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SEARCHING FOR PRIMITIVE ROOTS
IN FINITE FIELDS

VICTOR SHOUP

Abstract. Let GF(p") be the finite field with p" elements, where p is prime.
We consider the problem of how to deterministically generate in polynomial
time a subset of GF(p") that contains a primitive root, i.e., an element that
generates the multiplicative group of nonzero elements in GF(p" ). We present
three results. First, we present a solution to this problem for the case where p
is small, i.e., p = n0*1'. Second, we present a solution to this problem under
the assumption of the Extended Riemann Hypothesis (ERH) for the case where
p is large and « = 2 . Third, we give a quantitative improvement of a theorem
of Wang on the least primitive root for GF(p), assuming the ERH.

1. Introduction

Consider the problem of finding a primitive root in a finite field. For a finite
field GF(p") (with p prime and n > 1), a nonzero element g e GF(p") is
called a primitive root if it generates the multiplicative group of units, GF(p")*.
Although there are no known polynomial-time algorithms for constructing a
primitive root, or even for testing whether a given element is a primitive root
(at least when the factorization of p" - 1 is unknown), we can still raise the
question of how to efficiently search for a primitive root. By a search procedure
for primitive roots in G¥(pn), we mean an algorithm that generates a subset
of GF(p") that contains (with high probability, in the case of a probabilistic
algorithm) at least one primitive root.

It is well known that the density of primitive roots in GF(p") is great enough
so that the simple method of choosing a small number of elements in GF(pn)
at random is in fact a probabilistic polynomial-time search procedure (here,
polynomial-time means (n log/?)0*1'). However, the existence of a deterministic
polynomial-time search procedure for primitive roots in an arbitrary finite field
is an open question—and it is this question that we address here.

An important result in this area is due to Wang [32], who shows that, assum-
ing the Extended Riemann Hypothesis (ERH), there exists a positive integer
x = (log/7)°(1) such that xmodp is a primitive root for GF(p). More pre-
cisely, Wang shows that x = 0(r6(logp)2), where r = co(p - 1), the number
of distinct prime divisors of p - 1.  Note that for any integer m, œ(m) =
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0(logm/loglogm) (see, e.g., [13, p. 355]). Thus, if the ERH is true, the deter-
ministic search procedure that simply enumerates the integers 1, 2, 3, etc., will
generate a primitive root in polynomial time.

We prove three results. Our first result applies to the problem searching for
primitive roots in GF(2"), and more generally, in GF(pn) with p small. We
show (unconditionally) that given any irreducible polynomial / of degree n
in GF(2)[X], there exists a polynomial 6 e GF(2)[Ar] (itself irreducible) such
that degö = 0(log«) and (dmodf) is a primitive root for GF(2)[X]/(/) =
GF(2"). More precisely, we prove the following:

Theorem 1.1. Let S be an irreducible polynomial of degree n over GF(p), and
let r = coip" - 1). Let I be chosen such that pl > cr4(logr + l)4«2, where
c is a certain absolute positive constant. Then there exists a monk irreducible
polynomial 6 e GFip)[X] öSdegree l suchthat (Omodf) is a primitive root
SorGF(p)[X]/(S).

This result implies that the deterministic search procedure that enumerates
all linear polynomials, and then all quadratic polynomials, etc., will generate a
primitive root in GF(p") intime («p)0(1). Furthermore, combining this result
with the algorithm in [28] for deterministically constructing irreducible polyno-
mials, we conclude that the problem of constructing a primitive polynomial (an
irreducible polynomial / for which (XmodS) is a primitive root) over GF(p)
of degree n can be reduced in deterministic time («p)°(1) to the problem of
testing primitivity. Previously-known reductions of this type were probabilistic.

We note that Shparlinsky [30, Theorem 2.4] also gives a deterministic search
procedure with running time («p)0(I) ; however, the method described in that
paper does not in general construct a set of polynomials of small degree.

Our second result applies to the problem of searching for primitive roots in
GF(p2). We prove the following:

Theorem 1.2. Assume the ERH; then there is a deterministic polynomial-time
search procedure for primitive roots in GF(p2).

