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ABSTRACT

The hypothesis that genomic regions rich in non-
protein-coding RNAs (ncRNAs) can be identified
using local variations in single-base and dinucleotide
statistics has been investigated. (G+C)%, (G–C)%
difference, (A–T)% difference and dinucleotide-
frequency statistics were compared among seven
classes of ncRNAs and three genomes. Significant
variations were observed in (G+C)% and, in Methano-
coccus jannaschii, in the frequency of the dinucleotide
‘CG’. Screening programs based on these two base-
composition statistics were developed. With (G+C)%
screening alone, a 1% fraction of the M.jannaschii
genome containing all 44 known transfer RNAs,
ribosomal RNAs and signal recognition particle RNAs
could be identified. When (G+C)% combined with CG
dinucleotide-frequency screening was used, 43 of
the 44 known M.jannaschii structural ncRNAs were
again identified, while the number of presumably
false hits overlapping a known or putative protein-
coding gene was reduced from 15 to 6. In addition,
19 candidate ncRNAs were identified including one
with significant homology to several known archaeal
RNaseP RNAs.

INTRODUCTION

Non-protein-coding RNAs (ncRNAs) are known to play
significant roles in biological systems. Along with the familiar
transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs),
ncRNAs contribute to gene splicing, RNA nucleotide
modification, protein transport and regulation of gene expres-
sion (1). Consequently, identifying ncRNAs is an important
task. Conventional protein gene-finding programs such as
Genscan are not designed to locate ncRNAs. In cases where
detailed characterization of the ncRNA gene families is
possible, specialized RNA gene-finding programs have been
quite successful (2–5). In addition, promising new ncRNA
search algorithms based on comparative genomics have been
proposed (6–8). Nevertheless, the goal of locating ncRNAs,
when detailed characterizations of the target RNA sequences
are unavailable, remains difficult to achieve.

One intriguing approach (9) is that, for some genomes, the
local percentage of GC bases (G+C)% may serve as a filter to
screen for ncRNA-rich regions. Genomic variations in base-
composition statistics, such as (G+C)%, and their application
to searching for protein-coding genes have been studied for
many years (reviewed in 10). In particular, it is well known
that thermophiles maintain the stability of ncRNAs by
increasing their (G+C)% (11,12). It is also known that thermo-
philes generally use mechanisms other than (G+C)% elevation
to maintain the stability of their genomic DNA (13,14). Based
on these ideas, Rivas and Eddy proposed ncRNA gene-finding
based on (G+C)% (9). They also suggested this approach may be
applicable even in non-thermophiles—such as Caenorhabditis
elegans—which have differing ncRNA and genomic (G+C)%
(9). However, the feasibility of such an approach has not been
clear since other investigations (15–17) have indicated that
base composition alone is not sufficient to predict RNA
folding and hence the occurrence of ncRNAs in the genome.

Other base-composition statistics besides (G+C)% might
also be expected to vary between ncRNAs and their genomic
background. For example, the single-strand G minus C excess,
(G–C)%—also known as the ‘G–C% Chargaff difference’—
has long been known to be very small for a wide range of
organisms (18). Similarly small values have been observed for
(A–T)% Chargaff differences. Moreover, at least in
Escherichia coli, these approximate G=C and A=T single-
strand frequency equalities—known as ‘Chargaff’s Second
Law’—have been observed on the local level as well (18).

On the other hand, RNAs may be subject to constraints
causing deviation from Chargaff’s Second Law. For example,
recent work suggests that non-zero Chargaff differences may
mark the presence of protein-coding messenger RNAs
(mRNAs) (19). Moreover, G/U base pairs are more commonly
found in RNA structure than C/A base pairs, which might lead
to local violations of Chargaff’s Second Law.

