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What fascinates us about animal behavior is its richness and

complexity, butunderstandingbehavior and its neural basis requires

a simpler description. Traditionally, simplification has been imposed

by training animals to engage in a limited set of behaviors, by hand

scoring behaviors into discrete classes, or by limiting the sensory

experience of the organism. An alternative is to askwhether we can

search through the dynamics of natural behaviors to find explicit

evidence that these behaviors are simpler than they might have

been. We review two mathematical approaches to simplification,

dimensionality reduction and the maximum entropy method, and

we draw on examples from different levels of biological organiza-

tion, from the crawling behavior of Caenorhabditis elegans to the

control of smooth pursuit eye movements in primates, and from the

coding of natural scenes by networks of neurons in the retina to

the rules of English spelling. In each case, we argue that the explicit

search for simplicity uncovers new and unexpected features of the

biological system and that the evidence for simplification gives us

a language with which to phrase new questions for the next gener-

ation of experiments. The fact that similar mathematical structures

succeed in taming the complexity of very different biological sys-

tems hints that there is something more general to be discovered.

maximum entropy models | stochastic dynamical systems

The last decades have seen an explosion in our ability to char-
acterize the microscopic mechanisms—the molecules, cells,

and circuits—that generate the behavior of biological systems. In
contrast, our characterization of behavior itself has advanced
much more slowly. Starting in the late 19th century, attempts to
quantify behavior focused on experiments in which the behavior
itself was restricted, for example by forcing an observer to choose
among a limited set of alternatives. In the mid-20th century,
ethologists emphasized the importance of observing behavior in
its natural context, but here, too, the analysis most often focused
on the counting of discrete actions. Parallel to these efforts,
neurophysiologists were making progress on how the brain rep-
resents the sensory world by presenting simplified stimuli and
labeling cells by preference for stimulus features.
Here we outline an approach in which living systems naturally

explore a relatively unrestricted space of motor outputs or neural
representations, and we search directly for simplification within
the data. Although there is often suspicion of attempts to reduce
the evident complexity of the brain, it is unlikely that under-
standing will be achieved without some sort of compression.
Rather than restricting behavior (or our description of behavior)
from the outset, we will let the system “tell us” whether our fa-
vorite simplifications are successful. Furthermore, we start with
high spatial and temporal resolution data because we do not know
the simple representation ahead of time. This approach is made
possible only by the combination of experimental methods that
generate larger, higher-quality data sets with the application of
mathematical ideas that have a chance of discovering unexpected
simplicity in these complex systems. We present four very differ-
ent examples in which finding such simplicity informs our under-
standing of biological function.

Dimensionality Reduction

In the human body there are ≈100 joint angles and substantially
more muscles. Even if each muscle has just two states (rest or
tension), the number of possible postures is enormous, 2Nmuscles

∼1030: If our bodies moved aimlessly among these states, char-
acterizing our motor behavior would be hopeless—no experi-
ment could sample even a tiny fraction of all of the possible
trajectories. Moreover, wandering in a high dimensional space is
unlikely to generate functional actions that make sense in a re-
alistic context. Indeed, it is doubtful that a plausible neural sys-
tem would independently control all of the muscles and joint
angles without some coordinating patterns or “movement pri-
matives” from which to build a repertoire of actions. There have
been several motor systems in which just such a reduction in
dimensionality has been found (1–5). Here we present two ex-
amples of behavioral dimensionality reduction that represent
very different levels of system complexity: smooth pursuit eye
movements in monkeys and the free wiggling of worm-like
nematodes. These examples are especially compelling because so
few dimensions are required for a complete description of nat-
ural behavior.

