximation in Eq. 2, the expected
frequency for disruptive alleles is 0.17%, 0.017%, and 0.0017%
for s = 10−3, 10−2, and 10−1, respectively; that is, approximately
one heterozygote per 300, 3,000, and 30,000 individuals. For our
typical gene with α = 25%, the expected frequency of all null
alleles (disruptive plus missense) is ∼2.8-fold higher (Table 1).

Individual Allele Frequencies. Fourth, we need to understand the in-
dividual allele frequency (IAF) distribution, ΨC(x), for a class C of
alleles, defined as the probability that an individual allele in C sam-
pled froma randomchromosomejj haspopulation frequency≤ x.The
IAF distribution may be calculated from closed-form formulas for
populations at equilibrium (35, 36) and from simulations for other
models (SI Appendix, Sections 1.2 and 1.3).
The IAF distribution (i) shows when selection is strong

enough that the allelic spectrum will consist primarily of rare
variants and, (ii) by providing the frequency of null and neutral
missense alleles, allows one to calculate the proportion ρC(T) of
missense alleles with frequency ≤ T that are null.
Unlike the CAF, the IAF distribution may be significantly

shaped by population history. We calculated the IAF distribution
for each population model (equilibrium and European model in
Fig. 1 B and C; remaining populations in SI Appendix, Section 2.3).
For the ancestral human population, the frequency distribu-

tion of null alleles in a gene (sampled from a randomly chosen
chromosome) should be roughly equally balanced between
common and rare frequencies if s ∼ 10−2.5. If selection is
stronger, null alleles will be mostly rare, comprising ≥90% of
alleles on randomly chosen chromosomes for s ≥ 10−2. If se-
lection is weaker, null alleles will be mostly common.
The dramatic expansion of the human population has impor-

tant effects on allele frequencies. Even if the population were to

stabilize at current levels, the large modern population size
would eventually drive all nonneutral alleles toward extremely
low allele frequencies. However, the speed of approach to this
new equilibrium varies substantially depending on s (39). Pop-
ulation expansion over the last ∼103 generations has a dramatic
effect for alleles with s � 10−3, but little effect when s � 10−3. In
the former case, the ancestral alleles are largely eliminated and
replaced by new alleles, which are born at a much lower frequency
as a result of population expansion. In the latter case, the ancestral
alleles continue to dominate and the median remains relatively
high (although there is a small excess of rare variants that provides
valuable information about population history) (40, 41).
The greater impact of population expansion on alleles under

strong selection can be seen by comparing the ancestral pop-
ulation vs. European model: the median allele frequencies are
1.7% vs. 0.6% if s = 10−3; 0.18% vs. 0.005% if s = 10−2; and
0.02% vs. 0.00005% if s = 10−1 (SI Appendix, Table S3). The
selection intensity s at which common and rare variants are
equally frequent is slightly weaker in Europe than in the ances-
tral population (10−3 vs. 10−2.5).

Impact of Population Expansion on the Genetic Architecture of
Disease. Various authors have speculated that the dramatic in-
crease in the number of new alleles caused by population ex-
pansion has altered the genetic architecture of disease and the
explanation for missing heritability (42–44). Specifically, it has
been suggested that expansion may have dramatically increased
(i) the total frequency of genetic disease by raising mutational
load; (ii) the relative importance of new alleles in disease risk; or
(iii) the role of rare variants in disease risk.

i. Disease frequency. In fact, population expansion does not
increase disease frequency. The increase in the number of
distinct alleles caused by population expansion does not
translate into a meaningful increase in the combined fre-
quency of alleles, because the vast majority of the newly
added alleles are so rare. Although the number of alleles is
relevant for studies of population history, disease frequency
depends on the CAF, which, as noted above, is largely un-
affected by recent human population expansion.

ii. Role of new alleles. Similarly, population expansion does not
substantially increase the proportion of disease due to new
alleles. For alleles under significant selection, simulations show
that the age distribution of a randomly chosen allele is essentially
unaltered by population expansion (SI Appendix, Section 2.4).

iii. Role of rare alleles. Population expansion does increase the
role of rare variants, although the effect is limited. Expansion
shifts the allelic spectrum from predominantly common to pre-
dominantly rare only for s in a relatively narrow range (10−3≤ s ≤
10−2.5 for Europe). Outside this range, the allelic spectrum
remains either predominantly common or predominantly rare.