Relative dinucleotide frequencies might also be anticipated
to vary between ncRNAs and the genomic background.
Though dinucleotide frequencies vary widely among species,
they tend to be relatively constant within the genome of any
single species (10). However, ncRNAs are subject to structural
constraints that may influence their dinucleotide composition.
ncRNAs typically form folded structures whose stacking
energies—and consequently whose conformation—depend on
their dinucleotide composition (20–21). As a result, one might
expect that ncRNA dinucleotide frequencies would display
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characteristic atypical values relative to the genomic back-
ground.

The present work investigates the feasibility of using local
base-composition statistics to distinguish between ncRNA-rich
and ncRNA-poor regions of the genome. The goal is to parti-
tion a genomic region into two components—one well defined
component with high probability of containing ncRNAs and
the other component with low probability of containing
ncRNAs. To assess the feasibility of this approach, base-
composition statistics from a variety of ncRNAs were
compiled. Similar statistics were acquired from three test
genomes (Methanococcus jannaschii, Plasmodium falciparum
and C.elegans) and were compared with the values found from
the RNA sequences. Lastly, for the case where the largest
RNA-genome variations were observed—specifically, for
(G+C)% and ρ(CG) in M.jannaschii—two programs were
developed to apply these statistical variations to genome-wide
searching for ncRNA genes. Using these programs led to the
identification of 36 known tRNAs, six known rRNAs and one
known signal recognition particle RNA in M.jannaschii. In
addition, 19 putative ncRNAs including one with homology to
several RNaseP RNAs were identified.

MATERIALS AND METHODS

Data sources

Sequence data for cytoplasmic tRNAs (22), rRNAs (23,24),
riboregulator RNAs (25), small nuclear RNAs (snRNAs) and
small cytoplasmic RNAs (http://mbcr.bcm.tmc.edu/
smallRNA/), small nucleolar RNAs (snoRNAs) (http://
rna.wustl.edu/snoRNAdb/), signal recognition particle RNAs
(SRP RNAs) (26), and RNA pseudoknots (27) were obtained
from the public databases.

Genomic data for M.jannaschii, P.falciparum and C.elegans
were downloaded from the NCBI GenBank genomes databases
(ftp://ftp.ncbi.nih.gov/genomes/) in April 2001.

Base-composition statistics calculated

For each sequence, the following statistics were computed:
(G+C)% = 100 (nG + nC)/(nA + nC + nG + nT)
(G–C)% Chargaff difference = 100 (nG – nC)/(nG + nC)
(A–T)% Chargaff difference = 100 (nA – nT)/(nA + nT)
ρ(AB) = [f(AB)/f(A)*f(B)] = (L * nAB)/(nA * nB)
where L is the sequence length, nB and nAB are the number of
occurrences of base ‘B’ or the dinucleotide AB, respectively,
and f(B) or f(AB) is the frequency of occurrence of base B or
dinucleotide AB [e.g. f(B) = nB / L]. [We use Karlin et al.’s
(10) variable ρ rather than their variable ρ* to measure dinu-
cleotide frequencies since we are interested in observing the
effects of RNA genes that will be present on only one of the
two DNA strands.]

It should be noted that a systematic, positive (G–C)% differ-
ence in ncRNAs would not necessarily imply a positive
genomic (G–C)% difference at an ncRNA gene since the
ncRNA gene might be on the negative strand. However, any
systematic non-zero ncRNA Chargaff differences of either
sign would imply non-zero genomic Chargaff differences near
an ncRNA gene. Moreover, if the absolute value of the local
Chargaff difference indicated the presence of an ncRNA, then
the sign of the difference could serve as an indicator of the

strand on which the ncRNA was located. Similarly, systematic
ncRNA dinucleotide variations (except for dinucleotides that
are their own reverse complements) would result in somewhat
different genomic signatures depending on which strand the
ncRNA were located.

Base-composition statistical averages

RNA data were grouped by RNA type and by species. In most
cases, M.jannaschii, P.falciparum, C.elegans and Homo
sapiens RNA sequences were used. For those RNA classes
for which the databases contained limited or no data for
M.jannaschii, P.falciparum, C.elegans and H.sapiens, RNA
sequence data from other organisms or groups of organisms
were used, as noted in the text and tables.