Smooth Pursuit Eye Movements. Movements are variable even if
conditions are carefully repeated, but the origin of that vari-
ability is poorly understood. Variation might arise from noise in
sensory processing to identify goals for movement, in planning or
generating movement commands, or in the mechanical response
of the muscles. The structure of behavioral variation can inform
our understanding of the underlying system if we can connect the
dimensions of variation to a particular stage of neural processing.
Like other types of movement, eye movements are potentially

high dimensional if eye position and velocity vary independently
from moment to moment. However, an analysis of the natural
variation in smooth pursuit eye movement behavior reveals a sim-
ple structure whose form suggests a neural origin for the noise that
gives rise to behavioral variation. Pursuit is a tracking eye move-
ment, triggered by image motion on the retina, which serves to
stabilize a target’s retinal image and thus to prevent motion blur
(6). When a target begins to move relative to the eye, the pursuit
system interprets the resulting image motion on the retina to es-
timate the target’s trajectory and then to accelerate the eye to
match the target’s motion direction and speed. Although tracking
on longer time scales is driven by both retinal inputs and by
extraretinal feedback signals, the initial ≈125 ms of the movement
is generated purely from sensory estimates of the target’s motion,
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using visual inputs present before the onset of the response. Fo-
cusing on just this initial portion of the pursuit movement, we can
express the eye velocity in response to steps in target motion as
a vector, vðtÞ ¼ vHðtÞbiþ vV ðtÞbj;where vH(t) and vV(t) are the hor-
izontal and vertical components of the velocity, respectively. In Fig.
1Awe show a single trial velocity trajectory (horizontal and vertical
components, dashed black and gray lines) and the trial-averaged
velocity trajectory (solid black and gray lines). Because the initial
125 ms of eye movement is sampled every millisecond, the pursuit
trajectories have 250 dimensions.
We compute the covariance of fluctuations about the mean

trajectory and display the results in Fig. 1B. Focusing on a 125-ms
window at the start of the pursuit response (green box), we com-
pute the eigenvalues of the covariancematrix and find that only the
three largest are statistically different from zero according to the
SD within datasets (7). This low dimensional structure is not
a limitation of the motor system, because during fixation (yellow
box) there are 80 significant eigenvalues. Indeed, the small am-
plitude, high dimensional variation visible during fixation seems to

be an ever-present background noise that is swamped by the larger
fluctuations in movement specific to pursuit. If the covariance of
this background noise is subtracted from the covariance during
pursuit, the 3D structure accounts for ∼94% of the variation in the
pursuit trajectories (Fig. 1C).
How does low dimensionality in eye movement arise? The

goal of the movement is to match the eye to the target’s velocity,
which is constant in these experiments. The brain must therefore
interpret the activity of sensory neurons that represent its visual
inputs, detecting that the target has begun to move (at time t0)
and estimating the direction θ and speed v of motion. At best,
the brain estimates these quantities and transforms these esti-
mates into some desired trajectory of eye movements, which
we can write as vðt;bt0;bθ;

bvÞ; where ·̂ denotes an estimate of the
quantity ·. However, estimates are never perfect, so we should
imagine thatbt0 ¼ t0 þ δt0; and so on, where δt0 is the small error
in the sensory estimate of target motion onset on a single trial. If
these errors are small, we can write

vðtÞ ¼ vðt; t0; v; θÞ þ δt0
∂vðt; t0; v; θÞ

∂t0
þ δθ

∂vðt; t0; v; θÞ

∂θ

þ δv
∂vðt; t0; v; θÞ

∂v
þ δvbackðtÞ;

[1]

where the first term is the average eye movement made in re-
sponse to many repetitions of the target motion, the next three
terms describe the effects of the sensory errors, and the final
term is the background noise. Thus, if we can separate out the
effects of the background noise, the fluctuations in v (t) from
trial to trial should be described by just three random numbers,
δt0, δθ, and δv: the variations should be 3D, as observed.
The partial derivatives in Eq. 1 can be measured as the dif-

ference between the trial-averaged pursuit trajectories in re-
sponse to slightly different target motions. In fact the average
trajectories vary in a simple way, shifting along the t axis as we
change t0, rotating in space as we change θ, and scaling uniformly
faster or slower as we change v (7), so that the relevant derivatives
can be estimated just from one average trajectory. We identify
these derivatives as sensory error modes and show the results in
Fig. 1D, where we have abbreviated the partial derivative
expressions for the modes of variation as vdir ≡ ∂v/(t; t0, v, θ)/∂θ,
vspeed ≡ ∂v/(t; t0, v, θ)/∂v, and vtime ≡ ∂v/(t; t0, v, θ)/∂t0. We note
that each sensory error mode has a vertical and horizontal com-
ponent, although some make little contribution. We recover the
sensory errors (δθ, δv, δt0) by projecting the pursuit trajectory on
each trial onto the corresponding sensory error mode.
We can write the covariance of fluctuations around the mean