Relevant Range of Selection Coefficients. The analysis above shows
that RVAS is important when s > 10−3 and essential when s >
10−2.5 (with ≥90% of variants being rare). We focus below on s in
the range of 10−3–10−1.
To understand how this range of selection might relate to

common diseases, it is useful to consider the situation of direct
selection—where the reduction in fitness caused by a null allele
is proportional to the extent to which it increases risk for the
disease under study. In this case, s = (λπ)sD, where π is the
disease prevalence in the general population and sD is the de-
creased reproductive fitness of individuals manifesting the dis-
ease. Schizophrenia (prevalence ∼1%) has a severe fitness cost,
which has been estimated at sD = 50% (45). An allele conferring
relative risk of 10-fold (λ = 9) would have s = 0.045 (∼10−1.3),
whereas one with 3-fold risk (λ = 2) would have s= 0.01 (∼10−2).
Type 2 diabetes has a higher prevalence of ∼10%, but likely has

¶The expected CAF for new neutral alleles born in a given generation is μC and thus the
increase in the expected CAF over k generations cannot exceed kμC (and will be lower
because many newborn alleles are lost). It follows that the collection of neutral alleles
born since the onset of human population cannot increase the CAF of neutral alleles by
more than 5% (= kμC/4μCNeq, where k =1,000 and Neq = 10,000). The actual increase is
typically much smaller due to loss of newborn alleles.

jjThe relevant sampling frame for disease studies involves randomly selecting a chromo-
some and inspecting it for alleles. Alleles are thus sampled according to their frequency,
yielding a frequency-weighted frequency distribution.

4 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1322563111 Zuk et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1322563111/-/DCSupplemental/sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1322563111


more modest effect on fitness—perhaps sD = 1%. Alleles confer-
ring 10-fold and 3-fold risk would have s = 10−2.0 and s = 10−2.7,
respectively. For very late-onset diseases such as Alzheimer’s,
the disease itself likely has little impact on reproductive fitness.
Direct selection would be weak (s � 10−3) and CVAS would
likely be the better strategy. Of course, these illustrations assume
direct selection. Genes may be under pleiotropic selection for
their effect on multiple phenotypes.

Knowledge of Key Parameters. Below we typically assume that the
values of μ, fD, s, and α for each gene are known. In reality, they
must be inferred from data.

i. Mutation rate μ. From local mutation rates, one can estimate
the mutation rate μ for observable classes (S, M, D).

ii. Frequency fD. The allele frequency fD for the class D of
disruptive alleles can be estimated simply by counting alleles
in a large sample, with the precision increasing with sample
size. For a coefficient of variation of 20%, about 25 events
must be seen (corresponding to 6,250, 62,500, and 625,000
people for s = 10−3, 10−2, and 10−1, respectively).

iii. Selection coefficient s. The selection coefficient for each gene
can be obtained from fD = μD/s (Eq. 2), by using the esti-
mated values of fD and μD and solving for s. The estimate’s
precision is inherently limited by the fact that the realized value
of fD in any given population fluctuates around the expected
value due to the stochastic nature of population history; this
variation cannot be reduced by increasing the sample size.
When selection is strong, s can be estimated to within roughly
half an order of magnitude (SI Appendix, Section 12.1). The
precision might be improved by combining results across
unrelated populations.

iv. Proportion of nulls, α. The fraction α of newborn missense
mutations that are null can be estimated from the deficit of
missense alleles seen in a population or evolutionary compar-
isons. However, there are issues with the precision and accu-
racy of these estimates (SI Appendix, Section 12.2). The best
solution may be to use a range of values of α in RVAS analysis.

With these foundations, we now turn to the design of RVAS.

RVAS Strategy 1: Studying Disruptive Alleles Only. One simple
strategy is to study only disruptive (D) variants in each gene: they
are all null alleles and confer the same excess relative risk
λD (=λnull). Disruptive alleles can thus be lumped into a single
meta-allele, whose frequency can be measured in cases and the
overall population, with the ratio providing an estimate of (1 + λnull).

For disease-predisposing alleles, Fig. 2A shows the number of
cases needed to detect association with 90% power. (To achieve
50% power, one needs ∼62% as many cases.) The expected
values are largely independent of population history.

i. For the weakest selection in our range (s = 10−3, where com-
mon and rare variants occur with equal frequency), we need
260, 770, 2,700, 8,400, and 28,000 cases where the relative risk
(1 + λ) is 20-, 10-, 5-, 3-, and 2-fold, respectively. Current case-
control collections used for CVAS for many diseases already
have the required sizes for RVAS.

ii. For stronger selection (s = 10−2), the sample size is 10-fold
larger: 2,600–280,000 cases. Current collections should suffice
to detect strong effects (1 + λ > 5).

iii. For the strongest selection in our range (s= 10−1), the sample
size grows another order of magnitude: 26,000–2.8 million.
Achieving such numbers is challenging, but should eventually
be feasible by aggregating clinical information, with patient
consent, across populations.