For genomic averages, 1000 random samples of 100 bp each
were selected per chromosome. In addition, tests were
performed to check for any local base-composition variations
along the length of a chromosome. For example, for chromo-
some I of C.elegans, the entire chromosomal sequence was
divided into 49 regions of 294 kb each, and base-composition
statistics for 1000 random samples of 100 bp were calculated
for each of the 49 regions.

For each group of sequences (whether RNAs or genomic
samples), means and standard deviations (SDs) of each of the
base-composition statistics were calculated. For the genomic
sequences, parameter means and SDs for each of the chromo-
somal subregions were also calculated. Statistical significance
of population differences between parameter-means was deter-
mined using Student t-test comparisons with 95% confidence
levels.

Algorithms and training of ncRNA search programs

Two ncRNA search algorithms were implemented. The first
approach (‘Program I’) is based solely on scoring local
(G+C)% values. (G+C)% of a subsequence is scored using a
log odds (LOD) score (9):
LOD = CAT(nA + nT) + CGC(nC + nG)
where
CAT = log2[(A+T)% in RNA genes/(A+T)% in genome]
and
CGC = log2[(G+C)% in RNA genes/(G+C)% in genome]

The second search algorithm (‘Program II’)identifies
possible ncRNAs using a combination of (G+C)% and ρ(CG)
values. The (G+C)% component of this algorithm is identical
to Program I; however, any putative hit must also have a value
of ρ(CG) larger than a specified cut-off value.

Both programs have a few adjustable parameters: the
window lengths to be tried while searching for a hit, the
minimum RNA length, and the LOD cut-off scores to indicate
the beginning and end of a ‘hit’. Program II has one additional
parameter: the cut-off value for ρ(CG).

The adjustable parameters were chosen by training the
programs on a 20 kb subsequence of the M.jannaschii
sequence (from 850 000 to 870 000) which has six annotated
tRNA genes and one annotated rRNA gene. Using this training
data, the following parameter values were selected for Program I
(and subsequently used for the scan of the entire genome):
minimum RNA length = 40 bp; window length range = 25–100 bp;
minimum LOD value for the start of a hit = 19; and minimum
LOD value for the continuation of a hit = 13. After training
Program II with the same training set, the cut-off value for
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ρ(CG) was set equal to 0.5 and the minimum LOD value for
the start of a hit was set equal to 15, with the other parameters
having the same values they had for Program I.

Assessment of the search programs

Both search programs were run against the M.jannaschii
genome with the resulting hits compared with known RNAs as
annotated in the GenBank ‘.gbk’ database file at ftp://
ftp.ncbi.nih.gov/genomes/. Sequence segments that scored
above the scoring threshold and that did not overlap any
GenBank annotated gene—as well as 60 bp extensions of those
sequences—were input to the NCBI BLAST program (28) and
run against the NCBI non-redundant nucleotide database
(NRDB). In most cases, default BLAST parameters were used.
A few BLAST searches were performed with non-default
wordsize, match or mismatch values. Changing the BLAST
parameter values did not result in any additional, noteworthy
BLAST hits.

RESULTS

Two significant base-composition variations were observed
between RNAs and the background genome: (G+C)% and, in
M.jannaschii, ρ(CG). For example, in M.jannaschii RNA
mean (G+C)% is 63.1%, while background (G+C)% is 31.4%
(Table 1). In C.elegans RNA mean (G+C)% is 53.5%, while
background (G+C)% (on chromosome I) is 35.9%. ρ(CG) in
M.jannaschii RNAs is 0.75 while background ρ(CG) is 0.34
(Table 1). These differences between RNA and genome values

for (G+C)% and ρ(CG) in M.jannaschii formed the basis for
the RNA gene-finding algorithms.