pursuit trajectory in terms of these error modes as

Cijðt; t′Þ ¼
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where the terms {〈δθδθ〉, 〈δθδv〉,. . .} are the covariances of the
sensory errors. The fact that C can be written in this form implies
not only that the variations in pursuit will be 3D but that we can
predict in advance what these dimensions should be. Indeed, we
find experimentally that the three significant dimensions of C have
96% overlap, with axes corresponding to vdir, vspeed, and vtime.
These results strongly support the hypothesis that the ob-

servable variations in motor output are dominated by the errors
that the brain makes in estimating the parameters of its sensory
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Fig. 1. Low-dimensional dynamics of pursuit eye velocity trajectories (7). (A)

Eye movements were recorded from male rhesus monkeys (Macaca mulatta)

that had been trained to fixate and track visual targets. Thin black and gray

lines represent horizontal (H) and vertical (V) eye velocity in response to

a step in target motion on a single trial; dashed lines represent the corre-

sponding trial-averaged means. Red and blue lines represent the model

prediction. (B) Covariance matrix of the horizontal eye velocity trajectories.

The yellow square marks 125 ms during the fixation period before target

motion onset, the green square the first 125 ms of pursuit. The color scale

is in deg/s2. (C) Eigenvalue spectrum of the difference matrix ΔC(t, t′) =

Cpursuit(t, t′) (green square) − Cbackground(t, t′) (yellow square). (D) Time

courses of the sensory error modes (vdir, vspeed, vtime). The sensory error

modes are calculated from derivatives of the mean trajectory, as in Eq. 1, and

linear combinations of these modes can be used to reconstruct trajectories

on single trials as shown in A. These modes have 96% overlap with the

significant dimensions that emerge from the covariance analysis in B and C

and thus provide a nearly complete description of the behavioral variation.

Black and gray curves correspond to H and V components.
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inputs, as if the rest of the processing and motor control circuitry
were effectively noiseless, or more precisely that they contribute
only at the level of background variation in the movement.
Further, the magnitude and time course of noise in sensory es-
timation are comparable to the noise sources that limit percep-
tual discrimination (7, 8). This unexpected result challenges our
intuition that noise in the execution of movement creates be-
havioral variation, and it forces us to consider that errors in
sensory estimation may set the limit to behavioral precision. Our
findings are consistent with the idea that the brain can minimize
the impact of noise in motor execution in a task-specific manner
(9, 10), although it suggests a unique origin for that noise in the
sensory system. The precision of smooth pursuit fits well with the
broader view that the nervous system can approach optimal
performance at critical tasks (11–14).

How the Worm Wiggles. The free motion of the nematode Cae-
norhabditis elegans on a flat agar plate provides an ideal oppor-
tunity to quantify the (reasonably) natural behavior of an entire
organism (15). Under such conditions, changes in the worm’s
sinuous body shape support a variety of motor behaviors, in-
cluding forward and backward crawling and large body bends
known asΩ-turns (16). Tracking microscopy provides high spatial
and temporal resolution images of the worm over long periods of
time, and from these images we can see that fluctuations in the
thickness of the worm are small, so most variations in the shape
are captured by the curve that passes through the center of the
body. We measure position along this curve (arc length) by the
variable s, normalized so that s= 0 is the head and s= 1 is the tail.
The position of the body element at s is denoted by x(s), but it is
more natural to give an “intrinsic” description of this curve in

terms of the tangent angle θ(s), removing our choice of coor-
dinates by rotating each image so that the mean value of θ along
the body always is zero. Sampling at n=100 equally spaced points
along the body, each shape is described completely by a 100-
dimensional vector (Fig. 2 A and B).
As we did with smooth pursuit eye movements, we seek a low

