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Neutrino Emission from X-ray Binaries

1. Introduction

Cosmic rays (CRs) with energies up to several PeV, the "knee" in the CR spectrum, are believed
to be of Galactic origin. However, where and how these CRs are accelerated remains an open
question. Interactions of very high energy CRs in the Galaxy will lead to the production of pions,
which subsequently decay into gamma rays and neutrinos, with energies reaching hundreds of TeV.
As electromagnetic processes could also contribute to high-energy gamma-ray emission, only the
detection of high-energy neutrinos would be a smoking gun for such CR interactions (i.e., hadronic
interactions) as they are the only way to produce neutrinos. The sources of the vast majority
of high-energy neutrinos detected by IceCube are yet to be identified. The isotropic distribution
of high-energy neutrino’s arrival direction suggests dominant contributions from extragalactic
sources. The Galactic contribution to the diffuse neutrino flux is constrained to ∼14% above 1
TeV [1]. Studies have been conducted to identify Galactic point-like sources, extended regions,
and the diffuse emission produced by CRs interacting with the interstellar medium. Nevertheless,
recent searches for correlations do not show remarkable signals yet [2–4]. X-ray binaries (XRBs)
are binary systems consisting of a compact object (neutron star (NS) or black hole (BH)) and a
non-compact companion star. These systems are bright in X-rays and sometimes in gamma rays.
XRBs have been proposed as sites of CR acceleration and hadronic interactions since the 1980s.
XRBs with jets, often regarded as a smaller version of quasars and referred to as microquasars, have
been widely discussed in the context of hadronic processes in jets. Protons can be accelerated in the
jet, and pions are generated through interactions with the external radiation field of the accretion
disk and/or internal synchrotron photons. Other discussions focus on hadronuclear interactions,
e.g., jet-cloud/wind interactions when the jet is traversing the matter field of the ejected clouds or
stellar wind from the companion star. For other XRBs where there is no collimated beam present,
hadronic interactions can happen in a wider shocked region. CR acceleration can take place in
the magnetosphere of a spinning NS and CRs can then further interact with matter from either the
accretion disk or the companion star. See e.g. [5–8] for theories of neutrino production in XRBs.
Some XRBs have been observed at TeV energies, which illustrates the capability of these sources
to accelerate particles to high energies.

XRBs are known for their outburst and periodic emission. Thus, it is reasonable to hypothesize
that the possible neutrino emission is related to either the periodicity or the X-ray outburst activity,
which might stem from a change in the power or target material. Time-dependent analyses can be
performed based on such hypotheses, which benefit from the suppression of the background, which
is dominated by the atmospheric neutrino flux. Both time-integrated and time-dependent analyses
searching for high-energy neutrino emission have been performed by IceCube and ANTARES, e.g.,
[9, 10], without significant detection. Here, we present a study focusing on XRBs using the IceCube
muon track data searching for correlation with the X-ray outburst and persistent emission of the
possible neutrino flux from XRBs, covering an ample list of sources.

2. Analysis

This search uses an unbinned maximum likelihood method, which follows the one described
in [11, 12], to seek an excess of neutrino events (signal) above the background. In both the time-
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Figure 1: 90% sensitivity and 5f discovery potential of a flaring source V404 Cyg when varying the
threshold (Bayesian blocked light curve in Fig. 2 ) and a comparison to the time-integrated case, which
indicates an improvement in sensitivity. The spectrum shown here is �−2.

dependent and the time-integrated analyses, the likelihood function describing the signal includes
both spatial clustering and energy information. In the time-dependent analysis, a unique temporal
term is incorporated in the likelihood, which incorporates a correlation between neutrinos and X-ray
light curves. As the majority of the data is expected to be background events that are uniform in
time, the likelihood function of the background is constructed with time-randomized data for the
time-dependent analysis and right ascension randomized data for the time-integrated analysis. The
test statistic is obtained by maximizing the likelihood function w.r.t. a set of parameters, which
include the number of signal events (=B) and the spectral index (W) for both analyses. For the time-
dependent analysis, in addition to =B and W, time-related parameters introduced are the threshold
of a light curve 5Cℎ for picking flares and the time lag );06 between the X-ray and the neutrino
emission.