The statement of the theorem does not specify in which specific model of
GF(p2) a primitive root is sought, but this is not an issue, since isomorphisms
between different models of GF(p2) can be computed deterministically in poly-
nomial time, and some model of GF(p2) can be deterministically constructed in
polynomial time assuming the ERH (see, e.g., [20]). In proving this theorem, we
actually show the following: assuming the ERH, we can deterministically con-
struct in polynomial time a certain model GF(/?)(a) of GF(p2), and within
this model there exists a primitive root of the form a + ba, where a and b are
integers of absolute value (log/?)0(1). Unfortunately, our proof of this theorem
does not generalize to arbitrary finite fields GF(pn), even for fixed « > 2.

Under the assumption of the ERH, this theorem implies that one can de-
terministically construct a qth nonresidue in GF(p2) for a given prime q
dividing p2 - 1 in time (logp)°(1)—independent of q . Previous such methods
(e.g., [15, 3]) required time at least q . One application of this is the following.
For integer m , let S(m) denote the largest prime dividing m . It is shown in
[27], by refining the algorithm in [31], that under the assumption of the ERH,
polynomials of degree d over GF(p) can be factored deterministically in time
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S(p - l)ll2(dlogp)°^ . By combining Theorem 2 with the techniques in [27,
3], one can prove an analogous result with S(p + 1) replacing S(p - 1).

Our third result is a quantitative improvement of Wang's theorem. By using
a better combinatorial sieve and a better character sum estimate than that used
by Wang, we are able to prove the following.

Theorem  1.3. Assume the ERH;  then  the least primitive root   modp   is
0(r4(logr + I)4(logp)2), where r = co(p - 1).

Related work. Besides the results of Wang and Shparlinsky referred to above,
we mention the following work on primitive roots in finite fields.

Let GF(p") = GF(p)(a). Davenport [9] proves that for given n and suf-
ficiently large p (depending on n), there exists a primitive root of the form
a + a, with a e GF(p). Note that our Theorem 1.1 contains a more explicit
version of this result as a special case. Carlitz [6] proves that for given n, I,
and sufficiently large p (depending on n, I), there exists a primitive root of
the form 9(a), where 8 is a monic polynomial of degree /. Carlitz also shows
that for given e > 0, for all sufficiently large p" (depending on e), and for
/ > (1/2 + e)n, there exists a primitive root of the form 8(a), where 9 is a
monic polynomial of degree /.

Karacuba [18], extending the work of Burgess [5], Wang [32], and Davenport
and Lewis [10], proves the existence of a primitive root in GF(pn) of the form
a„-ia"~l H-h aia + a0, where the a, 's are bounded by pxl4+£ (for all e > 0
and all sufficiently large p). See also the work of Friedlander [12] and Hinz
[14].

The results in this paper bear on the basic issue in Computer Science of the
power of probabilistic versus deterministic models of computation—and more
specifically, the problem of eliminating the need for randomness in algorithms.
Recently, there has been much work on this problem in the area of number-
theoretic and algebraic algorithms. In this regard, we mention the deterministic
algorithms for constructing irreducible polynomials of degree n over GF(p) in
the papers [1, 11, 8, 26, 28]. The running times of the algorithms in [1, 11] are
(«log/?)°(1), assuming the ERH, whereas the running times of the algorithms
in [8, 26, 28] are unconditionally (np)°W. We also mention the result of
Lenstra [20] that isomorphisms between two different models of a GF(pn ) can
be computed in deterministic time («log/?)0(1) (unconditionally). Also relevant
is recent work on factoring polynomials over finite fields [3, 15, 24, 23, 25,
29, 31].

