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In the introduction to this theme issue, Honing et al. suggest that the origins

of musicality—the capacity that makes it possible for us to perceive, appreci-

ate and produce music—can be pursued productively by searching for

components of musicality in other species. Recent studies have highlighted

that the behavioural relevance of stimuli to animals and the relation of exper-

imental procedures to their natural behaviour can have a large impact on the

type of results that can be obtained for a given species. Through reviewing

laboratory findings on animal auditory perception and behaviour, as well as

relevant findings on natural behaviour, we provide evidence that both tra-

ditional laboratory studies and studies relating to natural behaviour are

needed to answer the problem of musicality. Traditional laboratory studies

use synthetic stimuli that provide more control than more naturalistic

studies, and are in many ways suitable to test the perceptual abilities of ani-

mals. However, naturalistic studies are essential to inform us as to what

might constitute relevant stimuli and parameters to test with laboratory

studies, or why we may or may not expect certain stimulus manipulations

to be relevant. These two approaches are both vital in the comparative

study of musicality.
1. Introduction
Honing et al. [1] suggest that the origins of musicality—the capacity that makes

it possible for us to perceive, appreciate and produce music—can be pursued

productively by searching for components of musicality in other species.

Perhaps the most obvious starting point in this endeavour is the examination

of animal responses to music. In 1984, Porter & Neuringer [2] were the first

to conduct an experiment from this perspective by training pigeons (Columba
livia) to discriminate the music of different composers. The authors used an

operant paradigm, where pigeons received a food reward after pecking one

of two discs during presentation of excerpts from several Bach pieces for

organ and Stravinsky’s Rite of spring. Pigeons were trained to respond to the

left disc during Bach, and a right disc during Stravinsky excerpts. With time,

the pigeons learned this discrimination. Once the pigeons were making few

errors, they were presented with novel excerpts from the same composers,

and similar excerpts from other composers. The pigeons generalized to all of

these novel stimuli through their responses to the two choice discs in a way

that mirrored that of human participants.

A more recent study was performed using a similar operant paradigm with

carp (Cyprinus carpio) using blues and classical stimuli and found comparable

results [3]; after initial training with a small set of blues and classical music

stimuli, carp were able to correctly classify stimuli from these genres that

they had never heard before. How can we interpret the fact that distantly
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related animal species have human-like boundaries for the

categorization of such complex auditory stimuli? Moreover,

what can we learn from such studies?
1For definitions of musical terms, please see the glossary, table 1.
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2. Key problems in studying biomusicology
The genre classification performance of pigeons and carp has

an analogue in studies on visual categorization. In their semi-

nal study, Hernnstein & Loveland [4] successfully trained

pigeons to discriminate photos that contained humans from

photos that did not, with all photos exhibiting considerable

variability. Subsequent debate has centred on whether the

pigeons were detecting humans or simply using local fea-

tures (e.g. large flesh-coloured area) to solve the task [5].

Similarly, pigeons and carp in the music categorization

tasks may use specific local features (e.g. presence of absence

of a specific frequency) rather than use global or abstract fea-

tures to solve the task. One way to determine what features

are controlling the behaviour in each species would be to pre-

sent altered stimuli that are missing some of the features from

the rich training stimuli or present some features of the rich

stimuli in isolation.

A second, and equally important issue, is motivational.

Aside from the music categorization abilities demonstrated in

pigeons and carp, do they have any music preferences? We

know that chimpanzees prefer at least some types of music to

silence, as they spent more time close to a speaker when

music was being played than when it was not [6]. But another

primate species not as closely related to humans, the cotton-top

tamarins (Saguinus oedipus), showed the opposite result [7].

Several other studies have looked at animal musical prefer-

ences using similar place preference paradigms. Chiandetti

& Vallortigara [8] put newborn chicks (Gallus gallus) in an

environment with consonant music playing on one side, and

dissonant music on the other. They found that the chicks

spent more time on the side with consonant music. When

McDermott & Hauser [9] presented cotton-top tamarins with

consonant stimuli in one arm of a Y-maze and dissonant

stimuli in the other arm, the animals showed no preference.

Western adults confronted with similar contingencies spent

more time listening to consonant than to dissonant sounds.

Although such a preference paradigm suggests that a feature

such as consonance and dissonance is relevant to a given

species, it tells us little about the mechanisms underlying any

preferences. The human preference for consonance over disso-

nance is at least partially based on the physical properties of

sound and is evident across many cultures [10]. It is equally

important to ascertain the factors contributing to music-related

preferences in non-human species.