dimensional space that underlies the shapes we observe. In the
simplest case, this space is a Euclidean projection of the original
high dimensional space so that the covariance matrix of angles,
C(s, s’) = 〈(θ(s)− 〈θ〉) (θ(s’)− 〈θ〉)〉, will have only a small number
of significant eigenvalues. For C. elegans this is exactly what we
find, as shown in Fig. 2 C and D: more than 95% of the variance
in body shape is accounted for by projections along just four
dimensions (“eigenworms,” red curves in Fig. 2C). Further,
the trajectory in this low dimensional space of shapes predicts the
motion of the worm over the agar surface (17). Importantly, the
simplicity that we find depends on our choice of initial repre-
sentation. For example, if we take raw images of the worm’s body,
cropped to a minimum size (300 × 160 pixels) and aligned to
remove rigid translations and rotations, the variance across
images is spread over hundreds of dimensions.
The tangent angle representation and projections along the

eigenworms provide a compact yet substantially complete de-
scription of worm behavior. In distinction to previous work (see,
e.g., refs. 16, 18, and 19), this description is naturally aligned to
the organism, fully computable from the video images with no
human intervention, and also simple. In the next section we show
how these coordinates can be also used to explore dynamical
questions posed by the behavior of C. elegans.

A B C

D

Fig. 2. Low-dimensional space of worm postures (15). (A) We use tracking

video microscopy to record images of the worm’s body at high spatiotem-

poral resolution as it crawls along a flat agar surface. Dotted lines trace the

worm’s centroid trajectory, and the body outline and centerline skeleton are

extracted from the microscope image on a single frame. (B) We characterize

worm shape by the tangent angle θ vs. arc length s of the centerline skeleton.

(C) We decompose each shape into four dominant modes by projecting θ (s)

along the eigenvectors of the shape covariance matrix (eigenworms). (D,

black circles) Fraction of total variance captured by each projection. The four

eigenworms account for ≈95% of the variance within the space of shapes. (D,

red diamonds) Fraction of total variance captured when worm shapes are

represented by images of the worm’s body; the low dimensionality is hidden

in this pixel representation.
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Fig. 3. Worm behavior in the eigenworm coordinates. (A) Amplitudes

along the first two eigenworms oscillate, with nearly constant amplitude but

time-varying phase ϕ = tan−1(a2/a1). The shape coordinate ϕ(t) captures the

phase of the locomotory wave moving along the worm’s body. (B) Phase

dynamics from Eq. 3 reveals attracting trajectories in worm motion: forward

and backward limit cycles (white lines) and two instantaneous pause states

(white circles). Colors denote the basins of attraction for each attracting

trajectory. (C) In an experiment in which the worm receives a weak thermal

impulse at time t = 0, we use the basins of attraction of B to label the in-

stantaneous state of the worm’s behavior and compute the time-dependent

probability that a worm is in either of the two pause states. The pause states

uncover an early-time stereotyped response to the thermal impulse. (D)

Probability density of the phase [plotted as log P(ϕ|t)], illustrating stereo-

typed reversal trajectories consistent with a noise-induced transition from

the forward state. Trajectories were generated using Eq. 3 and aligned to

the moment of a spontaneous reversal at t = 0.
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Dynamics of Worm Behavior. We have found low dimensional
structure in the smooth pursuit eye movements of monkeys and
in the free wiggling of nematodes. Can this simplification inform
our understanding of behavioral dynamics—the emergence of
discrete behavioral states, and the transitions between them?
Here we use the trajectories of C. elegans in the low dimensional
space to construct an explicit stochastic model of crawling be-
havior and then show how long-lived states and transitions be-
tween them emerge naturally from this model.
Of the four dimensions in shape space that characterize the

crawling ofC. elegans, motions along the first two combine to form
an oscillation, corresponding to the wave that passes along the
worm’s body and drives it forward or backward. Here, we focus on
the phase of this oscillation, ϕ = tan−1 (a2/a1) (Fig. 3A), and
construct, from the observed trajectories, a stochastic dynamical
system, analogous to the Langevin equation for a Brownian par-
ticle. Because the worm can crawl both forward and backward, the
phase dynamics is minimally a second-order system,

dϕ

dt
¼ ω;