The corresponding sample sizes for detecting protective alleles
are shown in Fig. 2B. More samples are needed to detect pro-
tective alleles than harmful alleles, because it is harder to detect
a deficit (rather than an excess) of null alleles in cases against the
already low background in the population. In the extreme case of
a completely protective allele (λ = −1), the required sample size
is the same as for detecting harmful alleles that increase disease
risk by a factor of e ≈ 2.718.
Bottom line. Contrary to some initial expectations, the number of
cases needed for a well-powered RVAS is large and similar to
that needed for CVAS. To obtain enough cases to detect asso-
ciation, RVAS for disease should thus focus primarily, for the
foreseeable future, on sequencing case-control collections rather
than cohorts randomly selected from the population.

RVAS Strategy 2: Adding Missense Alleles Filtered by Frequency.One
obvious idea for increasing power is to include null missense
alleles in the association study. If we could perfectly recognize
the null missense alleles, we could simply count them alongside
the disruptive alleles. For a typical gene with α = 25%, the
number of events would increase by 2.8-fold (Table 1) and the
required sample size would decrease by 2.8-fold.
Given that we lack perfect knowledge, the question is as fol-

lows: how close can we come to this best possible case of 2.8-fold
reduction in sample size? The inability to distinguish between
null and neutral missense alleles creates a serious problem be-
cause neutral alleles are much more abundant. The usual solu-
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tion is to impose a frequency threshold T—that is, to study only
missense alleles with frequency ≤ T—with the aim of eliminating
the vast majority of neutral alleles (which tend to have higher
frequencies) while retaining most null alleles.
Even with this approach, missense alleles may be less useful

than disruptive alleles because the null alleles are always diluted
by neutral alleles: the proportion ρ(T) of nulls among missense
alleles with frequency ≤ T is always lower than the proportion α
among newborn alleles (for example, α= 25% for our typical gene).
As a consequence, the observed enrichment of missense alleles in
cases will always underestimate the true excess enrichment for null
alleles: specifically, λM(T) = ρ(T)λnull. It is thus essential that mis-
sense variants and disruptive variants be analyzed separately.
The threshold T is often chosen in an ad hoc manner (e.g., 1%,

0.5%, or 0.1%), but it should ideally be chosen to maximize
power (SI Appendix, Section 5). In general, the optimal threshold
T* turns out to be roughly the frequency where (i) ∼75% of null
alleles are retained and (ii) ∼16% of retained missense alleles
are null, meaning that the apparent value of λ will underestimate
the true value by ∼6.5-fold (SI Appendix, Tables S4–S9). Im-
portantly, the optimal threshold T* depends strongly on the se-
lection coefficient and thus differs across genes.
Using the optimal values of T* for Europe, missense alleles

together contribute 0.6- to 1.3-fold as much information as the
disruptive alleles, with the value rising as λnull increases from 0 to
10 (Fig. 2 C and D). When disruptive and missense alleles are
combined, the sample size thus falls by 1.6- to 2.3-fold.
Achieving this reduction requires using the optimal threshold

T*. If the threshold is too high or too low by 10-fold, the con-
tribution of missense alleles can fall by approximately twofold
(Fig. 2C). Moreover, using too high a threshold will underestimate
the apparent relative risk (possibly dramatically), owing to dilution
by neutral alleles.
Bottom line. Disruptive alleles provide the most robust informa-
tion and require no knowledge of s and α. Missense alleles should
be analyzed as well, but require care in selecting the correct fre-
quency cutoff for each gene (based on its selection coefficient).
For typical genes with α = 25%, incorporating missense alleles
may decrease sample size by approximately twofold. [The po-

tential improvement in sample size is only ∼1.4-fold for genes
where only a small proportion (α = 10%) of missense alleles
are null and could be as high as 3-fold for genes where the
proportion is unusually high (α= 60%).]

RVAS Strategy 3: Filtering Missense Alleles by Severity. It may be
possible to glean information about whether missense alleles are
null or neutral—either from biochemical experiments (24) (where
in vitro assays are available) or computational programs, such as
PolyPhen-2, SIFT, or MutationTaster (reviewed in ref. 46)—that
offer computational predictions of whether a mutation is likely to
be damaging. Given the quality of the predictions (proportions,
γnull and γneutral, of true null and neutral variants declared to be
damaging), one can calculate the optimal threshold T* and the
corresponding sample size.
If we use a predictor with γnull = 80% and γneutral = 20% [close

to the values reported for PolyPhen-2 (47)] and filter with the
optimal threshold T*, missense alleles contribute 1.2- to 2.0-fold
as much information as the disruptive alleles (SI Appendix,
Section 6) and thus decrease total sample size by 2.2- to 3.0-fold.
Bottom line. For typical genes with α = 25%, using a high-quality
predictor of the mutational impact of missense alleles can yield
a decrease of ∼2.5-fold in sample size (vs. twofold when filtering
by frequency alone).