Another problem is the selection of appropriate species

for study. Taking a traditional laboratory approach, it is poss-

ible to take virtually any species with sound-sensing capacity

and rudimentary learning capacities and measure its physi-

ology and train it to discriminate different sounds. But

which species are relevant for biomusicology? One approach

is to study species based on shared ancestry. Species that are

closely related to humans are likely to share some of our abil-

ities, and are therefore good models for experiments that

would be difficult to conduct in humans. For traits that are

not shared among closely related species, it is easier to pin-

point the differences in underlying mechanisms. Species

that are more distantly related sometimes share traits without
sharing a common ancestor with those traits. By examining the

evolutionary convergence between these non-related species,

we can identify biological constraints or mechanisms required

for that trait and the selection pressures giving rise to it. For

example, some of the traits that are considered highly relevant

for biomusicology to date are vocal learning and entrainment.

Vocal learning involves the ability to produce vocalizations

based on auditory input, and entrainment involves the ability

to synchronize movements with an external stimulus (usually

sound). Both traits are uncommon in non-human species but

shared across some unrelated species, so their study could pro-

vide clues to their nature and possible interaction [11,12]. Thus,

both approaches, examining closely related and distantly

related species, can be quite useful for probing the biological

basis of musicality.

Thus, we need to consider the perceptual abilities of ani-

mals, their natural preferences, as well their similarity to

humans in terms of phylogeny or shared traits. This task

necessitates the combined fruits of traditional laboratory

studies with artificial stimuli and more naturalistic studies.
3. Traditional laboratory studies
There is much debate about the relative utility of naturalistic

and artificial laboratory studies. Proponents of naturalistic

studies argue that training animals to perform ‘unnatural’

behaviours, or using stimuli that differ markedly from those

in their natural environment, does not constitute an appropri-

ate comparison for human behaviours that emerge without

training. They also point out that artificial stimuli can result

in underestimation of animal abilities. Proponents of labora-

tory research note that experimental control and systematic

comparisons across species may reveal underlying abilities

and potential that are not apparent in natural behaviour. As

a result, laboratory studies can shed light on the presence

of cognitive abilities that support such behaviour as well as

their biological basis. Both sides have valid insights about the

limitations of the other approach, but they fail to appreciate

its strengths and the utility of combined approaches. For

example, much has been gained from studying behavioural

and neural processes in various species in response to artificial

auditory patterns presented in laboratory settings.1
(a) Rhythm
The processing of auditory rhythms—both the underlying

pulse or beat and the organization of the beats into repetitive

groups—relies on basic features of the auditory system. The

use of operant conditioning procedures has revealed greater

temporal sensitivity in birds than in humans [13] when evalu-

ating perceptual differences among brief stimuli. In another

study [14], pigeons successfully learned to differentiate two

metrical patterns (8/4 versus 3/4) and to transfer the discrimi-

nation to different tempos, but their learning did not generalize

to metrical patterns in a different timbre. In addition, they had

difficulty differentiating rhythmic sequences from random

sequences. European starlings, however, learned to differen-

tiate rhythmic from non-rhythmic sequences and showed a

broader range of generalization [15].

http://rstb.royalsocietypublishing.org/


Table 1. Glossary of relevant musical terms.

term definition

beat the underlying pulse, or unit of time, in music

entrainment the ability to perceive a beat in music and align

bodily movement with it

melody a sequence of tones defined by its pitch

patterning and rhythm

meter the recurring pattern of stressed and unstressed

beats in music

musicality the capacity that underlies the human ability to

perceive, appreciate, and produce music

pitch a perceptual attribute related to the fundamental

frequency that enables comparisons of sounds

as higher or lower

prosody rhythm, loudness, pitch, and tempo of speech

rhythm a non-random repetitive temporal auditory

pattern

timbre the quality of musical sound that distinguishes

different sound sources such as voices and

specific musical instruments

vocal learning long-term modification of vocal production by

imitation
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The use of neurophysiological (e.g. functional magnetic res-

onance imaging, fMRI) measures has revealed that the neural

substrates of sequencing and timing behaviours overlap with

those related to human music perception and performance (see

[16] for a review) and that the motor corticobasal ganglia–

thalamocortical circuit (mCBGT) plays an important role

[17–19]. Not only are trained rhesus macaques (Macaca mulatta)