2. Preliminaries

As does Wang, we shall make use of a combinatorial sieve. However, we will
use a sieve due to Iwaniec [ 17] that is easier to apply and gives sharper upper
bounds. Iwaniec specifically considers a problem known as Jacobsthal's prob-
lem, which is to estimate for a given r the maximum length C(r) of a sequence
of consecutive integers, each divisible by one of r arbitrarily chosen primes.
Iwaniec proves that C(r) = 0(r2(logr)2). However, Iwaniec's arguments can
easily by generalized to obtain the following:
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Proposition 2.1 (Iwaniec's Shifted Sieve). Let Y be a finite set, and let U: Y -> Z
and W: Y —> R>0. Let qi, ... , qr be distinct primes with Q = q\-qr ■ Define

¿Z     wiy)

and fior d \ Q
gcd(U(y),Q)=

U{y)=0 (modrf)

Suppose there exist A and B such that \Sd - A/d\ < B for all d \ Q. Then
T>CxAHlogr+l)2-c2r2B,

where ex, c2 are absolute positive constants.
Proof. We sketch here the modifications of Iwaniec's proof required to obtain
the proposition. We can assume that r > 1 ; otherwise, the proposition is
immediate.

Assume that qx < ■■■ < qr. Let Px < ■■• < pr be the first r primes, and let
P = Pi ■ ■ -Pr • Let {Xn: n\P) be a set of real numbers, and let on = Y,m\n ̂ «
for n | P. Assume that a„ < Y,m\n P(m) f°r au n I ? > where p is the Möbius
function.

Lemma 1 in [17] can be easily generalized to obtain

(2.1) T>A\[[l-^jGx-BG2,
¡=i

where

=£iw£-d'    G2=Elu
Let z — pr, and let y satisfy z2 < y < z4. By choosing the numbers A„

appropriately (see the definition on p. 229 of [17]), the following estimates are
derived in [16]:

(2.2) Gx =2e*.»^U0(Vi->)s \logyJ
and

(2-3) °2=0V(.og^.
where s = logy/log z and k is Euler's constant.

By setting y = Cz2 for a sufficiently large absolute constant C (which de-
pends on the big-'O' constant in (2.2)), from these estimates and the prime
number theorem, one can easily show that G2 = 0(r2) and Gx — fí(l/logr).
Combining this with (2.1) yields the proposition.   D

We will make extensive use of characters on finite abelian groups. We sum-
marize the basic facts here (see, e.g., [4, pp. 415 ff]). Let G be a finite abelian
group. A character x on G is a homomorphism from G into the complex
unit circle. The characters on G form a group under the multiplication law
(Xil2)(o) - Xi(a)X2(a) ■ The character that is 1 on G is called the principal
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character, and is denoted by xo • It is known that the character group of G is
isomorphic to G. Furthermore, suppose that H is a subgroup of G, and that
H' is the subgroup of the character group of G that is 1 on H. Then it is easy
to show that the order of H' is [G : H], and that

[G : H]   ifaeH,
0 otherwise.E *(«) = {

3. Proof of Theorem 1.1
Let F = GF(p). We use the following notation:
For / > 0, M¡ is the set of monic polynomials in F[X] of degree / ;
For / > 1, // is the set of monic irreducible polynomials in F[X] of de-

gree /;
M = [)l>0M¡;

A is the Von Mangoldt function for F[X]: A(9) is equal to degP if 9 is
a power of the irreducible polynomial P, and is otherwise equal to 0.

We begin with the following character sum estimate.

Proposition 3.1. Let feMn, and let x be a nontrivial character on (F[X]/(f))*,
extended by zero to all polynomials. Then for all I > 1, we have

E *(W0) <(n-l)p"2.
1 0eM,

Proof. To prove this, we use the L-function

L(X,T)=Y,x(e)T^e.
eeM

As written, this is a formal power series in T ; however, it is easy to see that
since x is nontrivial, it is actually a polynomial in T of degree less than n .
Therefore, we have the factorization

(3.1) L(x,T) = Y[(l-aiT),
i=l

where the a, 's are complex numbers.
It is a consequence of Weil's theorem on the Riemann hypothesis for function

fields that each a, is bounded by p^2 in absolute value. We briefly sketch why
this is so.