dω

dt
¼ Fðω;ϕÞ þ σðω;ϕÞηðtÞ; [3]

where ω is the phase velocity and η(t) is the noise—a random
component of the phase acceleration not related to the current
state of the worm—normalized so that 〈η(t)η(t’)〉 = δ(t − t’). As
explained in ref. 15, we can recover the “force” F(ω, ϕ) and the
local noise strength σ(ω, ϕ) from the raw data, so no further
“modeling” is required.
Leaving aside the noise, Eq. 3 describes a dynamical system in

which there aremultiple attracting trajectories (Fig. 3B): two limit
cycle attractors corresponding to forward and backward crawling
(white lines) and two pause states (white circles) corresponding to
an instantaneous freeze in the posture of the worm. Thus, un-
derneath the continuous, stochastic dynamics we find four dis-
crete states that correspond to well-defined classes of behavior.
We emphasize that these behavioral classes are emergent—there
is nothing discrete about the phase time series ϕ(t), nor have we
labeled the worm’s motion by subjective criteria. Whereas for-
ward and backward crawling are obvious behavioral states, the
pauses are more subtle. Exploring the worm’s response to gentle
thermal stimuli, one can see that there is a relatively high prob-
ability of a brief sojourn in one of the pause states (Fig. 3C). Thus,
by identifying the attractors—and the natural time scales of
transitions between them—we uncover a more reliable compo-
nent of the worm’s response to sensory stimuli (15).
The noise term generates small fluctuations around the attract-

ing trajectories but more dramatically drives transitions among the
attractors, and these transitions are predicted to occur with ste-
reotyped trajectories (20). In particular, the Langevin dynamics in
Eq. 3 predict spontaneous transitions between the attractors that
correspond to forward and backward motion. To quantify this
prediction, we run long simulations of the dynamics, choose
moments in time when the system is near the forward attractor
(0.1 < dϕ/dt < 0.6 cycles/s), and then compute the probability that
the trajectory has not reversed (dϕ/dt < 0) after a time τ following
this moment. If reversals are rare, this survival probability should
decay exponentially, P(τ) = exp(−τ/〈τ〉), and this is what we see,
with the predicted mean time to reverse 〈τ〉 = 15.7 ± 2.1 s, where
the error reflects variations across an ensemble of worms.
We next examine the real trajectories of the worms, performing

the same analysis of reversals by measuring the survival probability
in the forward crawling state. We find that the data obey an expo-
nential distribution, aspredictedby themodel, and theexperimental
mean time to reversal is 〈τdata〉=16.3± 0.3 s.This observed reversal
rate agrees with the model predictions within error bars, and this
corresponds to a precision of ∼4%, which is quite surprising. It
should be remembered that we make our model of the dynamics by
analyzing how the phase and phase velocity at the time t evolve into

phase and phase velocity at time t + dt, where the data determine
dt=1/32 s. Once we have the stochastic dynamics, we can use them
to predict the behavior on long time time scales.Althoughwe define
our model on the time scale of a single video frame (dt), behavioral
dynamics emerge that are nearly three orders of magnitude longer
(〈τ〉/dt ≈ 500), with no adjustable parameters (20).
In this model, reversals are noise-driven transitions between

attractors, in much the same way that chemical reactions are
thermally driven transitions between attractors in the space of
molecular structures (21). In the low noise limit, the trajectories
that carry the system from one attractor to another become
stereotyped (22). Thus, the trajectories that allow the worm to
escape from the forward crawling attractor are clustered around
prototypical trajectories, and this is seen both in the simulations
(Fig. 3D) and in the data (20).
In fact, many organisms, from bacteria to humans, exhibit dis-

crete, stereotyped motor behaviors. A common view is that these
behaviors are stereotyped because they are triggered by specific
commands, and in some cases we can even identify “command
neurons” whose activity provides the trigger (23). In the extreme,
discreteness and stereotypy of the behavior reduces to the dis-
creteness and stereotypy of the action potentials generated by the
command neurons, as with the escape behaviors in fish triggered
by spiking of the Mauthner cell (24). However, the stereotypy of
spikes itself emerges from the continuous dynamics of currents,
voltages, and ion channel populations (25, 26). The success here
of the stochastic phase model in predicting the observed reversal
characteristics of C. elegans demonstrates that stereotypy can also
emerge directly from the dynamics of the behavior itself.