capable of interval timing and motor sequencing tasks per-

formed by humans [20–24], but they also show similar neural

activation in mCBGT in both sequential [25,26], and single inter-

val timing tasks [27–29]. These results suggest that the role of

mCBGT in auditory rhythm processing is shared across these

two species of primates. Uncovering findings such as these

was only possible with the use of artificial laboratory probing

of the limits of the perceptual systems of these two species.
(b) Timbre
Timbre perception has not received much attention in the

animal literature, but laboratory studies have begun to provide

some insights. As with temporal intervals, avian species seem

to detect more fine-grained timbral differences than humans do

[30–32]. Timbre is considered a surface [33] feature, because

humans recognize the same musical patterns, regardless of

the timbre of presentation (e.g. vocal, piano, flute). This ability

to generalize across timbres is reportedly present from the new-

born period [34]. In one study, humans’ responses to chords

readily generalized across timbres, but that was not the case

with black-capped chickadees (Poecile atricapillus) [35]. Zebra

finches exhibit generalization across timbres [36,37]. When

trained to discriminate between two words produced by

male (or female) speakers, they showed generalization across
speaker gender (i.e. fundamental frequency and spectral differ-

ences). Clearly, more research is needed to clarify the nature

and extent of timbre generalization across species.
(c) Pitch
The pitch of a sound is typically based on the fundamental

frequency of that sound [38], although human listeners can

perceive the pitch of a sound in which the fundamental fre-

quency is missing [39]. The ability to perceive the so-called

missing fundamental is present in infants as young as three

months of age [40] and is also demonstrable in cats (Felis
catus [41]), rhesus monkeys [42] and starlings [43]. The

assumption is that this ability is shared across species, but

its generality has not been established empirically.

Listeners sometimes evaluate fundamental frequency or

pitch in an absolute manner, as when musicians with absolute

pitch correctly name the pitch class of musical notes (e.g. 440 Hz

as A) [44] or non-musicians distinguish the original pitch level

of highly familiar recorded music from versions that have been

shifted by one or two semitones [45]. In general, birds are

superior to mammals at detecting absolute pitch ([46–48],

but see [49]). In most cases, however, human listeners focus

on relations among pitches rather than absolute pitch levels

while listening to music. In musical contexts, moreover,

human listeners exhibit octave generalization, perceiving the

similarity of notes that are one or more octaves apart [50,51].

The evidence foroctave generalization in non-human species

is both limited and controversial. Blackwell & Schlosberg [52]

claimed that rats (Rattus norvegicus) generalized from training

stimuli in one octave to test stimuli in another octave. However,

there are alternative explanations of the findings, because the

stimuli may have contained harmonics that provided common

cues across octaves [50]. Suggestive evidence for octave general-

ization comes from a bottlenose dolphin (Tursiops truncatus) that

mimicked sounds outside of her vocal range by reproducing

them an octave apart from the original [53]. Interestingly,

rhesus monkeys trained to differentiate melodies in a same–

different task responded to octave-transposed melodies as

‘same’ for Western tonal, but not atonal melodies [54].

To date, there is no evidence of octave generalization in

avian species. Cynx [55] trained starlings to discriminate

between two tones, and then tested whether they generalized

this discrimination to the octave. They did not. The failure of

human listeners to exhibit octave generalization on the same

task [56] called the starling findings into question. In a similar

operant training task, humans exhibited octave generalization

[56], but an adaptation of the task for black-capped chickadees

revealed no octave generalization [57]. The available evidence

is consistent with the absence of octave generalization in birds,

but more laboratory research is needed with a wider range of

species before the question can be resolved definitively.

With regards to relative pitch, several studies have found

that non-human animals could be trained to discriminate

among chords (i.e. simultaneous combinations of tones):

European starlings [58], Java sparrows (Lonchura oryzivora;

[59]), Japanese monkeys (Macaca fuscata; [60]), pigeons [61]

and black-capped chickadees [35,62]. All of these studies

ensured the animals were not simply memorizing the absol-

ute properties of the sounds by presenting novel stimuli with

identical or similar relative pitch properties but different

absolute pitches. All species were able to transfer what they

learned to these novel stimuli.

http://rstb.royalsocietypublishing.org/
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Evidence of relative pitch processing with sounds presented

sequentially rather than simultaneously is less promising. Star-

lings, brown-headed cowbirds (Molothrus ater), and northern

mockingbirds (Mimus polyglottos) were trained to discrimi-

nate ascending from descending note patterns [63–67].

