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Searching for prostate cancer 
by fully automated magnetic 
resonance imaging classification: 
deep learning versus non-deep 
learning
Xinggang Wang1,2, Wei Yang3, Jeffrey Weinreb4, Juan Han5, Qiubai Li6, Xiangchuang Kong7, 
Yongluan Yan2, Zan Ke1, Bo Luo8, Tao Liu8 & Liang Wang1,9

Prostate cancer (PCa) is a major cause of death since ancient time documented in Egyptian Ptolemaic 

mummy imaging. PCa detection is critical to personalized medicine and varies considerably under 

an MRI scan. 172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the 
prostate were obtained. A deep learning with deep convolutional neural network (DCNN) and a 
non-deep learning with SIFT image feature and bag-of-word (BoW), a representative method for 
image recognition and analysis, were used to distinguish pathologically confirmed PCa patients from 
prostate benign conditions (BCs) patients with prostatitis or prostate benign hyperplasia (BPH). In fully 
automated detection of PCa patients, deep learning had a statistically higher area under the receiver 
operating characteristics curve (AUC) than non-deep learning (P = 0.0007 < 0.001). The AUCs were 0.84 
(95% CI 0.78–0.89) for deep learning method and 0.70 (95% CI 0.63–0.77) for non-deep learning method, 
respectively. Our results suggest that deep learning with DCNN is superior to non-deep learning with 
SIFT image feature and BoW model for fully automated PCa patients differentiation from prostate BCs 
patients. Our deep learning method is extensible to image modalities such as MR imaging, CT and PET 
of other organs.

Prostate cancer (PCa) is a cause of death since ancient time documented in Egyptian Ptolemaic mummy imaging1.  
In the western countries, PCa is the most prevalent cancer and the third leading cause of cancer death in men2. In East 
Asian countries, the morbidity and mortality of PCa have increased dramatically, making it the fastest rising can-
cer among male malignancies. The accurate detection of PCa is an interesting but challenging task for physicians3.  
The distinction of PCa from prostate benign conditions (BC) including prostate benign hyperplasia (BPH) and 
prostatitis, is critical to personalized medicine4. Currently, MR Images of the prostate are manually evaluated by 
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radiologists. However, the detection of PCa using MR images varies considerably. In a recent meta-analysis for 
PCa detection the specificity was 0.73 (95% confidence interval [CI] 0.60–0.83) with sensitivity of 0.89 (95% CI 
0.86–0.92)5.

Machine learning (ML) is a branch of artificial intelligence (AI) that adopts various optimization, probabil-
istic, and statistical tools to learn from past examples and to then employ that prior training to classify new data, 
predict novel trends or identify new patterns6–8. Imaging recognition technology is one of the core technologies 
of ML9.

Traditional image recognition methods, such as Support Vector Machine (SVM), Artificial Neural Networks 
(ANNs), Bayesian Networks (BNs), Decision Trees (DTs), k-nearest neighbors (k-NN), and Adaboost9–11, use 
hand crafted image features, such as texture, shape, density of pixels, and off-shelf classifiers. We name these tra-
ditional imaging recognition methods as non-deep-learning methods in this paper. The non-deep-learning meth-
ods have been contributed to medicine, such as breast cancer, neurodegenerative diseases, psychiatric diseases, 
and others7,8,11–14. However, the main limitation of non-deep-learning methods is that these methods depend on 
the feature-extraction step and it is hard to find and extract suitable image features for a specific medical-image 
recognition problem. If the feature is not effective enough, the off-shelf classifier is not able to obtain satisfactory 
results.

The use of AI technologies in medical imaging has becoming popular, especially with the development of deep 
learning15–27. To deal with image data, deep convolutional neural network (DCNN) is used28–33. Deep learning 
methods enable to learn adaptive image features and perform image classification simultaneously. Considering 
significant achievement of deep learning on image recognition, it is potential to apply deep learning to classify 
MR images for automated disease assistant-diagnosis. To the best of our knowledge, this is not yet a study to 
compare deep-learning and non-deep-learning methods to medical imaging for the automatic classification of 
PCa or BCs patients with MR images.