Let g be the conductor of x (so 8 is a divisor of /, different from 1), and
let x' be the corresponding primitive character modulo g. Then by Euler's
product formula, we have

Lix , T) = Lix', T) J¡ ( 1 - x'(9)T^e),
e\f
e\g

where the product ranges over all monic irreducible 9 that divide / but
not g.
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It follows from the discussion in Appendix V of Weil's book [33] that

deg£-l

L(X',T)=   I]   V-ßiT)
1=1

if x' is nontrivial on F, and otherwise

deg£-2

L(x',T) = (l-T)   n   (1-ÂT),
j=i

where, in either case, all of the /?, 's have absolute value equal to pll2. This fact
can be seen by using x' to define a character w on the idele group for F[X]
in the manner described in §6 of Appendix V, with œ^ = 1. The conductor of
œ will contain oo to the power 1 if /' is nontrivial on F (in which case a>
is ramified at oo) ; otherwise, oo does not divide the conductor of œ (and œ
is unramified at oo).

We conclude that all of the a,'s appearing in (3.1) are either 0, roots of
unity, or of absolute value px¡2. Now consider the formal power series

t.L'(x, T)     y^ i Ti
TT(x-7f)=\lx,T-

From (3.1), it follows that

(3.2) ll = -a\-al2-q'„_,    for all / > 1.

But if we compute TL'(x> T)/L(x, T) using the Euler product formula for
Lix, T) (see, e.g., [21, p. 196]), we obtain

(3.3) X, = £ X(0)A(9).
eeM,

Combining (3.2) and (3.3) with the fact the a, 's are bounded by pll2 in abso-
lute value, proves the proposition.   D

We are now ready to prove Theorem 1.1. Let / be the given monic irre-
ducible polynomial of degree n . For a multiplicative character x on the finite
field F[X]/iS), let

J(x,i) = Yll-x(d)-
06/,

From Proposition 3.1 it follows that J(x, I) = 0(npl¡2) if x is nontrivial, and
J(X, I) = Pl + 0(np'l2) otherwise.

For 9 e F[X] prime to /, let ind(ö) be the discrete logarithm of (9 mod/)
with respect to some arbitrary but fixed primitive root for F[X]/(f). To apply
Iwaniec's Shifted Sieve, we let pn - 1 = q\' ■ • • qfr be the prime factorization
of pn - 1, and set Q = qx ■■ qr. We put Y = I¡\{f). Now for 9 e Y,
put U(9) = ind(9) and W(9) = /, and let Sd (for d \ Q) and T be the
corresponding sums.
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To estimate Sj , let / be a multiplicative character of order d on F[X]/(f).
Then we have

Sd=    E    ' = ¿EE*w
eer ee/, 1=0

ind(0)=O (modd)

= \j(X°, I) + \ ¿ /(*' »0 = 7 + Oinp"2).
,=i

It then follows from Iwaniec's Shifted Sieve that

r=    j]    />ciy/(iogr+i)2-c2A-y/2«.
0er

gcd(ind(0),Q)=l

We can force T to be positive by choosing / so that pl > cr4(logr + l)4«2 ,
where c is a certain absolute constant. For such values of /, the set Y will
contain a primitive root. This proves Theorem 1.1.

4.  DlRICHLET CHARACTERS IN ALGEBRAIC NUMBER FIELDS

In this section, we establish some notation and state some results concerning
Dirichlet characters that will be used in subsequent sections.

A Dirichlet character modulo a positive integer m is a character on the group
(Z/mZ)*, extended by zero to all integers. Let x > 0. For a positive integer
k, let

( ClogkMl - k/x)   iffcisprime,
A0(A:, x) =

0 otherwise.
For a Dirichlet character x mod m , let

J(X,x) = ^Ao(k,x)x(k).
k<x

Montgomery [22, Chapter 13] establishes the following character sum estimate:

Proposition 4.1. Assume the ERH. For a Dirichlet character ^modm, and Sor
x > 0, we have J(x, x) — x/2 + 0(xxl2logm) Sor x — Xo> and J(x, x) =
0(x112 log m ) otherwise.