Maximum Entropy Models of Natural Networks

Much of what happens in living systems is the result of inter-
actions among large networks of elements—many amino acids
interact to determine the structure and function of proteins,
many genes interact to define the fates and states of cells, many
neurons interact to represent our perceptions and memories, and
so on. Even if each element in a network achieves only two
values, the number of possible states in a network of N elements
is 2N, which easily becomes larger than any realistic experiment
(or lifetime!) can sample, the same dimensionality problem that
we encountered in movement behavior. Indeed, a lookup table
for the probability of finding a network in any one state has ≈2N

parameters, and this is a disaster. To make progress we search
for a simpler class of models with many fewer parameters.
We seek an analysis of living networks that leverages in-

creasingly high-throughput experimental methods, such as the
recording from large numbers of neurons simultaneously. These
experiments provide, for example, reliable information about the
correlations between the action potentials generated by pairs of
neurons. In a similar spirit, we can measure the correlations be-
tween amino acid substitutions at different sites across large
families of proteins. Can we use these pairwise correlations to say
anything about the network as a whole? Although there are an
infinite number of models that can generate a given pattern of
pairwise correlations, there is a unique model that reproduces the
measured correlations and adds no additional structure. This
minimally structured model is the one that maximizes the entropy
of the system (27), in the same way that the thermal equilibrium
(Boltzmann) distribution maximizes the entropy of a physical
system given that we know its average energy.

Letters in Words. To see how the maximum entropy idea works, we
examine an example in which we have some intuition for the states
of the network. Consider the spelling of four-letter English words
(28), whereby at positions i = 1, 2, 3, 4 in the word we can chose
a variable xi from 26 possible values. A word is then represented by
the combination x ≡ {x1, x2, x3, x4}, and we can sample the distri-
bution of words, P(x), by looking through a large corpus of writings,

15568 | www.pnas.org/cgi/doi/10.1073/pnas.1010868108 Stephens et al.

www.pnas.org/cgi/doi/10.1073/pnas.1010868108


for example the collected novels of Jane Austen [the Austen word
corpus was created via Project Gutenberg (www.gutenberg.org),
combining text from Emma, Lady Susan, Love and Friendship,
Mansfield Park, Northhanger Abbey, Persuassion, Pride and Preju-
dice, and Sense and Sensibility]. If we do not know anything about
the distribution of states in this network, we can maximize the
entropy of the distribution P(x) by having all possible combina-
tions of letters be equally likely, and then the entropy is S0 ¼
−

P
P0log2P0 ¼ 4 ×  log2ð26Þ ¼ 18:8bits: However, in actual

English words, not all letters occur equally often, and this bias in the
use of letters is different at different positions in the word. If we
take these “one letter” statistics into account, the maximum en-
tropy distribution is the independent model,

Pð1ÞðxÞ ¼ P1ðx1Þ P2ðx2Þ P3ðx3Þ P4ðx4Þ; [4]

where Pi(x) is the easily measured probability of finding letter x in
position i. Taking account of actual letter frequencies lowers the
entropy to S1 = 14.083 ± 0.001 bits, where the small error bar is
derived from sampling across the ∼106 word corpus.
The independent letter model defined by P(1) is clearly wrong:

the most likely words are “thae,” “thee,” and “teae.” Can we
build a better approximation to the distribution of words by in-
cluding correlations between pairs of letters? The difficulty is
that now there is no simple formula like Eq. 4 that connects the
maximum entropy distribution for x to the measured dis-
tributions of letter pairs (xi, xj). Instead, we know analytically the
form of the distribution,

Pð2ÞðxÞ ¼
1

Z
exp

"