The objective of the study is to search for PCa patients through MR imaging classification using deep learning 
versus non-deep learning. The choice of non-deep-learning algorithm is one challenge of this study. As a matter 
of fact, there have been many computer-aided diagnosis (CAD) algorithms for the prostate in MRI7. However, 
most of the CAD algorithms do not have source code and implementation details7. It is impossible to make com-
parison between studies without source code and implementation details. Thus, for a fair comparison we chose 
SIFT image feature with bag-of-word (BoW) model, a representative method in image recognition and analysis. 
In computer vision domain, the BoW was the representative method for CAD before the era of deep learning. 
Please refer to the image-net 2012 results34.

We compare a deep learning with DCNN algorithm and a non-deep learning with SIFT image feature and 
BoW model algorithm on building classifiers to distinguish PCa patients with prostate BCs patients using mor-
phologic images (axial 2D T2-weighted imaging) of the prostate. We carry out a patient-based PCa and BCs 
classification, which only require patient-level labeling of the PCa or BCs patients and the corresponding images 
rather than segmenting the lesions on images in the learning algorithm. The gold standard used to assign the 
labels to the training images was the pathological diagnosis. The deep learning with DCNN method obtains sig-
nificantly better than the non-deep learning with SIFT image feature and BoW model method. The deep learning 
with DCNN method may ultimately enable imaging interpretation to be easier and assist novices or general phy-
sicians to increase diagnostic accuracy, efficiency and consistency, and contribute to precision medicine.

Results
To validate the effectiveness of the proposed deep learning method, comparison was made between deep learning 
with DCNN versus non-deep learning with SIFT image feature and BoW model in area under receiver operating 
characteristic curve (AUC), sensitivity, specificity, PPV and NPV. A P < 0.05 was considered statistically signif-
icant. Figure 1 and Table 1 provide overall PCa patients differentiation statistics of deep learning with DCNN 
versus non-deep learning with SIFT image feature and BoW model. The AUCs in deep learning with DCNN 
and non-deep learning with SIFT image feature and BoW model were 0.84 (95% CI 0.78–0.89) and 0.70 (95% CI 
0.63–0.77) respectively. There was a significant difference between the AUCs in deep learning with DCNN and 
non-deep learning with SIFT image feature and BoW model (P = 0.0007 < 0.001). At the cut-off value above 0.5, 
sensitivity was 69.6%, specificity was 83.9%, positive prediction value (PPV) was 78.6%, and negative prediction 
value (NPV) was 76.5% for deep learning with DCNN. At the same cut-off value, sensitivity was 49.4%, specificity 
was 81.7%, PPV was 69.6%, and NPV was 65.5% for non-deep learning with SIFT image feature and BoW model.

Discussion
It is one of the first studies applying deep learning with DCNN as well as non-deep-learning to medical imaging. 
The novel study is a patient-based formulation for the automatic classification of PCa or prostate BCs patients 
with morphologic images (axial 2D T2-weighted imaging), in which a deep learning method and a non-deep 
learning method were compared. We develope a structure and workflow of deep learning that classifies PCa and 
prostate BCs patients based on the prostate morphologic images (axial 2D T2-weighted imaging), and compare 
deep learning classifiers with DCNN versus non-deep-learning with SIFT image feature and BoW model in the 
detection of PCa or prostate BCs patients.

Non-deep-learning methods9–11, such as SVM, ANNs, BNs, DTs, k-NN, and Adaboost, basically depend on a 
feature extraction step which usually describes images using texture, gradient and Gabor filters, etc. In contrast, 
it is a merit of our method that the proposed deep-learning method learns image features automatically within 
deep networks.

For a fair comparison, we chose SIFT features and BoW model as the representative of the so-called non-deep 
learning methods for image recognition. We extracted encoded the SIFT features using a pre-trained dictionary 
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to generate a vector image representation. We applied a linear SVM classifier on the vector representation to 
obtain image classification. The SIFT features were extracted from the augmented images, which were generated 
using the same data augmentation method as we used in the deep learning method.