From these estimates, one can easily derive an upper bound of 0((logp)2) on
the least prime that is a quadratic nonresidue (or residue) modulo a prime p .
This was first proved by Ankeny [2]. The following simple variant of Ankeny's
theorem will be useful.

Proposition 4.2. Assume the ERH. Let p be an odd prime. Then there exists a
prime q - 0((logp)2) with q = 1 (mod 4) suchthat q is a quadratic nonresidue
(or residue) modp.
ProoS- Consider the group (Z/4pZ)*, along with the subgroup G of index 2
consisting of all k = 1 (mod 4), and the subgroup H — G2 of index 4. Then
we have

jAo(fc^) = ^^#)Ao(fc^),
k<x k<x   X
keG
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where the sum on x is over the two Dirichlet characters mod 4p that are 1 on
G. By considering the principal character separately, and applying Proposition
4.1, we see that

(4.1) E Mk,x) = x/4 + 0(xl/2logp).
k<x
keG

A similar argument shows that

(4.2) Yl A°(k > x) = */8 + °(xl/2 lo^)-
k<x
keH

It is easy to see that (4.1) and (4.2) together imply the proposition.   D

Dirichlet characters are also defined in algebraic number fields. We first
summarize the basic definitions (see Heilbronn [7, pp. 204 ff.] for more back-
ground). K will denote a number field with ring of integers O. By A we will
denote the absolute value of the discriminant of K and by h the class number.
For an integral ideal A , N(A) denotes its norm, and for a e K, Nia) denotes
its norm.

We let y denote the group of nonzero (fractional) ideals and & the sub-
group of principal ideals. Let M be a given integral ideal. We let JM denote
the subgroup of ideals prime to M, and ¿Pm denote the subgroup of principal
ideals prime to M. An element a e K is called totally positive if it is positive
in all real embeddings of K in C. (In our application, K will be a complex
quadratic field, and so all nonzero elements of K are vacuously totally posi-
tive.) We let ¿^m denote the subgroup of ¿Pm consisting of all principal ideals
that are generated by an element a/b such that (i) a, b e O, (ii) a, b prime
to M, (iii) a = b (modAf), and (iv) a/b is totally positive.

One can show that [J^ : £?M\ = h and that \¿PM '■ &l¡\ is finite, so that in
particular, J^m/^m is a finite abelian group. Let //(M) denote the character
group of JFmI&m • A function x £ H^M) is known as a Dirichlet character
modulo M. As for ordinary Dirichlet characters, we extend x by zero to all
ideals.

We now define character sums as in [19]. Let A be the Von Mangoldt
function for ideals, i.e., AiA) = logTV(P) if A is the power of a prime ideal
P, and A(/l) = 0 otherwise. Now for y > x > 1 and u > 0, define fc(w ; x, y)
as follows:

0 if u > y2,
u~l logiy2/u) if xy < u < y2,
u~x logiu/x2) if x2 < u < xy,
0 if u < x2.

k{u;x,y) = <

For convenience, we define

AxiA,x,y) = AiA)kiNiA);x,y).
Finally, for a Dirichlet character x and y > x > 1, we define the character
sum

I(X, x, y) = Y^ A, iA, x, y)x(A),
A
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where A ranges over all nonzero integral ideals. Note that this is actually a
finite sum, as it counts only prime-power ideals of norm less than y2.

The following character sum estimates can be easily extracted from the proof
of Theorem 1.2 in [19].
Proposition 4.3. Assume the ERH. For a Dirichlet character xm(*dM and for
y > x > 1, we have
(4 3) I(X,x,y) = (log(y/x))2 + 0(x~l log(A/V(M)))

+ Oix~2 logiy/x) log(A/V(M)))
M X = Xo, and
(4.4) I(X,x,y) = 0(x~x log(AN(M)))

for X^Xo-

5. Proof of Theorem 1.2

The prime p may, of course, be assumed to be odd. Let p2 - 1 = q\' • • • qer'
and Q = qx • • • q,.