However, we observed that RNA (G+C)% is not elevated in
all species: Plasmodium-RNA mean (G+C)% is 32.1%
(Table 1) indicating that—despite its low background
(G+C)% (e.g. 20.0% for P.falciparum chromosome II)—
Plasmodium is not a promising candidate for RNA gene-finding
based on (G+C)%.

We also observed consistently positive ncRNA (G–C)%
values and negative (A–T)% values (Table 1). It is possible
that these result from the occurrence of G-U ‘wobble’ pairs in
the ncRNAs. However, the differences between RNA and the
background values for the Chargaff differences as well as for
the dinucleotide variations—other than for ρ(CG)—were all
smaller than, or comparable with, the corresponding individual
population SDs (Tables 1 and 2; not all data shown). Conse-
quently, these parameters were deemed unsuitable for a
ncRNA gene-finder.

The results of testing Programs I and II against the M.jannaschii
genome are shown in Tables 3 and 4. Both programs identify a
set of sequence regions that are predicted to contain a high
percentage of structural RNAs. Together, these regions consist
of <1% of the M.jannaschii genome. With Program I, this 1%
subsequence contains all 43 annotated tRNAs and rRNAs in
the GenBank ‘.gbk’ file as well as the single M.jannaschii SRP
RNA in the SRP RNA database (20). Program II has slightly
lower sensitivity, finding 43 of the 44 annotated tRNAs,
rRNAs and SRP RNAs [a tRNA at location 637 982 with
ρ(CG) = 0.28 is missed].

Table 1. Base-composition statistics for RNAs and genomes

This table summarizes the differences in mean-value base-composition statistics between ncRNAs and the genomic background
in M.jannaschii, P.falciparum and C.elegans. SDs are shown in parentheses. Statistics for RNAs of several Plasmodium species
were averaged together since there are only a limited number of P.falciparum RNA sequences in the RNA databases. (A) Average
base-composition statistics among ncRNAs. The low (32.1%) value for (G+C)% in Plasmodium in contrast to the high (>48%)
(G+C)% value for the other genomes is striking. One also notes the positive (G–C)% values and negative (A–T)% values, possibly
resulting from the occurrence of G-U ‘wobble’ pairs in the ncRNAs. (B) Base-composition statistics for three test genomes:
M.jannaschii, P.falciparum chromosome II and C.elegans chromosomes (results for other C.elegans and P.falciparum chromo-
somes were similar—data not shown). One notes the differences in genome mean values from the RNA values of (G+C)% for
M.jannaschii and C.elegans and for ρ(CG) for M.jannaschii. Data for dinucleotide frequencies other than ρ(CG) did not show
systematic differences between RNAs and the genomic background (data not shown). Genomic (G–C)% and (A–T)% differences
are seen to be very close to zero (as expected from ‘Chargaff’s Second Law’) which is different from the RNA values shown in
(A). However, the table also shows the large SDs for (G–C)% and (A–T)% relative to their mean values, implying that using
these differences to distinguish RNAs from the background would be difficult.

No. of sequences 
used

(G+C)% ρ(CG) (G–C)% 
difference

(A–T)% 
difference

(A) Average RNA base-
composition statistics

M.jannaschii 48 63.1 (7.3) 0.75 (0.24) 8.1 (9.7) –3.3 (12.9)

Plasmodium 59 32.1 (7.2) 0.94 (0.56) 12.7 (6.3) –1.6 (4.1)

C.elegans 59 53.5 (8.2) 0.96 (0.23) 6.8 (10.1) –9.6 (11.4)

H.sapiens 186 48.7 (9.1) 0.60 (0.41) 7.5 (11.8) –5.8 (13.0)

(B) Genomic base-
composition statistics

M.jannaschii 31.4 (6.9) 0.34 (0.47) 1.4 (36.9) –0.34 (18.8)

P.falciparum Chr. II 20.0 (8.4) 0.75 (1.3) 0.73 (34.5) –1.7 (24.0)