In our study, the training data and test data were better partitioned in terms of “subject”, i.e., patient. In this 
case, there were 172 subjects. In comparison to the recent ML papers on prostate studies, there were 147 subjects9 
and 66 T2-weighted prostate images35, respectively. Even though this study was based on the ImageNet model, 
incorporating the features from the natural images, it should be noted that MR images are different from the 
nature images. It means that it may require a much larger sample size than 172. To make the subject sufficient for 
the study, our experiments were carried out according to 10-fold cross validation method published by Beheshti I36  
and Ying J37. The method can ensure the robustness of our classifiers and the independence between the training 
data and test data. The pre-trained ImageNet model with augmented data was fine-tuned. As shown in the results, 
our deep learning classifier obtained robust performance. From the perspective of deep learning mechanism, 
the DCNN may work as a feature extractor, which provided a better feature for MR images. The final layer is a 
linear classifier which is equivalent to the classifiers in the non-deep learning method. As shown in the result, our 
method of deep learning from 172 subjects is feasible and interesting.

Deep learning that classifies image requires small-size images as the input of DCNN. A DCNN model that 
takes small-size image enables faster training and testing speed. We used the method published by Samala33, 
Rajkomar32 to resize each image with cubic interpolation. While preserving the original label during the training 
of deep learning classifier, we cropped each training image of 360 × 360 into multiple sub-images of 288 × 288. 
The method is popular in computer vision domain.

In this study, we showed that convolution features learnt from morphologic images (axial 2D T2-weighted 
imaging) of the prostate were used to classify PCa or prostate BCs patients. These convolution features were basi-
cally unrecognized by human inspection. However, the machine could efficiently and effectively recognize the 
convolution features and classified PCa or prostate BCs patients (Supplementary).

The deep learning system proposed in this paper relies on high-efficiency computational resources. Our 
experiments were carried out on a workstation with two Nvidia Titan X GPUs, an 8-cores Intel i7 CPU and 32GB 
memory. With these powerful computational resources, it took only 10 minutes to train a DCNN model for 1000 
iterations and took less than 0.5 second to test a patient.

Figure 1. The ROC curves for PCa and prostate BCs patients differentiation of non-deep learning with SIFT 
image feature and BoW model versus deep learning with deep convolutional neural network (DCNN). Note: 
ROC curve: receiver operating characteristic curve. AUC: area under ROC. PCa = prostate cancer prostate 
BCs = prostate benign conditions BPH = benign prostatic hyperplasia.

Predictive test AUC mean (95% CI)*

N (%) of PCa patient correctly classified

Sensitivity Specificity PPV NPV

Deep learning 0.84 (0.78–0.89) 69.6% (55/79) 83.9% (78/93) 78.6% (55/70) 76.5% (78/102)

Non-deep-learning 0.70 (0.63–0.77) 49.4% (39/79) 81.7% (76/93) 69.6% (39/56) 65.5% (76/116)

Table 1. Overall PCa patient differentiation statistics of deep learning with DCNN versus non-deep learning 
with SIFT image feature and BoW model method. Note: *P = 0.0007 < 0.001. Criterion: cut-off value >0.5. 
CI: confidence Interval. PPV: positive prediction value. NPV: negative prediction value. ROC curve: receiver 
operating characteristic curve. AUC: area under ROC. PCa = prostate cancer.
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As described in the result section, the AUCs of deep learning with DCNN and non-deep learning with SIFT 
image feature and BoW model were 0.84 (95% CI 0.78–0.89) and 0.70 (95% CI 0.63–0.77) respectively. There was 
a significant difference between the AUCs in deep learning with DCNN and non-deep learning with SIFT image 
feature and BoW model (P = 0.0007 < 0.001). The sensitivity was 69.6%, specificity was 83.9%, positive predic-
tion value (PPV) was 78.6%, the negative prediction value (NPV) was 76.5% for deep learning with DCNN. The 
sensitivity was 49.4%, specificity was 81.7%, PPV was 69.6%, NPV was 65.5% for non-deep learning with SIFT 
image feature and BoW model. Thus our deep learning with DCNN is able to produce better differentiation 
performance than non-deep learning with SIFT image feature and BoW model. Deep learning with DCNN has 
better capability in image recognition of prostate MRI than non-deep-learning with SIFT image feature and BoW 
model.