−

X

i> j

Vij

�
xi; xj

�
#

; [5]

where all of the coefficients Vij (x, x’) have to be chosen to re-
produce the observed correlations between pairs of letters. This
is complicated but much less complicated than it could be—by
matching all of the pairwise correlations we are fixing ∼6 × (26)2

parameters, which is vastly smaller than the (26)4 possible com-
binations of letters.
The model in Eq. 5 has exactly the form of the Boltzmann

distribution for a physical system in thermal equilibrium, whereby
the letters “interact” through a potential energy Vij (x, x’). The
essential simplification is that there are no explicit interactions
among triplets or quadruplets—all of the higher-order correla-
tions must be consequences of the pairwise interactions. We know
that in many physical systems this is a good approximation, that is
P≈ P(2). However, the rules of spelling (e.g., i before e except after
c) seem to be in explicit conflict with such a simplification.
Nonetheless, when we apply the model in Eq. 5 to English words,
we find reasonable phonetic constructions. Here we leave aside
the problem of how one finds the potentials Vij from the measured
correlations among pairs of letters (see refs. 29–35) and discuss
the results.
Once we construct a maximum entropy model of words using

Eq. 5, we find that the entropy of the pairwise model is S2 = 7.471
± 0.006 bits, approximately half the entropy of independent let-
ters S1. A rough way to think about this result is that if letters were
chosen independently, there would be 2S1∼17; 350 possible four-
letter words. Taking account of the pairwise correlations reduces
this vocabulary by a factor of 2S1 − S2∼100; down to effectively
≈178 words. In fact, the Jane Austen corpus is large enough that
we can estimate the true entropy of the distribution of four-letter
words, and this is Sfull = 6.92 ± 0.003 bits. Thus, the pairwise
model captures ∼92% of the entropy reduction relative to
choosing letters independently and hence accounts for almost all
of the restriction in vocabulary provided by the spelling rules and
the varying frequencies of word use. The same result is obtained
with other corpora, so this is not a peculiarity of an author’s style.

We can look more closely at the predictions of the maximum
entropy model in a “Zipf plot,” ranking the words by their prob-
ability of occurrence and plotting probability vs. rank, as in Fig. 4.
The predicted Zipf plot almost perfectly overlays what we obtain
by sampling the corpus, although some weight is predicted to
occur in words that do not appear in Austen’s writing. Many of
these are real words that she happened not to use, and others are
perfectly pronounceable English even if they are not actually
words. Thus, despite the complexity of spelling rules, the pairwise
model captures a very large fraction of the structure in the net-
work of letters.

Spiking and Silence in Neural Networks. Maximum entropy models
also provide a good approximation to the patterns of spiking in
the neural network of the retina. In a network of neurons where
the variable xi marks the presence (xi =+1) or absence (xi = −1)
of an action potential from neuron i in a small window of time,
the state of the whole network is given by the pattern of spiking
and silence across the entire population of neurons, x ≡ {x1,
x2,. . ., xN}. In the original example of these ideas, Schneidman
et al. (36) looked at groups of n = 10 nearby neurons in the
vertebrate retina as it responded to naturalistic stimuli, with the
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results shown in Fig. 4. Again we see that the pairwise model
does an excellent job, capturing ≈90% or more of the reduc-
tion in entropy, reproducing the Zipf plot and even predicting
the wildly varying probabilities of the particular patterns of
spiking and silence (see Fig. 2a in ref. 36).
The maximum entropy models discussed here are important

because they often capture a large fraction of the interactions
present in natural networks while simultaneously avoiding a com-
binatorial explosion in the number of parameters. This is true even
in cases in which interactions are strong enough so that in-
dependent (i.e., zero neuron–neuron correlation) models fail dra-
matically. Such an approach has also recently been used to show
how network functions such as stimulus decorrelation and error
correction reflect a tradeoff between efficient consumption of finite
neural bandwidth and the use of redundancy to mitigate noise (37).
As we look at larger networks, we can no longer compute the

full distribution, and thus we cannot directly compare the full
entropy with its pairwise approximation. We can, however, check
many other predictions, and the maximum entropy model works
well, at least to n = 40 (30, 38). Related ideas have also been
applied to a variety of neural networks with similar findings (39–
42) (however, also see ref. 43 for differences), which suggest that
the networks in the retina are typical of a larger class of natural
ensembles.