However, they failed to generalize these patterns to novel

pitch levels when the altered patterns were outside the training

range, although they could quickly learn to do so. In general, it

appeared that the birds encoded both absolute and relative

pitch information in discriminating the patterns but depended

more on absolute information. Another set of studies trained

zebra finches and black-capped chickadees to discriminate

sets of pitches based on either their pitch ratios (i.e. relative

pitch) or their absolute frequencies. Both species learned the dis-

crimination more quickly when there was a simple relative

pitch rule that they could use, although the discrimination

was quite difficult for the birds in comparison with learning a

simple absolute pitch rule. In short, these birds can engage in

relative pitch processing although they rely primarily on the

absolute pitch of sounds [68,69]. In one study, a bottlenose dol-

phin learned to respond to descending pitch contours, and after

extensive training, generalized that response to descending

pitch contours regardless of the component pitches [70].

In general, non-human species recognize the relative pitch

patterns of single chords more readily than those of note

sequences. Three factors may be implicated. First, the com-

ponent frequencies of chords give rise to qualities such as

sensory consonance and dissonance [71] that contribute to

their distinctiveness. Second, chords, as single events, pose

fewer memory demands than sequences of notes. Third,

there are suggestions that harmonic (simultaneous) pitch

ratios are processed at early stages of the auditory cortical

pathway in rhesus macaques [72]. As a result, the pitch

ratios of chords or simultaneously presented notes may be

processed more automatically and therefore compared more

readily than the pitch ratios of melodic sequences.
(d) High-order acoustic patterns
Building on the foundations of the auditory system and

interval timing is the perception of grouping. Gestalt psychol-

ogists noted long ago that a group of visual or auditory

elements has qualities that are more than the sum of its parts.

A repeated series of tones of equal frequency and amplitude,

with one tone having longer duration than the others, is per-

ceived as an iambic pattern in which the long sound marks

the end of a sound unit [73]. A repeated series of tones in

which one tone has higher frequency or amplitude than the

others is perceived as a trochaic pattern in which the higher

pitched or louder sound marks the beginning of the sound

unit [73]. This type of patterning is common in music as well

as speech and young infants seem to spontaneously recognize

trochaic patterns [74]. Rats seem to group tones according to

trochaic, but not iambic rules [75], which indicates that such

grouping abilities are not exclusive to human listeners. Further

research is needed to explore the nature of auditory grouping

abilities across species.

The ability to perceive higher-order temporal patterns in a

stream of sounds is relevant to speech as well as music per-

ception. The perception of speech prosody, or the melody of

speech, is relevant to music perception. In many languages,

for example, statements end with a falling terminal pitch con-

tour, and yes/no questions end with a rising terminal pitch
contour [76]. Different languages also have different prosodic

patterns [77]. Tamarins [78], rats [79,80] and Java sparrows

[81] have shown the ability to discriminate between spoken

sentences in different languages and to generalize this discrimi-

nation to novel sentences. Zebra finches use pitch, duration and

amplitude to discriminate prosodic patterns, and they can gen-

eralize specific prosodic patterns of speech syllables to novel

syllables [36]. Further exploration of non-human species’ sensi-

tivity to melodic aspects of speech may be a fruitful approach to

the study of some aspects of musicality.

(e) Criticisms of laboratory studies
When non-human animals are trained to discriminate audi-

tory patterns, they typically take a lot longer to learn the

task than their human counterparts. A critic may ask, for

example, whether a bird trained for hundreds of trials to dis-

criminate chords can really be compared with a human who

discriminates the chords without training or with minimal

training. That situation does not negate the value of compari-

sons of music perception in human and non-human listeners.

Although human listeners may require little training for

specific tasks, they have had years of exposure to music

and have a wealth of implicit musical knowledge. Moreover,

the ability of non-human listeners to perform certain tasks,

even after extensive training, can provide insights into the

mechanisms underlying that ability.