C.elegans Chr. I 35.9 (8.8) 1.03 (0.68) 0.65 (25.0) –0.61 (19.6)
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The primary difference between the results of the two
programs is that Program I yields nine more ‘hits’ that overlap
a putative protein-coding gene than does Program II (Table 3).
Running NCBI BLASTX searches against the NCBI non-
redundant protein database with these nine sequences showed
that five of them have strong homologies (E < 10e–5) to exons
of multiple (five or more) other species (data not shown). This

result suggests that most—if not all—of the nine additional
overlapping hits are false-positives for ncRNAs, which in turn
implies that using ρ(CG) together with (G+C)% results in
higher specificity than using (G+C)% alone. In contrast, when
the six sequences identified by both Program I and Program II
that overlap putative protein genes were run with BLASTX,
only one showed significant homology to exons of other
species.

In addition to finding the known tRNAs, rRNAs and SRP
RNAs, Program II identified 22 additional ‘hits’. Among these
hits were three pairs of hits located within 40 bp of each other
and likely to be parts of three longer ncRNAs (shown as cnr1,
cnr7 and cnr12 in Table 4). Consequently there are a total of 19
candidate, novel ncRNAs which are listed with their genomic
start and end locations in Table 4. Since these locations were
determined solely on the basis of elevated (C+G)% and ρ(CG),
they indicate only the approximate end points of the candidate
ncRNAs. A predicted strand is not determined by the present
methods, since (C+G)% and ρ(CG) are identical for both
strands. BLAST searches with these 19 sequences identified
one sequence, cnr10 in Table 4, as homologous (E-values
< 10e–11) to RNaseP RNAs (rnpB) of Methanococcus
vannielii, Methanococcus thermolithotrophicus and Methano-
coccus maripaludis. Figure 1 shows a Clustal W (29) multiple
alignment of cnr10 and its surrounding sequence with the three
homologous RNaseP genes.

A next step in determining which, if any, of the candidate
ncRNAs is real might be to look for promoter and terminator
sequences adjacent to the putative RNAs in a manner similar to
the method of Argaman et al. (8). However, archaeal
promoters and terminators are far less well characterized than
those in bacteria, and consequently we have not attempted to
implement such a search. Experimental testing—such as
northern analyses or microarray expression profiling under
various growth conditions—is needed to determine whether
these putative ncRNAs are transcribed.

DISCUSSION

The present work has shown that in M.jannaschii it is possible
to locate structural ncRNAs solely on the basis of local
variations of genomic base composition. In M.jannaschii,
these base-composition variations led to identifying 36 known
tRNAs, six known rRNAs and one known SRP RNA. In
addition, 19 putative ncRNAs including one with homology to
several RNaseP RNAs were identified. Although the method
worked well at identifying tRNAs, rRNAs and SRP RNAs—

Table 2. Variations in (C+G)% and ρ(CG) statistics among differing RNA 
classes

This table shows some of the variations in (C+G)% and ρ(CG) values among
different classes of RNAs for M.jannaschii, Plasmodium (multiple species
combined because of limited data), C.elegans and H.sapiens. For the ribo-
regulator and pseudoknot databases, which contain limited or no data for
these species, RNA sequence data from other groups of organisms are shown.
The base-composition variations shown in the table indicate which ncRNA
types are more likely to be detected by a RNA gene-finder based on (C+G)%
and ρ(CG). For example, one notes that (C+G)% is only 48.7% in M.jannaschii
snoRNAs and 43.1% in C.elegans snRNAs. Consequently these RNAs would
be more difficult to detect using a (C+G)% detector than the more G+C rich
tRNAs, rRNAs and SRP RNAs.