First, we must find the least rational prime ô = 1 (mod 4) such that -ô
is a quadratic nonresidue modulo p. Assuming the ERH, we know that the
least such ô is 0((log/?)2) by Proposition 4.2 ( ô is a quadratic nonresidue if
p = 1 (mod4), and a quadratic residue otherwise).

Let œ = v7-^ € C, and let K = Q(w). Then K is a number field with
integers O = Z[œ], and A- 4S . As ô > 3, the only units in O are ± 1. As
a consequence of Minkowski's theorem, the class number h is 0(A'/2logA),
which is 0((log/?)(loglog/?)).

We shall represent GF(/?2) as GF(/?)(<y), where œ is a root of X2 + S in
GFip2). The map p: O -> GF(p2) that sends a + bœ to a + bœ is a surjective
ring homomorphism with kernel (p).

We will show below that under the assumption of the ERH, there exists a e O
with Nia) = 0(r4(logr + l)4A2(log/?)2) such that pia) is a primitive root in
GF(p2). It will then follow that there exist integers a, b such that a + bW is a
primitive root for GF(p2), where \a\ = 0(r2(logr+ l)2(log/?)2(loglogp)) and
|*| = 0(r2(logr + l)2(logp)(loglog/7)).

Consider the subgroup (±1) of GF(/?2)*, and let n be the canonical ho-
momorphism from GFip2)* onto G = GF(p2)*/(±l). Observe that G is a
cyclic group of order (p2 - l)/2, and that since 4 | p2 - 1, g & GF(p2)* is a
generator if and only if n(g) € G is a generator. For a given element u of G,
let ind(w) denote the discrete logarithm of u with respect to some arbitrary
but fixed generator in G.

Now, we define t: &p —> G as follows. For A e &p, choose a, b in O
prime to p such that A = (a/b), and define z(A) — n(p(a)/p(b)). It is easy
to show that this definition is independent of the choice of a and b, and that
t is a surjective group homomorphism with kernel &p .

It will suffice to show the existence of an integral ideal A e ¿Pp of small
norm such that gcd(ind(r(^)), Q) - 1. Let y > x > 1 be fixed (their values
will be determined later). Using the notation of Iwaniec's Shifted Sieve, we let
Y = âsp, and for a e &>„ , let UiA) = ind(r(/4)) and WiA) = AxiA, x, y).
Let S¡¡ (for d \ Q) and T be the corresponding sums.
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To estimate Sd, let <9¿ be the preimage of Gd under t , where Gd is the
subgroup of i/th powers in G. Then 5¿ is a subgroup of index d in &p
containing J^1 . Let Hd denote the subgroup of the character group //(p) that
is 1 on the subgroup ^d/^l of ^vl^°l ■ Then Hd is a group of order hd,
and for any A e Jo ,

E X(A) = {
xeHd

It follows from this, and the bound (4.4), that

Sd= hd  E /(*>*.)')

hd   ifAe^d,
0      otherwise.

Ad
X€Hd

= I{X°nj,y)+0(x-llogiANip))).

It then follows from Iwaniec's Shifted Sieve that

We now choose x and y to ensure that T > 0. From the bound (4.3), for
an appropriately large constant c, x = cr2(logr + I)2h log(AJV(p)) and y = 2.x
will do the job. Since log(A/V(p)) = O(logp), this implies the existence of an
ideal A of norm less than y2 = 0(r4(logr + l)4h2(logp)2) such that A e &p
and tiA) is a generator for G.

6. Proof of Theorem 1.3
For integer k, let ind(/c) denote the discrete logarithm of k modp with

respect to some fixed primitive root. Let Q denote the product of the distinct
primes dividing p - 1. For a given x, one applies Iwaniec's Shifted Sieve
using Y = [k: l<k<x,p\k}, and for k e Y, C/(fc) = ind(A:) and
Wik) = Ao(k, x). The proof then follows the same general line of reasoning
as the proofs of Theorems 1.1 and 1.2: one first uses Proposition 4.1 to obtain
an estimate for the sum Sd, and then applies Iwaniec's Shifted Sieve to get a
lower bound on T in terms of x . We omit the details.
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