Consider the studies of interval timing in rhesus maca-

ques and humans. As the interaction between the auditory

stimulus and required motor output becomes more complex,

monkeys’ performance lags increasingly behind that of

humans. In one study, monkeys and humans were required

to tap on a push-button to produce six isochronous intervals

in a sequence. An auditory stimulus was present to guide

tapping during the first three taps but not the last three,

which required internal timing based on the preceding audi-

tory stimulus or taps [20,82]. Although monkeys produced

rhythmic movements with appropriate tempo matching,

their movements lagged by approximately 250 ms after each

auditory stimulus, even after long periods of training (close

to a year; [20]). In contrast, humans easily perform the same

task, with no training, showing stimulus movement asynchro-

nies approaching zero or with negative values [20,83]. Such

differences in two closely related species make it possible to

predict that the mCBGT may have subtle, but critical differ-

ences that evolved in order to process complex auditory

information and use it in a predictive fashion to control the

temporal and sequential organization of movement, as recently

stated in the gradual audiomotor evolution hypothesis [84].

Even if humans and monkeys had comparable experience

with the stimuli in such experimental tasks, which they do

not, both have very different interpretations of the exper-

imental context and the experimenter’s intentions, even

where efforts have been made to minimize differences in

training requirements and outcomes [35,49,57,62].

( f ) Conclusions
Overall, the aforementioned evidence indicates the enormous

potential of laboratory studies of some components of musi-

cality with non-human species. Operant conditioning studies

have the potential to reveal skills that are not part of an

animal’s natural repertoire. Animals’ performance in these

tasks is deeply rooted in the limitations and adaptive

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypu

5

 on April 9, 2015http://rstb.royalsocietypublishing.org/Downloaded from 
plasticity of their nervous system [85]. By using these animals

as models, we can gain information about the neural activity

(e.g. through electrophysiological recordings) as well as

manipulations (e.g. pharmacology, electric-stimulation, opto-

genetics) that can alter brain mechanisms and corresponding

behaviour, facilitating our understanding of the neural

underpinnings of musicality in humans.
 blishing.org
Phil.Trans.R.Soc.B

370:20140094
4. Importance of natural behaviour
Laboratory experiments with artificial stimuli have been helpful

in revealing perceptual skills and perceptual–motor coordi-

nation in non-human species. It is possible, however, that

their use may lead to underestimates of ability. One alternative

or supplementary approach is to use biologically relevant

stimuli in laboratory studies. Another is to study music-like

features in the natural behaviour (e.g. vocalizations) of animals.

(a) Incorporating naturalistic stimuli into
experimental work

As noted, laboratory research with artificial stimuli revealed

that birds focus on absolute aspects of pitch rather than relative

pitch [63–69], but evidence from field studies suggests other-

wise. For example, fieldwork with black-capped chickadees

has shown that they produce a simple two-note tonal song

that can be sung at different absolute pitches, but maintains

its relative pitch ratio [86]. Moreover, this relative pitch ratio

is produced more accurately by dominant males [87], and accu-

rately produced song pitch ratios are preferred by females [88].

These findings prompted laboratory research on this issue with

chickadees [89]. Chickadees were trained to discriminate pitch

ratios presented at different absolute frequencies, and made

use of this relevant song pitch ratio. An experimental group

was trained to respond to the pitch ratio from chickadee

song and not to respond to two non-chickadee-song pitch

ratios. A control group was trained to respond to a non-

chickadee-song pitch ratio and not respond to two different

non-chickadee-song pitch ratios. The chickadees that were

required to identify the pitch ratio of their song learned the

task more quickly than the control group, suggesting that it

was easier for the chickadees to learn to discriminate the natu-

ral song pitch ratio than other pitch ratios [89]. A related study

showed that starlings that were trained to discriminate conspe-

cific vocalizations were able to maintain that discrimination

even when the songs were transposed (i.e. pitches changed,

but pitch relations preserved) [90], raising the possibility that

absolute pitch processing has priority over relative pitch

processing only with stimuli lacking in ecological validity.

There are parallels in the realm of rhythm perception.

Although pigeons have difficulty with rhythm perception

tasks involving artificial stimuli [14], the natural coo voca-

lizations of pigeons and doves, neither of which are vocal

learners, are rhythmic. The collared dove produces a coo that

consists of five elements of different duration: three notes separ-

ated by two silences [91]. Playback experiments in the field

show that replacing the second or third note of the coo by

silence caused little change in the behavioural response to the

coo. When the removed note was not replaced by silence, short-

ening the duration of the coo, or when the pauses before and

after the second note were reversed, the response was signifi-

cantly reduced. This suggested a sensitivity to the overall
rhythmic structure of the coos [92]. Although rhythm percep-