There are the limitations of the study. First, we use more than one image from each patient assuming inde-
pendence among them, and classify PCa or prostate BCs patients with the images individually. Currently, in the 
research of computer vision and deep learning, understanding 3D data still lacks of effective methods. Analyzing 
3d data in a frame by frame manner is the most popular way. In the future work, we will work on developing 
more effective deep learning methods by utilizing the dependence of the images from each patient for better 
PCa detection. Second, our study is a patient-based to compare deep-learning with non-deep-learning for the 
automatic classification of PCa or prostate BCs patients with morphologic images (axial 2D T2-weighted imag-
ing). There was no manual work such as lesion-based label annotations or segmentation in our study. We believe 
that it is a merit of this paper. It has a clear advantage and makes sense in computer vision and deep learning. 
The advantage is that it does not require image label annotations or segmentations manually. Nevertheless, the 
patient-based study cannot provide information regarding tumor location on images. Third, our study merely 
used morphologic images (axial 2D T2-weighted imaging) of the prostate. The use of adding quantitative fea-
tures from functional images including DWI and DCE-MRI remains to be investigated. Fourth, we merely focus 
on the comparison between deep learning with DCNN and non-deep-learning with SIFT image feature and 
BoW model. The comparison between deep learning and radiologist remains to be investigated. Nevertheless, 
the objective of our study is to determine which one of two methods, deep learning with DCNN versus non-deep 
learning with SIFT image feature and BoW model, is better in the detection of PCa. We found deep learning with 
DCNN is able to produce better differentiation performance than non-deep learning with SIFT image feature and 
BoW model in the detection of PCa patients.

In summary, we elucidated that prostate MR image machine learning classifiers in terms of morphologi-
cal information can successfully search for PCa patients. This deep learning with DCNN method outperforms 
non-deep-learning with SIFT image feature and BoW model for the automatic classification of MR images of PCa 
or BCs patients. Our prostate MR images obtained from routine clinical practice, our machine learning classifiers 
could be efficiently implemented into current clinical practice. Accurate diagnosis provided by our deep learning 
with the DCNN method can contribute to precision medicine.

Methods
Subject. The research protocol for this retrospective study was approved by the institutional review board of 
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. All methods were per-
formed in the principles of the Declaration of Helsinki. Written informed consent was obtained from the subject. 
172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the prostate were obtained from 
Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, with pathologically 
confirmed PCa and prostate BCs including BPH and prostatitis. The patient’s cohort included 93 prostate BCs and 
79 PCa patients. Patient characteristics of the cohort are summarized in Table 2.

MR Image Acquisition. All MR images were performed by using a 3.0 Tesla (T) whole-body unit 
(MAGNETOM Skyra, Siemens Medical Solutions, Erlangen, Germany) followed by pathology reports and one 
year’s follow-up. The acquisition protocol included T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), 
dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted imaging (DWI). The final cohort size was 

Characteristics Summary

PCa patients N = 79

Age (years) (average, range) 67.9(50–88)

Number of MR imaging * N = 1164

Prostate BCs patients N = 93

Age (years) (average, range) N = 66.5(47–91)

Number of MR imaging* N = 1438

 BPH N = 75

 BPH + prostatitis N = 18

Table 2. Patient Characteristics. Note: PCa = prostate cancer. prostate BCs = prostate benign conditions. 
BPH = benign prostatic hyperplasia. *Morphologic images (axial 2D T2-weighted imaging). The study is a 
patient-based to to compare deep-learning with DCNN versus non-deep-learning with SIFT image feature and 
BoW model for the automatic classification of PCa or prostate BCs patients with morphologic images (axial 2D 
T2-weighted imaging).
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172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the prostate used in our analysis 
(Table 2). The acquisition parameters for obtaining the 2dimensional transverse T2WI turbo spin-echo images 
were set as follows: repetition time (TR) 6750 ms, echo time (TE) 104 ms, echo train length 16, section thickness 
3 mm, no intersection gap, field of view (FOV) 180 mm × 180 mm, image matrix 384 × 384. Most CNN networks 
require square images. In the paper, we resize the image to 360 × 360 before input the image into deep net-
works. The network we designed requires input image in this size. The common practice in deep learning helps to 
improve the speed of deep learning classifier.

The method published by Samala33, Rajkomar32 was applied to resize each image with cubic interpolation. The 
method could ensure accelerated our training and testing DCNN, while preserving the original label during the 
training of deep learning classifier. Each image of 360 × 360 was cropped into multiple sub-images of 288 × 288. 
Imaging processing and imaging analysis used all the images. For convenience, we set the images to have equal 
weight. The final classification result was obtained via a voting strategy formatted in Equation = ∑ =

P pi M j
M

ij

1

1
i

i .