RNA Species (C+G)% ρ(CG)

tRNAs (cytoplasmic) M.jannaschii 66.2 0.72

Plasmodium 25.6 0.88

C.elegans 58.8 0.92

H.sapiens 58.0 1.00

rRNAs M.jannaschii 63.8 0.87

Plasmodium 36.0 0.98

C.elegans 48.0 1.04

H.sapiens 60.3 1.03

SRP RNAs M.jannaschii 65.7 0.66

C.elegans 56.8 1.07

H.sapiens 58.3 0.48

Small nuclear RNAs C.elegans 43.1 1.01

H.sapiens 44.3 0.90

sno- and sno-like RNAs M.jannaschii 48.7 0.83

H.sapiens 44.2 0.38

Riboregulator RNAs H.sapiens 47.6 0.33

All eukaryotes 44.4 0.46

Pseudoknot RNAs All bacteria 52.0 0.86

All viruses 51.8 0.98

Table 3. Results of (G+C)% + ρ(CG) screening on M.jannaschii

Summary of results of scanning the M.jannaschii genome for ncRNAs using (G+C)% or (G+C)% combined with ρ(CG). Annotated RNAs include tRNAs,
rRNAs and SRP RNAs of which only six tRNA genes and one rRNA gene were included in the training set. One notes adding ρ(CG) screening causes one RNA
to be missed while reducing the number of putative hits overlapping a protein gene from 15 to 6, of which only one shows homology using BLASTX to exons
from multiple other species. Further details are in the text.

Method Annotated RNAs found Annotated RNAs missed Total no. of other hits Other hits overlapping 
>50% putative protein 
gene

Putative protein genes with 
BLASTX hits to multiple 
species

(G+C)% alone 44 0 41 15 6

(G+C)% and ρ(CG) 43 1 28 6 1
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which all have mean RNA (G+C)% >60%—it failed to find
any of the eight M.jannaschii C-D snoRNA-like genes. These
RNAs have mean (G+C)% = 49% (Table 2). Similarly, one
notes in Table 2 that for snRNAs (G+C)% is 43.1% in
C.elegans and 44.3% in H.sapiens. For riboregulator RNAs,
(G+C)% is 47.6% in H.sapiens and 44.4% in all eukaryotes.
Consequently, the present method is also likely to be less
successful at identifying snRNAs and riboregulator RNAs.

It would be desirable if the present approach could be applied to
additional genomes. However, this will be challenging, since
most genomes have higher background (G+C)% than
M.jannaschii. For example, background genomic (G+C)% is
∼34% in C.elegans and 39% in Saccharomyces cerevisiae,
compared with 29% in M.jannaschii (9). Although the mean
genomic (G+C)% value of C.elegans (34%) is still quite
different from the C.elegans RNA (G+C)% values (∼53%, see
Table 1), the problem is that the random fluctuations of
genomic (G+C)% are also large (∼8% SDs, see Table 1).
Consequently, finding ncRNAs in C.elegans on the basis of
(G+C)% alone is not feasible. Figure 2 illustrates the problem.
The situation in S.cerevisiae is even less encouraging, since
background (G+C)% = 39%, while typical (G+C)% for tRNAs
is only 54% (9). Even in P.falciparum—which initially
appeared promising because of its low mean background

(G+C)% of 20%—identifying ncRNAs using (G+C)% is not
likely to be feasible because of the low mean RNA (G+C)% of
32% in Plasmodium species (Table 1). Consequently, at this
point, it appears that success with this method will be restricted
to species like M.jannaschii which have high RNA (G+C)%
(a constraint common among hyperthermophiles) as well as
low genomic (G+C)%.

Table 4. Candidate M.jannaschii ncRNAs

List of 19 candidate ncRNAs identified by combined (G+C)% + ρ(CG)
screening. Positions along the M.jannaschii genome as well as values for the
statistical parameters are shown. Strand location is not determined by the
present methods, since (C+G)% and ρ(CG) are identical for both strands.
Three of the candidate ncRNAs (cnr1, cnr7 and cnr 12) consist of two
immediately-adjacent ‘hits’ presumably resulting from a single ncRNA and
combined in the table. cnr10 is homologous to several RNaseP genes.