tion in doves may be closely tied to properties of their natural

coos, it is important to explore sensitivity to rhythms in patterns

that share at least some properties with natural vocalizations. In

another study, zebra finches were trained to discriminate con-

specific songs and subsequently tested with novel versions

that altered amplitude, fundamental frequency or duration

[93]. Although performance decreased substantially with

changes in amplitude or fundamental frequency, it was main-

tained with duration changes of over 25%, well beyond zebra

finches’ reported sensitivity to temporal changes [13]. The

implication is that the rhythmic patterning is particularly

important for pattern classification in zebra finches.
(b) Music-like features in natural behaviour
The two best known features of musicality found in distantly

related species are vocal learning and entrainment (see glos-

sary, table 1). There are suggestions that the two abilities are

related [94]. To date, the species that have been shown to

exhibit both vocal learning and entrainment are distantly

related to humans. Figure 1 shows the relatedness of various

vertebrate species, indicating which have vocal learning and

entrainment abilities.

The greatest focus has been on vocal learning, with much

greater concern for its relevance to language acquisition [95]

than to musicality. However, vocal learning is also relevant

to music production. For example, consider the extensive

research of Nicolai [96,97] on vocal learning in the bullfinch

(Pyrrhula pyrrhula), a songbird. Although bullfinches normally

learn their species-specific songs from conspecifics, they were

trained to sing folk melodies whistled to them. One bullfinch

learned a 45-note tune from a human tutor and sang it in

transposition (i.e. at a different pitch level), indicating excep-

tional vocal learning and relative pitch processing skills, also

incorporating appropriate rhythm. Other bullfinches alter-

nated parts with the human tutor, as in antiphonal singing,

indicating that they anticipated as well as followed the notes

of a learned melody. Experiments such as these build on the

natural abilities of animals, as revealed by field research,

productively extending them to controlled contexts.

Snowball, the sulfur-crested cockatoo (Cacatua galerita
eleonora) whose dance video became a YouTube sensation,

helped renew scientific interest in entrainment in non-

human species. Systematic study revealed that Snowball

could synchronize his movements to the beat of music and

adjust his rate of movement to changes in tempo [98], challen-

ging the notion that entrainment is uniquely human. The

authors suggested, moreover, that such entrainment might

be evident in other species of vocal learners. In fact, a study

of YouTube videos featuring animal ‘dancing’ provided con-

firmation of entrainment to music in vocal learning species

but not in other species (e.g. dogs [12]). Another consistent

finding was successful training of a budgerigar (Melopsittacus
undulates) to tap along with a beat [99].

That only vocal learners have the capacity for entrainment

seems reasonable, given that the three avian groups in which

vocal learning has evolved independently have similar func-

tional neural pathways that are not shared with non-vocal

learners, and are comparable to humans [100]. That is, they

have a direct connection between auditory perception areas

and motor areas [101]. Entrainment may necessitate this

kind of neural architecture [94]. At the same time, Schachner
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et al. [12] found evidence for entrainment in only one of the

avian vocal learning subgroups, the parrot species, and not

in songbirds. The only non-parrot species in which entrain-

ment has been detected to date is elephants. Although

elephants show evidence of vocal learning [11] their vocal

learning mechanism is unknown, but is likely to differ from

that of parrots. A compelling recent study showed that a Cali-

fornia sea lion (Zalophus californianus) could also be trained to

synchronize with a beat, and then spontaneously generalized

to music [102]. This species is not thought to be a vocal lear-

ner, although some other pinnipeds are vocal learners [11]. It

is possible that sea lions have vocal learning abilities that are

as yet unknown. However, it could also be that the ability to

synchronize with a beat only requires part of what is required

for vocal learning, or even that entrainment abilities can occur

without any of the components for vocal learning. Another

recent study showed that a chimpanzee, one of the closest

non-vocal learning relatives of humans, spontaneously

entrained to a beat while completing a motor tapping task

[103]. Clearly, the proposed connection between vocal learn-

ing and entrainment [94] requires further research with

species that are not vocal learners.

If entrainment is defined more broadly, it could include

many non-vocal learning species such as several species of

fireflies synchronizing flashing with one another [104], and

several species of frogs [105] and katydids [106] synchroniz-

ing their chorusing. Identifying a pulse and locking in

phase with it is a simpler task than detecting and entraining

to a beat within a stream of music, where the beat is not

always marked with an acoustic event, and other acoustic

events are present between beats (see [94] for review). Under-

standing the range of natural abilities related to entrainment

could clarify what is relevant for musicality.