Example: LDL Receptor in Early-Onset Myocardial Infarction. The
points above are nicely illustrated by a recent analysis of the
association between rare variants in the LDL receptor (LDLR)
and early-onset myocardial infarction (MI) (SI Appendix, Section
7.1). The study found that LDLR harbors (i) disruptive variants
in 20/2,743 cases and 1/2,465 controls corresponding to a relative
risk of 18.1 (or λD = 17.1), and (ii) missense variants with fre-
quency ≤1% in 172 cases and 102 controls, for a dramatically
lower relative risk of 1.5 (excess relative risk of λM(1%) = 0.5).
What accounts for the striking difference in the apparent

relative risk between disruptive and rare missense alleles? Our
framework provides a simple quantitative explanation. The se-
lection coefficient for null alleles can be estimated as s ∼ 10−1.7

[from the equation s = μD/fD, using fD = 1/(2 × 2,465) and the
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Fig. 2. Power to detect association for a typical gene.
(A) Number of cases needed to detect association based
on excess of disruptive disease-predisposing variants in
cases vs. general population, as a function of selection
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Curves represent various effect sizes 1 + λ. (Values for
90% power and 5% false-positive rate after Bonferroni
correction for testing 20,000 genes.) (SI Appendix, Sec-
tions 3.2 and 4). (B) Number of cases to detect associa-
tion based on deficit of disruptive protective variants.
Curves represent various values of (1 + λ)−1. The curve
for (1 + λ)−1 = 2 corresponds to twofold protection (50%
lower disease risk), whereas the curve for (1 + λ)−1 = ∞
corresponds to complete protection. (C ) Relative contri-
bution of missense vs. disruptive variants for European
model. Curves for various selection coefficients show ratio
of expected LOD scores for testing an excess of rare mis-
sense variants with frequency below threshold T divided
by expected LOD score for disruptive variants. Values are
calculated for effect size for null alleles of 1 + λ = 4.
For each s, there is an optimal threshold T* at which
missense alleles provide maximal relative contribution
(typically ∼1.0- to 1.3-fold) (SI Appendix, Section 5). (D)
Relative contribution of missense (vs. disruptive) variants
at optimal threshold T* as a function of 1 + λ for various
populations. Solid lines show values when filtering mis-
sense alleles by frequency threshold T*. Dashed lines show
values when also filtering to include only missense alleles
predicted to be deleterious (by a high-quality predictor with false-positive and false-negative rates of 20%). The functional predictor increases the
contribution of missense alleles—e.g., from 1.5-fold to 2.1-fold for genes 1 + λ = 10 in the European population (SI Appendix, Sections 5 and 6).
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mutation rate for LDLR (μD = 3.8 × 10−6); SI Appendix, Section
2.6]. Given such strong selection, the frequency threshold of 1%
used by the authors is expected to result in only a small pro-
portion of missense alleles being null: ρ(0.01) = 0.02. Given this
low proportion, the expected excess relative risk is only λM(1%) =
(0.02)λnull = 0.35, which is in good agreement with the observed
value of 0.5. In fact, the optimal threshold T* given such strong
selection is not 0.01 but ∼0.0001. At this much lower threshold,
we expect ∼17% of missense alleles to be null and to observe an
excess relative risk of 1 + λM(0.01%) = 3.8.
We note that there is a practical problem with using such low

thresholds. We assumed above that the frequency fD is known
precisely for every allele based on large population surveys. Based
on a limited number of samples, we cannot tell precisely which
alleles have frequency ≤0.0001. The best solution is to focus only
on singleton alleles (SI Appendix, Section 7). Given the sample
size, the expected relative risk for singleton alleles is 1 + λ = 3.7
compared with 3.8, when the frequencies are known precisely. It is
successful because the sample has ∼10,000 chromosomes, and
thus singleton alleles are likely to have a true frequency that is not
much greater than 0.0001. If the sample size was much smaller, the
apparent effect size (1 + λ) for singletons would be much lower:
2.1 and 1.4 for 1,000 and 100 chromosomes, respectively.**
Bottom line. The strong effect of null LDLR alleles on early-onset
myocardial infarction is evident from the enrichment of disrup-
tive alleles. [Interestingly, the relative risk is similar to that
inferred in the classic study of familial hypercholesterolemia
(48).] The true effect is much harder to discern from the mis-
sense variants, because the apparently strong selection on LDLR
causes missense variants to be swamped by neutral alleles even
when one imposes a frequency threshold of 1%.