ID no. Genomic start 
position

Genomic end 
position

G+C% ρ(CG)

cnr1 118060 118190 54.8 0.95

cnr2 291952 291992 63.4 1.16

cnr3 325022 325062 53.7 1.00

cnr4 412566 412606 56.1 0.63

cnr5 465392 465533 61.0 0.51

cnr6 471565 471605 61.0 0.56

cnr7 537593 537711 56.1 0.86

cnr8 543830 543896 53.0 0.86

cnr9 638309 638411 56.9 0.72

cnr10 643488 643698 57.6 0.71

cnr11 873579 873622 53.5 0.64

cnr12 951834 951959 56.8 0.68

cnr13 986076 986116 61.0 1.11

cnr14 1129093 1129170 52.0 0.90

cnr15 1131997 1132037 53.7 1.03

cnr16 1137151 1137191 56.1 0.63

cnr17 1204222 1204262 56.1 1.33

cnr18 1606179 1606219 63.4 0.75

cnr19 1659426 1659497 50.0 0.69

Figure 1. Alignment of cnr10 and RNaseP genes from M.vannielii
(AF192357/GBBCT:6288966), M.thermolithotrophicus (AF192355/
GBBCT:6288964) and M.maripaludis (AF192354/GBBCT:6288963). The
RNaseP sequences are partial sequences obtained from the specified GenBank
records.

Figure 2. Separation of RNAs and genomic background using G+C%. Vertical
axes indicate estimated relative number of 100 bp subsequences. Note that the
peak of the curve for the number of genomic sequences is truncated. RNA esti-
mate assumes ratio of protein coding genes to ncRNA genes is approximately
equal to that in S.cerevisiae. Graphs are shown as normally distributed for the
purpose of illustration—the actual distribution of G+C% may vary. (A) M.jan-
naschii RNA and genome G+C% distributions are separated enough to enable
discrimination between RNA and background populations. (B) C.elegans
chromosome X. Although C.elegans ncRNA and genomic G+C% population
means are significantly different, ncRNA distribution cannot be distinguished
from that of the background by G+C% alone.
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We had initially thought that other base-composition para-
meters—such as Chargaff differences and dinucleotide
frequencies—might offer additional statistical signatures with
which to differentiate ncRNAs from the background.
However, with the exception of ρ(CG) in M.jannaschii, we
were unable to find any other base-composition variations
between ncRNAs and the background that were large enough
to be usefully incorporated into an RNA gene-finder.

We had also hoped to improve our results by restricting the
ncRNA searches to genomic regions with relatively high
(A+T)%. This idea is based on evidence for ‘isochores’ in
chromosomes of vertebrates (30), and, more recently, also in
chromosomes of non-vertebrate eukaryotes (31). Isochores are
100–300 kb regions with relatively homogenous, local
(G+C)% mean values which may vary by as much as 3–4%
from the overall genomic (G+C)% mean (29). For example, we
computed over a set of 49 regions of 100 kb on C.elegans
chromosome I, that mean (G+C)% ranges from 33.3 to 40.3%.
Consequently, (G+C)%-based ncRNA screening might be
improved if the search was restricted to isochores with
elevated (A+T)%. However, we have also found that isochore
base-composition homogeneity does not extend down to the
length of typical RNAs—i.e. ∼100 bp. As a result, the strategy
of focusing on high (A+T)% isochores appears unlikely to
significantly improve the performance of (G+C)%-based
screening programs.

The present approach can be compared with other recent
methods for ncRNA gene-finding. The most similar is that of
Klein and Eddy (http://ismb00.sdsc.edu/posters/poster-
list.html) who use a hidden Markov model (HMM) based on
(G+C)% alone to search for ncRNAs in M.jannaschii and other
high (A+T)% thermophillic organisms. After the present work
was completed and submitted for publication, Klein,
Misulovin and Eddy presented a detailed description of their
method and the results of an experimental search for the
ncRNAs that they predict (ftp://ftp.genetics.wustl.edu/pub/
eddy/papers/2002-klein-archaea/preprint.pdf).