Metastable States. As we have emphasized in discussing Eq. 5,
maximum entropy models are exactly equivalent to Boltzmann
distributions and thus define an effective “energy” for each pos-
sible configuration of the network. States of high probability
correspond to low energy, and we can think of an “energy land-
scape” over the space of possible states, in the spirit of the Hop-
field model for neural networks (44). Once we construct this
landscape, it is clear that some states are special because they sit at
the bottom of a valley—at local minima of the energy. For net-
works of neurons, these special states are such that flipping any
single bit in the pattern of spiking and silence across the pop-
ulation generates a state with lower probability. For words, a local
minimum of the energy means that changing any one letter pro-
duces a word of lower probability.
The picture of an energy landscape on the states of a network

may seem abstract, but the local minima can (sometimes sur-
prisingly) have functional meaning, as shown in Fig. 5. In the case
of the retina, a maximum entropy model was constructed to de-
scribe the states of spiking and silence in a population of n = 40
neurons as they respond to naturalistic inputs, and this model
predicts the existence of several nontrivial local minima (30, 38).
Importantly, this analysis does not make any reference to the vi-
sual stimulus. However, if we play the same stimulus movie many
times, we see that the system returns to the same valleys or basins
surrounding these special states, even though the precise pattern
of spiking and silence is not reproduced from trial to trial (Fig.
5A). This suggests that the response of the population can be
summarized by which valley the system is in, with the detailed
spiking pattern being akin to variations in spelling. To reinforce
this analogy, we can look at the local minima of the energy
landscape for four-letter words.
In the maximum entropy model for letters, we find 136 of local

minima, of which the 10 most likely are shown in Fig. 5B. More
than two thirds of the entropy in the full distribution of words

is contained in the distribution over these valleys, and in most
of these valleys there is a large gap between the bottom of the
basin (the most likely word) and the next most likely word. Thus,
the entropy of the letter distribution is dominated by states that
are not connected to each other by single letter substitutions, per-
haps reflecting a pressure within language to communicate with-
out confusion.

Discussion

Understanding a complex system necessarily involves some sort
of simplification. We have emphasized that, with the right data,
there are mathematical methods that allow a system to “tell us”
what sort of simplification is likely to be useful.
Dimensionality reduction is perhaps the most obvious method

of simplification—a direct reduction in the number of variables
that we need to describe the system. The examples of C. elegans
crawling and smooth pursuit eye movements are compelling be-
cause the reduction is so complete, with just three or four coor-
dinates capturing ≈95% of all of the variance in behavior. In each
case, the low dimensionality of our description provides func-
tional insight, whether into origins of stereotypy or the possibility
of optimal performance. The idea of dimensionality reduction in
fact has a long history in neuroscience, because receptive fields
and feature selectivity are naturally formalized by saying that
neurons are sensitive only to a limited number of dimensions in
stimulus space (45–48). More recently it has been emphasized
that quantitative models of protein/DNA interactions are equiv-
alent to the hypothesis that proteins are sensitive only to limited
number of dimensions in sequence space (49, 50).
The maximum entropy approach achieves a similar simplifica-

tion for networks; it searches for simplification not in the number
of variables but in the number of possible interactions among these
variables. The example of letters in words shows how this simpli-
fication retains the power to describe seemingly combinatorial
patterns. For both neurons and letters, the mapping of the maxi-
mum entropy model onto an energy landscape points to special
states of the system that seem to have functional significance.
There is an independent stream of work that emphasizes the suf-
ficiency of pairwise correlations among amino acid substitutions in
defining functional families of proteins (51–53), and this is equiv-
alent to themaximum entropy approach (53); explicit construction
of themaximum entropymodels for antibody diversity again points
to the functional importance of the metastable states (54).
Although we have phrased the ideas of this article essentially

as methods of data analysis, the repeated successes of mathe-
matically equivalent models (dimensionality reduction in move-
ment and maximum entropy in networks) encourages us to seek
unifying theoretical principles that give rise to behavioral sim-
plicity. Finding such a theory, however, will only be possible if we
observe behavior in sufficiently unconstrained contexts so that
simplicity is something we discover rather than impose.
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