There are other potentially productive means of studying the

precursors of musicality in non-human species. One approach is

to search for music-like features in animal vocalizations. For

example, Araya-Salas [107] examined whether the pitch ratios

created by adjacent notes of the song of nightingale wrens

(Microcerculus philomela) conform to harmonic pitch ratios.

From 243 comparisons, only six were significantly close to

harmonic pitch ratios, suggesting no consistent use of har-

monic pitch ratios. Another approach builds on the studies by

Hartshorne [108] and others in seeking ‘aesthetic’ features in

natural birdsong that might have arousing or emotive conse-

quences, as music does for human listeners. This notion was

met with considerable scepticism, but Rothenberg et al. [109]
posed a similar question with thrush nightingales (Luscinia lusci-
nia). According to their analysis, the songs of thrush nightingales

have similar patterns of tension and resolution to those of music,

which create expectation and anticipation in human listeners. If a

certain level of familiarity and novelty is valued across species

that produce complex songs, this could lead to insights into

the origins of our motivation for music.

Another route to discovering music-like behaviours in

non-human species is to make predictions from the natural

behaviour of humans. For example, humans generalize across

timbres, recognizing a melody, regardless of the instrument on

which it is played. In most cases, it makes sense not to generalize

across timbres. Different spectral information can change the

meaning of vocalizations not only in human speech with differ-

ent vowels, but also in animal vocalizations [110]. A study

species that may be more fruitful for timbre generalization

research would be a species that mimics the vocalizations of

other species. For satin bowerbirds (Ptilonorhynchus violaceus)
female preference for mates and male mate success may

depend on the accuracy with which males imitate heterospecific

vocalizations [111]. If the mimetic accuracy is what is important,

and not simply how well-learned a song is (as has been shown to

be important in other species, [112]), female bowerbirds would

need to assess the original heterospecific vocalization, and the

conspecific imitation, in a way that is similar to a human evalu-

ating a singer’s performance in comparison with a pianist. She

would need to be able to distinguish the two, but also generalize

between them in the sense that she is aware that they are meant

to be the same thing. In short, reflecting on natural human and

non-human behaviours that are musically relevant can provide

ideas about species and abilities that offer promising directions

for comparative study.
(c) Integrating natural and artificial studies
Naturalistic studies have revealed important abilities and

questions related to the biological basis of music such as

vocal learning and entrainment. They have also suggested

new directions for laboratory research.

Laboratory studies often reveal abilities that are not used

by non-human species under natural conditions. Knowledge

of the underlying capacity for those abilities can contribute

to an understanding of their evolutionary, developmental

and physiological foundations. The capacity for a particular

ability, even if it is unrealized in nature, may arise from the

evolutionary history of the species. Identifying the
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requirements of such abilities and their evolutionary pressures

may be facilitated by studying the limits of these abilities.

There is increasing research on aspects of musicality in var-

ious non-human species, but it is rare to find naturalistic studies

of musically relevant abilities and studies of the limits of those

abilities in the same species. A rare but productive example of a

combined approach involves the chickadee, which has been the

subject of extensive field and laboratory research. This blend of

research methods made it possible to understand the relative

pitch processing skills of this species [69,86–89]. Comparably

important insights might arise from increased field research

with species that have received extensive experimental study

and increased laboratory research with species whose natural

behaviours have been well documented.
.R.Soc.B
370:20140094
5. Conclusion
At present, there is limited laboratory research on the com-

ponents of musicality in non-human species although there is

increasing interest in this domain, so considerable expansion

of this research direction is likely. As noted, traditional labora-

tory studies and naturalistic studies can provide equally

important and complementary insights into musically rele-

vant skills. One example noted earlier was finer pitch

[46–49] and temporal [13] resolution in birds than in mam-

mals, which emerged from laboratory studies, and vocal

learning and entrainment abilities in some bird and mammal

species [11–12,94], which emerged from naturalistic studies.

Currently, vocal learning and entrainment are the principal

focus of research on musically related behaviours and their

underpinnings in non-human species. There are other poten-

tially productive questions that could be pursued. For

example, what kinds of behaviour require relative pitch
preferences like those present in chickadees [89]? What kinds

of behaviour require timbre generalization like that observed

in zebra finches [36–37]? Why is auditory grouping relevant

in some species? One way forward is to search for relevant natu-

ral behaviours in less studied species and to examine the natural

behaviours of species commonly studied in the laboratory.
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