RVAS Strategy 4: Hitting the Jackpot with Isolated Populations. An-
other approach to reducing sample size is to hope to be lucky. Al-
though the expected value of the CAF is essentially identical across
populations (see above), the variance of theCAFdiffers substantially.
Accordingly, wemight select a population in which theCAF for some
genes associated with a disease happens, by chance, to bemuch larger
than the expected value of μ/s. If we are lucky enough that the CAF is
10-fold higher than expected, we will be able to detect the gene
with a sample size that is 10-fold lower than expected.
Using simulations, we find that the CAF has a tight coefficient

of variation for expansion models and Europe but has a fat right
tail for isolated populations with recent bottlenecks (Fig. 3 and
SI Appendix, Section 8). If the expected CAF is small relative to
the reciprocal of the bottleneck size, we expect either 0 or 1
ancestral allele to pass through the bottleneck. In the latter case,
the CAF suddenly jumps to a much higher frequency (e.g., 1%
for Finland, with a bottleneck of 100 chromosomes) and declines
only slowly back to the expected level. This phenomenon
explains the high prevalence of dozens of so-called “Finnish
diseases” (monogenic disorders found at much higher fre-
quencies than in the rest of Europe). It also explains genetic
features in the Ashkenazi Jewish population, including the high
prevalence of certain disorders and the simpler allelic spectrum
for certain diseases [such as BRCA1 and BRCA2, in which three
founder alleles together account for the majority of early-onset
breast cancer among Ashkenazi Jewish women (49)].

For Finland’s tight bottleneck, the “sweet spot” occurs when
s ∼ 10−2.5–10−3. For s = 10−3, the CAF for null alleles in Finland
will be 5-, 10-, and 20-fold higher than expected for about 6%,
3.5%, and 1% of genes, respectively. For Iceland’s wider bottle-
neck, the sweet spot occurs for somewhat stronger selection (s ∼
10−1.5–10−2). For s = 10−2, the CAF for null alleles in Iceland will
be 5-, 10-, and 20-fold higher for about 5%, 2%, and 0.5% of
genes, respectively. The distributions depend on the bottleneck
size, number of generations since expansion, mutation rate of the
allelic class, and selection coefficient (SI Appendix, Section 8).
Bottom line. Tight bottlenecks scatter the relative contributions of
genes. Studying recently bottlenecked populations should thus
make it much easier to discover some disease-associated genes,
although it will be harder to detect other genes (whose ancestral
alleles failed to pass through the bottleneck). Although in-
complete, such early discoveries may prove especially valuable by
providing initial insights into disease pathogenesis. Studying
multiple bottlenecked populations may be a powerful strategy.

RVAS Strategy 5: Studying Gene Sets.Another potentially powerful
idea is to focus not just on single genes but on gene sets. Given a
gene set G with m genes, the simplest approach is to compare the
total number of events (e.g., disruptive alleles) across all genes
seen in cases and controls. The analysis is straightforward if each
gene in G has the same background frequency fD: the sample size
to achieve a given nominal significance level is smaller (relative
to detecting a single gene with excess relative risk λ) by a factor
of m gðλavgÞ=gðλÞ, where λavg is the average excess relative risk
across the set (SI Appendix, Section 9). If 50 genes each confer the
same high relative risk, we thus need 50-fold fewer samples to
achieve the same nominal significance level for the set as for any
individual genes alone. If 20 of 100 genes confer a relative risk of
1 + λ = 11 and the rest have no effect, the sample size required to
detect the set is smaller by a factor of ∼8 (=100 g(2)/g(10)) than
the size required to detect one of the risk-increasing genes alone.
The analysis is trickier if the background frequency differs

across genes. Genes with larger fD will disproportionately affect
the variance. On average, these genes will be under weaker se-
lection (because f ≈ μ/s) and thus likely to have smaller effect size
λ. More sophisticated LRT methods can be used to improve
power. Methods such as overdispersion tests can also allow for
both deleterious and protective alleles (50, 51).
The challenge is to select a set likely to be enriched for genes

associated with the disease or trait. An obvious set is the genes
implicated by CVAS, as genes related to a disease are likely to
harbor both common and rare variants. [For example, many
genes related to lipid levels harbor both types of variants (7).]
CVAS may provide a valuable foundation for RVAS.
Bottom line. Studying gene sets, especially those identified by
CVAS, is likely to be a powerful strategy. Discovering association
with a gene set does not reveal precisely which genes are con-
nected with the disease, but the findings can suggest targeted
population-based follow-up and laboratory investigation.

RVAS Strategy 6: Studying De Novo Mutations.An extreme example
of a frequency threshold is studying only de novo mutations.
The framework above applies directly, with the allele frequency
fD,denovo being the mutation rate μD. Focusing only on de novo
mutations would seem to be very inefficient, because they are so
rare (μD ∼2 × 10−6 for our typical gene). By Eq. 1, detecting
a gene in which disruptive alleles increase risk by 20-fold would
require ∼100,000 cases.
However, RVAS with de novo mutations can be effective for

genes with very large effect sizes. For example, CHD8 was associ-
ated with autism with mental retardation (prevalence < 1/300)
(52) based on the observation of de novo disruptive mutations in
3 of 1,078 cases (53, 54). Given the mutation rate of CHD8 (μD ∼
5 × 10−6), this observation is highly improbable (P ∼ 1.7 × 10−6),