Clinical variables and pathology reports. The clinical variables and pathology reports of each PCa 
patients and prostate BCs patients were acquired from our research database (Table 2).

Cross-Validation. For the robustness of our classifiers, a 10-fold cross validation method published by 
Beheshti I36 and Ying J37 was applied to randomly partition the 172 patients into 10 equal sized groups to ensure 
the independence between the training data and test data, as described in Table 3.

Formulation of Image Classification using Deep Learning with DCNN. To describe the MR image 
classification using deep learning in the patient-based study, we gave the formulations in this section. At first, we 
denoted a patient as = ∈ ...X x j M{ , [1, , ]}i ij i , where ∈ ...X i N, [1, , ]i  denoted the i-th patient, there were N 
patients in total, the i-th patient contains Mi images, and xij was the j-th image of the i-th patient. Then, each 
patient had a clinical label. Accordingly, each patient was denoted as Xi which means that we treated all images of 
a patient as a whole, each lesion of the patient will be either used for training or for testing in one fold of the 
experiments.

For the patient Xi, its clinical label was denoted as Yi. We defined that if the i-th patient was PCa, Yi = 1 and if 
the i-th patient was BCs, Yi = 2.

Training a deep learning model required the label of each image, which meant we needed the label of xij 
denoted as yij. To address the issue, we set the image label as its patient label, denoted as yij = Yi.

After obtaining the labels of all training images, we trained a deep CNN model using back-propagation in the 
Caffe deep learning toolbox. The learned deep CNN model was denoted as f.

In testing phase, we used the learned deep CNN model f to compute the classification probability pij of image 
xij denoted as f(xij). Pij was a vector denoted as ∈

×p R
ij

K 1, where K was the number of classes. In this study, K = 2, 

pij(1) was the probability xij belonged to prostate PCa, and pij(2) was the probability xij belonged to BCs, and the 
sum of pij was 1 which was restricted in by the deep CNN structure.

After obtaining the classification result of each PCa or prostate BC patient with images, we could easily obtain 
the classification result of a patient by averaging its images classification results, denoted as = ∑ =

P pi M j
M

ij

1

1
i

i . Pi was 

a K = 2 dimensional vector and its sum was equal to 1. Finally, we could get classification label of the patient Xi by 
checking which dimension had larger probability. If the first dimension had large value, it was classified as PCa 
patient; otherwise, it was classified as BC patient.

Deep Learning Toolbox. In this study, a popular deep learning toolbox created by Berkeley Vision and a 
learning center, named Caffe, was utilized for implementing the automated PCa and BCs patient differentiation 
system (Supplementary). Python for data preparation, analysis and visualization was used. The hyper- parameters 
of our DCNN were set as follows: gamma 0.1, momentum 0.9, weight decay 0.1, and maximum training iteration 
1000 (Supplementary).

Training Deep Learning Classifier. The method published by Samala33, Rajkomar32 to resize each image 
with cubic interpolation was applied. A pre-trained ImageNet model was used for fine-tuning our model with 
augmented data. In data augmentation, each training image of 360 × 360 was cropped into multiple sub-images 

No. of group 1 2 3 4 5 6 7 8 9 10

Training (No. of patients 
and No. of images)

All 155 (2342) 155 (2352) 154 (2310) 155 (2342) 155 (2318) 155 (2372) 155 (2371) 154 (2324) 155 (2350) 155 (2337)

BC 84 (1295) 82 (1272) 84 (1283) 81 (1252) 86 (1314) 83 (1298) 88 (1370) 81 (1252) 82 (1276) 86 (1330)

PCa 71 (1047) 73 (1080) 70 (1027) 74 (1090) 69 (1004) 72 (1074) 67 (1001) 73 (1072) 73 (1074) 69 (1007)

Testing (No. of patients 
and No. of images)

All 17 (260) 17 (250) 18 (292) 17 (260) 17 (284) 17 (230) 17 (231) 18 (278) 17 (252) 17 (265)

BC 9 (143) 11 (166) 9 (155) 12 (186) 7 (124) 10 (140) 5 (68) 12 (186) 11 (162) 7 (108)

PCa 8 (117) 6 (84) 9 (137) 5 (74) 10 (160) 7 (90) 12 (163) 6 (92) 6 (90) 10 (157)

Table 3. Training data, testing data of 10-fold cross validation on PCa and BCs patients differentiation 

experiments of deep learning with deep convolutional neural network (DCNN) versus non-deep-learning with 