There are three principal differences between their approach
and the one taken in this work. First, Klein’s model is based
solely on (G+C)% variations. By additionally using ρ(CG), the
present method eliminates potential false positives that overlap
known and putative protein-coding regions. Secondly,
different assumptions were made regarding ncRNA lengths. In
the present work, the only ncRNA length restriction is that
‘hits’ must be >40 bases long. Klein et al. make more restrictive
assumptions—not only must the ncRNA length be >50 bases,
but they also set their HMM transition probabilities so that the
average ncRNA length will be approximately 100 bases.
Finally, Klein’s approach is implemented using an HMM
while the present method uses a scanning, base-counting
window. Although fundamentally similar, algorithm operation
and dependence on model parameters are easier to interpret in
base-counting methods than in HMMs. Specifically, in addition to
the ncRNA length and base-count cut-offs common to both
approaches, HMMs require a set of transition-probability
parameters; determining the sensitivity of the HMM results to
varied assumptions in these parameters may not be easy to
predict.

It is interesting to compare Klein et al.’s predictions and
experimental results with the predictions of the present work.

Klein et al. experimentally verify four of the nine M.jannaschii
ncRNAs that they predict. We note that all four of the
experimentally confirmed ncRNAs are also identified by the
present approach (Klein’s mja2, mja3, mja6 and mja7
correspond to our cnr1, cnr3, cnr12 and cnr14, respectively). In
addition, two other unconfirmed candidates (Klein’s mja4 and
mja9, corresponding to our cnr4 and cnr19) are predicted by
both approaches. Klein’s mja1 is not predicted by the present
work because it is located on the M.jannaschii extrachromo-
somal segment which was not analyzed in the present work.
More interesting are Klein’s mja5 and mja8 which were
rejected by the base-composition gene-finder because, in both
cases, ρ(CG) < 0.50. We note that both of these loci overlap
putative protein-coding regions in M.jannaschii, one of which
(mja5) has significant (e < 0.002) homology with methyl trans-
ferase and other proteins in Methanosarcina barkeri, Methano-
thermobacter thermautotrophicus and Methanosarcina mazei.
On the other hand, Table 4 includes 13 candidate ncRNAs not
predicted by Klein et al. and consequently not experimentally
tested by them.

One intriguing aspect of Klein et al.’s work is their combin-
ation of a (G+C)% based HMM with a comparative genomics
gene-finder (6). By using this combined approach, they can
decrease the number of false positives that might be generated
by using (G+C)% scanning alone. As mentioned above, we
expect our gene-finder to have a lower false positive rate than
Klein’s since we use ρ(CG) in addition to (G+C)%. Neverthe-
less, combining a comparative genomics approach with our
base-composition scanner should also be helpful in lowering
the overall false-positive rate.

A different class of ncRNA gene-finders that can be
compared with the present approach is represented by the
comparative genomics methods (6–8). These powerful
methods have found several ncRNAs in E.coli and show
promise of being applicable to other species. Their principal
limitation is the requirement of two—or preferably more—
fully sequenced genomes of closely related species. RNAs that
are not shared by related species will not be found by these
methods. Moreover, it is not clear how well these methods will
scale when applied to larger genomes with lower gene dens-
ities than E.coli.

It is interesting to speculate whether base-composition
RNA-gene-scanning could have applicability in other genomes
if used in combination with a structure-based RNA gene-
finding approach such as that of Rivas et al. (6) or Eddy and
Durbin (32). Since such structure-based RNA-gene-finders can
be computationally demanding, it may be useful to have a rapid
method to serve as an initial screen to eliminate part of the
genomic background. For example, preliminary tests on short
(1–2 MB) regions of the C.elegans genome identified a 5%
(non-contiguous) subregion containing 80% of the GenBank-
annotated tRNAs and rRNAs (data not shown). Though prelim-
inary, these results suggest that in some genomes, such as
C.elegans, base-composition scanning—though not sufficiently
specific to identify ncRNAs by itself—may still be useful as a
prescreening tool prior to the application of more discriminating,
but computationally more demanding, RNA gene-finding
programs.
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