**One can also perform an analysis considering only those missense alleles with fre-
quency ≤1% that are predicted to be probably damaging by PolyPhen-2 (that is, RVAS
strategy 3). One observes 89 such missense alleles in cases vs. 32 in controls, which
corresponds to an apparent excess relative risk λM(1%),PolyPhen2 = 2.5. This result agrees
closely with the expectation of λM(1%),PolyPhen2 = 2.3, given the inferred value of s and
the frequency threshold of 1%. For this type of analysis (assuming γnull = 80% and
γneutral = 20%), the optimal threshold turns out to be T*= 0.15%, which would yield
a much higher apparent effect size of λM(T*),PolyPhen2 = 8.2.
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and the effect size appears to be huge (∼300-fold before cor-
recting for the “winner’s curse”), corresponding to nearly com-
plete penetrance (SI Appendix, Section 2.6 and 10).
The example highlights a subtle advantage of de novo mutations

vs. standing variation in the general population.We assumed above
that background allele frequencies are known precisely, but they
must actually be inferred from data. The observation for CHD8
(three de novo events in cases) is only significant because the ex-
tremely low frequency fD,denovo = μD can be estimated with high
precision without the need for population studies, based on the
ability to infer mutation rates with high precision. A study of CHD8
based on standing variation could be similarly effective given a pre-
cise estimate of fD; however, this could require a survey of more than
half a million people in the case of strong selection (e.g., s = 0.1).
The comparative advantage for de novo mutations is thus

greatest for genes with the largest selection coefficient. The
proportion of null alleles that are de novo mutations is largest for
such genes. Indeed, under mutation selection balance, the
expected proportion of null alleles that are de novo is precisely s.
The gene set approach discussed above can be applied to de

novo mutations, with the nice feature that the genes contribute
more evenly because the frequency fD,denovo does not depend
on the selection coefficient. For example, the set of all 20,000
protein-coding genes shows an excess of de novo variants for
autism, indicating that many genes likely contribute (53, 54).
Bottom line. RVAS with de novo mutations can be valuable for
genes with huge effects and large values of s. However, the de-
sign is not well suited for finding genes that increase risk by
merely 20-fold or selection coefficients of merely 1%. Notably,
the approach does not require prior knowledge of population
frequencies, which can be a significant advantage.

Prospects for RVAS in Noncoding Regions. Whereas the methodol-
ogy for CVAS applies identically to both coding and noncoding
regions, extending RVAS to noncoding regions poses major new
challenges. The problem is that RVAS requires selecting the ge-
nomic regions across which to aggregate variants. The choice is
problematic.

i. If one focuses on a single regulatory element, such as a pro-
moter or enhancer, the target size is so small that the CAF is
tiny and the required sample size is huge. For example,
focusing on a 50-base regulatory element (vs. a 1,500-base
coding region) necessitates a 30-fold larger sample.

ii. On the other hand, if one combines all variants across a large
intergenic region, most sites will be functionally unimportant;
this dilutes the apparent value of λ and thereby inflates the
sample size. If ∼5% of intergenic DNA is functional, the
signal will be diluted by 20-fold and the sample size will be
inflated by 20- to 400-fold (depending on the value of λ).

iii.Outside of coding regions, there are no classes analogous to
disruptive variants, which can provide a pure signal largely un-
diluted by neutral mutations, or silent mutations, which can be
discarded as benign.

In addition, scanning the entire genome requires imposing a
more stringent threshold for statistical significance, which increases
the sample size by ∼50% (55) (SI Appendix, Section 11.1).
Finally, it is unclear whether noncoding regions will harbor

many signals to be found by RVAS. Although common variants
with moderate effects found by CVAS occur predominantly in
noncoding regions, there is reason to think that most rare var-
iants of large effect may lie in coding regions. This expectation is
based on the fact that single-base changes may have dramatic
effects in coding regions but rarely obliterate the function of
noncoding elements. Consistent with this, the inferred selection
coefficient in coding regions is about 10-fold higher than in
evolutionarily conserved noncoding sequences (56, 57).
Despite these challenges, it is appropriate to explore whole-

genome RVAS in certain well-chosen situations. A recent paper
(58) reported whole-genome sequence from 962 individuals and
searched for an association of HDL cholesterol levels with both
common and rare variants. The rare variant analysis involved
studying alleles with frequency ≤1% in sliding windows of 4 kb
across the genome. A handful of peaks with low P values was
identified, although none reach statistical significance.††

Bottom line. To perform RVAS with reasonable sensitivity in
noncoding regions, it will be important to have fairly precise
knowledge of the functionally important regulatory sequences
related to each human gene to aggregate them together. Without

Expansion 1
Europe
Finland
Iceland

A C D

fnull / E[fnull] =

B
Fr

eq
ue

nc
y 

(in
ve

rs
e 

cu
m

ul
at

iv
e)