SIFT image feature and BoW model. Note: PCa = prostate cancer. prostate BCs = prostate benign conditions.
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of 288 × 288 while preserving the original label during the training of deep learning classifier. The deep learn-
ing classifiers were used to conduct supervised machine learning. The inputs to the classification algorithms 
were the prostate morphologic images (axial 2D T2-weighted imaging). There were 5 convolutional layers and 2 
inner product layers. After every convolutional layer, there was a max-pooling layer and a non-linear ReLU layer, 
respectively. Thus, different from the non-deep learning, which depends on the feature extraction step, DCNN 
automatically learnt from image features using the image labels given by the pathological diagnosis. The learned 
features were adaptive and more suitable for solving the problem without of human design. The outputs specified 
the predicted diagnosis groups. The hyper-parameters were set based on our experiences of tuning deep networks 
for image recognitions are given in Fig. 2.

Formulation of Image Classification using Non-deep-learning Method. We used a 
non-deep-learning method named as bag-of-word (BoW) with SIFT image feature, a representative method for 
image recognition. SIFT image feature is popular for its scale and rotation invariance, it builds local image rep-
resentation based on image gradient. For each image, a set of SIFT features were extracted and encoded using a 
pre-trained dictionary. The BoW model aggregated the encoded SIFT features into a vector representation for 
each image. Image classification was done with a linear SVM classifier on the vector representation. In addition, 
for a fairy comparison between deep learning and non-deep-learning, the SIFT features were extracted from the 
augmented images, which were generated using the same data augmentation method as we used in the deep 
learning method. Thus, for deep learning and non-deep-learning, the data augmentation method was the same. 
Then, we gave the formulation of BoW using SIFT feature as follows. We denoted the SIFT features extracted 
from MR image xij as Sij. Sij were a set of feature vectors. Then we applied the Fisher vector coding38 to aggregate 
the local image descriptors into a vector representation of image xij, denoted as =F FV S( )ij ij .

Based on the vector representations, we used SVM as the classifier of the studied non-deep-learning method, 
which was learned from training images and applied to classify testing images. For each training image, SVM 
classifier gave its probability of being PCa patient. We subsequently used the same equation for deep learning 
method (in Eq. ( = ∑ =

P pi M j
M

ij

1

1
i

i ) to calculate the probability of a PCa patient.

Non-Deep-Learning Toolbox. To implement the proposed non-deep-learning method, the VLFeat tool-
box was used to extract SIFT feature and Fisher vector coding and the LibLinear toolbox to do SVM training and 
testing. We used the same data augmentation method used in the deep learning method to process the training 
images. The hyper-parameters were given as follows: the number of clustering center of Fisher vector coding was 
set to 64. The bias term of linear SVM was set to be true.

Training data, testing data of 10-fold cross validation on the PCa and prostate BCs patients 
differentiation experiments with deep learning versus non-deep-learning. For the robustness of 
our classifiers, we applied a 10-fold cross validation method published by Beheshti I36, Ying J37 to randomly parti-
tion the 172 patients into 10 equal sized groups. Specifically, as described in Table 3, the 10-fold cross-validation 
method ensured the independence between the training data and test data for deep learning with DCNN versus 
non-deep-learning with SIFT image feature and BoW model. Please refer to the source code in the Supplementary.

Assessment. For diagnostic classification to differentiate PCa patients from prostate BCs patients based on 
deep learning with DCNN versus non-deep-learning with SIFT image feature and BoW model, ROC curves were 
performed and AUCs of every classifiers based on deep learning with DCNN versus non-deep-learning with SIFT 
image feature and BoW model were generated.

Figure 2. The structure of deep learning with deep convolutional neural network (DCNN) for the automatic 
classification of a PCa or BCs patient with morphologic images (axial 2D T2-weighted imaging). A 
288 × 288 × 3 MR image was input. Five convolution layers and two inner product layers with sizes were shown 
in the figure. A max-pooling layer and non-linear ReLU layer following each convolution layer. A max-pooling 
layer downsize feature map gradually as demonstrated. Finally, an output layer specified PCa patient probability 
on input image. Note: PCa = prostate cancer. Prostate BCs = prostate benign conditions. BPH = benign 
prostatic hyperplasia.
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