0.00

0.08

0.06

0.04

0.02

0.10

5 10 15 200 25 30

fnull  = 0.027 0.054 0.08 0.110 0.13 0.16

5 10 15 200 25 30

0.0082 0.016 0.025 0.0330 0.041 0.049

5 10 15 200 25 30

0.0028 0.0057 0.0085 0.0110 0.014 0.017

5 10 15 200

0.00081 0.0016 0.0024 0.00320

s = 10–3 s = 10–2.5 s = 10–2 s = 10–1.5

25 30

0.004 0.0049

Fig. 3. Chances of being lucky. Figures show the right tail of the CAF (fnull) distribution for four selection coefficients s (10−3, 10−2.5, 10−2, 10−1.5) and four
demographic models. Curves show probability that the realized value of the CAF (fnull) for all null alleles, (in absolute terms and normalized to the expected
value given the selection coefficient) exceeds the value on the x-axis, with results obtained from 50,000 simulations of gene histories for each value of s and
demography. Finland and Iceland show heavy right tails (genes with CAF much larger than the expected value), because population bottlenecks scatter allele
frequencies. For s = 10−3 in Finland, 3.5% of genes have CAF that is 10-fold higher than expected—making it possible to discover the genes with a 10-fold
lower example size than expected. The distributions depend on bottleneck size, number of generations since expansion, mutation rate and selection co-
efficient (SI Appendix, Section 8). Tighter bottlenecks, as in Finland vs. Iceland, allow fewer alleles to pass, but result in greater proportional increase in allele
frequency. (Calculations assume μnull = 5 × 10−6, corresponding to α = 25%.)

††The paper reports that the best nominal P value observed across the genome is 2.7 ×
10−8 but does not address whether the value is significant. To correct for scanning the
entire genome, one can apply extreme value theory for Orenstein-Uhlenbeck diffusions
(SI Appendix, Section 11.1). The probability of such a P value arising by chance some-
where in the genome is ∼70%, and thus the observation is not statistically significant.
Genomewide significance at the 5% level corresponds to P ∼ 2 × 10−9 (SI Appendix,
Section 11.1).
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such information, the sample sizes required to detect association
will be larger by one to two orders of magnitude. At present, it
makes more sense to deploy resources primarily toward whole-
exome, rather than whole-genome, sequence. This approach will
maximize the number of samples that can be analyzed for coding
regions, where the power is currently vastly greater, where the
effect sizes are expected to be larger, and where the discoveries
are likely to be more immediately actionable.

Variance Explained. Finally, the analysis above relates directly to
the search for missing heritability. For a disease with prevalence
π, the proportion of phenotypic variance (on the observed scale)
explained by the null alleles in a gene G is

VarExp ≈ 2fnull
π

ð1− πÞλ
2: [4]

The case of LDLR in early-onset MI discussed above is unusual
in that it explains 1.8% of the phenotypic variance (or ∼3.6% of
the genetic variance). In contrast, most RVAS findings thus far
explain a tiny proportion the phenotypic variance. For example,
rare variants in SLC12A3 (also known as NCCT), SLC12A2 (also
known as NKCC2), and KCNJ1 (also known as ROMK1) each
explain an average of <0.17% of the phenotypic variance in risk
of hypertension, whereas rare variants in MTNR1B similarly ex-
plain <0.1% of the phenotypic variance in risk of type 2 diabetes
(18, 21) (SI Appendix, Section 13.3).
From Eqs. 1 and 4, one can calculate the number of cases

needed to detect genes explaining a given fraction of the phe-
notypic variance. To detect a gene explaining 1% of the phe-
notypic variance based on studying risk-increasing disruptive
alleles, the required number of cases should be ∼2,800, ∼4,700,
and ∼6,500 for diseases with prevalences of 1%, 5%, and 10%,
respectively (SI Appendix, Section 13.2). After reaching this sample
size, one can reasonably conclude that the remaining genes each
explain less than 1% of the variance. (For 0.1% of the variance,
the sample size should be 10-fold larger.)

Discussion
Some early RVAS efforts were premised on the notion that
searching for rare variants in small numbers of patients could
reveal the genes underlying disease. However, it is now clear that
rare variant studies, like common variant studies, will require
tens of thousands of cases and careful statistical analysis to
achieve adequate power to detect genes underlying disease.
Here, we describe a conceptual framework for thinking about

the design of RVAS. Our goal is not to compare specific statistics
that have been proposed but rather to extract insight and in-
tuition about how key factors influence RVAS for common
disease. For this reason, we focused on a simple situation: a two-
class model analyzed with burden tests using frequency cutoffs.
Our main conclusions are as follows.
Disruptive alleles, being a pure class of nulls, provide a key

backbone for RVAS. They are powerful and easy to interpret, as
the excess in cases directly reflects the effect size.
Missense alleles may potentially play a valuable role as well, by

decreasing the required sample size. However, missense alleles
are harder to interpret: they are always mixtures of null and
neutral alleles, with the proportions depending on the selection
coefficient for each gene (which must be inferred), the fre-
quency threshold used (which must be chosen), and the availability
and quality of functional predictions (from experimental or
computational analysis). Achieving maximal power and accurate
inference of effect sizes requires properly accounting for dilution by
neutral missense alleles. In practice, the maximal increase in power
corresponds to an ∼2.5-fold decrease in sample size for our typical
gene with α = 25%. (The improvement is much smaller for genes
with protein sequence under weaker constraint.)

The appropriate sample size for RVAS depends on the mu-
tation rate, selection coefficient, and effect size for null alleles in
the gene. Based on Fig. 1, a well-powered RVAS might aim for
a discovery sample of at least 25,000 cases for 90% power (or
∼15,000 cases for 50% power), together with a substantial rep-
lication set. This sample size should allow detection of most
genes where null alleles confer at least a 10-fold effect, as well as
those with 5- and 3-fold effects provided that s is not too strong
(s < 2 × 10−2 and 5 × 10−3, respectively). Fortunately, RVAS can
begin by sequencing existing sample collections that have been
used for CVAS, many of which contain many tens of thousands
of cases. Even larger samples will ultimately be desirable, which
should be feasible as genomic sequencing becomes a routine part
of medical care.
Three strategies may accelerate progress, by enabling early

discoveries. First, isolated populations resulting from recent
bottlenecks should make it easier to detect a subset of genes.
Examples include Finland, Iceland, Ashkenazi Jews, Amish,
Bedouins, and various endogamous groups in India. Studies
across multiple such populations could prove valuable. Second,
early signals may be provided by the study of gene sets that are
likely to be enriched for disease-associated loci. The best sets
may consist of genes implicated by CVAS. [Initial efforts to
identify rare variants in genes identified by CVAS have met only
limited success. However, this is likely due to the small discovery
sets used—typically, only a few hundred cases (23).] Whereas
CVAS and RVAS are sometimes thought of as alternatives,
they are likely to be complementary. Third, de novo mutations
can be a valuable tool for detecting genes with large effect sizes.
This strategy is likely to be most effective for diseases and genes
under extremely strong selection (e.g., severe autism).
Extending RVAS to noncoding regions might seem like an

obvious next step, given that CVAS has identified so many
common variants affecting common traits in noncoding regions.
However, major challenges must be overcome before this could
become practical. Without a clear scheme for aggregating alleles
in noncoding regions, RVAS would require a 10- to 100-fold
larger sample size to detect comparable effect size in noncoding
vs. coding regions. Moreover, there is reason to expect that rare
variants of large effects may be skewed toward coding regions.
Our simple framework was chosen to maximize insight and

intuition. However, it has limitations, including that it assumes
(i) a two-class model for allelic effects, (ii) constant selection
across history, (iii) absolute frequency cutoffs, (iv) unrelated
cases rather than families, (v) discrete traits rather than quanti-
tative traits, and (vi) no gene × environment interaction.
We elaborate on these points in SI Appendix, Section 14. In

particular, we show that incorporating hypomorphic alleles
would not alter our conclusions significantly. Hypomorphic
alleles will typically be common rather than rare owing to weaker
selection (s estimated in the range of 10−3–10−4) (13, 29, 59) and
rare hypomorphic alleles will increase detection power only
modestly, owing to their smaller effect size (SI Appendix, Section
5.1). Both hypomorphic and countervailing alleles will dilute
apparent effect sizes. Although we ignore them for initial gene
detection in RVAS, it will be important to consider the possi-
bility of such alleles once a gene has been implicated.
Our paper also addresses certain questions in human pop-

ulation genetics. Contrary to some suggestions, the increase in
the number of distinct alleles resulting from the human pop-
ulation explosion over the last ∼1,000 generations has not led to
an increase in the total frequency of disease or a greater role for
younger alleles in disease. The paper also raises a number of further
research questions in human genetics, including improved ways
to estimating s and α for each gene and analyzing gene sets
comprised of genes with varying properties (60).
There is currently little empirical evidence about (i) whether

rare variants associated with a disease will reveal many new
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genes beyond those already implicated by common variants and
(ii) whether the contribution of rare variants to the heritability
of common disease will be large or small. Most of the loci
discovered so far account for only a fraction of a percentage
point of the phenotypic variance (with a few exceptions such
as LDLR above), but large, systematic studies will be required
to assess the combined contribution across loci. The answer
may differ across common diseases, with rare variants likely to

play a greater role in disorders such as schizophrenia and au-
tism and, perhaps, cancer. Regardless of their overall contribu-
tion, rare variants in specific genes can enable clinical insights
about function.
Assuming that large-scale sequencing gets underway for many

diseases, the coming years should be an exciting period for hu-
man genetics as we finally are able to probe the full genetic ar-
chitecture underlying human disease.
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