The time-dependent analysis focuses on searching for a correlation between the neutrino
emission and the X-ray activity of a source. For this purpose, hard X-ray light curves are used to
construct the time probability density function (PDF). Light curves are obtained from hard X-ray
data reported by Swift/BAT in the energy range 15-50 keV 1[13] and MAXI in the energy range
10-20 keV 2 [14]. The X-ray light curve data are binned in days, and a Bayesian block algorithm is
applied to find the optimal segmentation of the data and identify flares [15]. After the light curves
are divided into blocks, the value of each block can be fitted as a constant, taking into account
the uncertainty of each data point. The normalized blocked light curves then act as the temporal
PDF. Fig. 1 shows the sensitivity of the time-dependent analysis compared to the sensitivity of
the time-integrated analysis from the direction of V404 Cyg, where the expected improvement is
demonstrated.

The sources studied are from the Galactic high-mass XRB (HMXB) catalog [16] and the
Galactic low-mass XRB (LMXB) catalog [17], which include 301 sources. TeV sources from
TeVCat 3 [18] which are not in the HMXB or LMXB catalog are added. Starting from the initial

1https://swift.gsfc.nasa.gov/results/transients/index.html
2http://maxi.riken.jp/top/slist.html
3http://tevcat.uchicago.edu
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Figure 2: The temporal PDF before normalization (Bayesian blocks) and the event distribution within 1.5◦

around V404 Cyg in the data sample of 2015 at the time indicated by MJD. The Bayesian blocks have
been shifted by the best-fit time lag (-0.5 days) and the dashed gray line indicates the best-fit threshold
(0.011 cm−3 s−1). Vertical lines represent neutrino events. The color shows the energy proxy while the
height shows the weight of each event in the likelihood function.

source list, sources without available Swift/BAT or MAXI hard X-ray light curves are removed. As
we are only interested in sources active with flaring or variable behaviors in X-ray, the variability
and excess variance of the light curves are evaluated such that sources with weak emission are taken
out. This step is applied only to the X-ray data in the time frame overlapped by the neutrino data
sample. If both the Swift/BAT and MAXI light curves pass the selection criteria, the Swift/BAT
data is preferred to be used for one source. After this selection, there are 102 sources in the initial
source list left to be analyzed.

We complement the study with a time-integrated search for neutrino signals from four notable
sources: Cyg X-3, LS 5039, LSI +61 303, and SS 433. Additionally, two time-integrated stacking
tests are conducted for microquasars and TeV sources separately, with the method used in [4] and
an equal weighting scheme when considering the relative contribution of each source.

For all searches, we use 7.5 years of all-sky muon track data collected between 2011-05-13
and 2018-10-14, corresponding to a livetime of 2711 days. The data sample being used consists
of high-quality through-going muon track events from the entire sky, yielding a total of 1502612
events. Details of the data sample are described in [19].

3. Results & Discussion

In the search for correlation of high-energy neutrinos and the flaring activity of XRBs, the
lowest p-value is found for the signal events from the microquasar V404 Cyg, a low-mass BH XRB,
with a pre-trial p-value of 0.014. However, the ?-value increases to 0.754 after taking into account
the trials for the number of sources in the catalog. V404 Cyg underwent a major X-ray flaring
episode in 2015. There are 5 sub-TeV neutrino events within 1.5◦ of the source during the time of
this flare, and the best-fit threshold indicates a time duration of 11 days, as shown in Fig. 2. This
giant flare was observed with a duration of approximately 13 days by Swift/BAT [23].

In the time-integrated analysis, both the tests on individual sources and stacked search find
no signal with sufficient statistical significance. The prominent excess in the point source search
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Analysis Name TS =̂B Ŵ ?-value 90% CL upper limits
Flare V404 Cyg 8.3 5.4 4.0 0.754 (0.014) 0.91

Time-integrated Cyg X-3 6.8 44.6 3.3 0.036 (0.009) 1.51
TeV XRB stacking - 0.1 7.7 3.5 0.587 1.22

microquasar stacking - 0 0 - 1 7.32

Table 1: The most significant source in the flare/time-integrated analysis with the TS, and the best-fitted =̂B
and Ŵ. Both post-trial and pre-trial (bracketed) p-values are shown. The results of the 2 stacking tests are also
listed. The 90%CL upper limits are parameterized as 3#a`+ā`/3�a = Fa`+ā` (�a/TeV)−2 ·10−4 TeV−1cm−1

for the flare analysis and 3#a`+ā`/3�a = qa`+ā` (�a/TeV)−2 · 10−12 TeV−1cm−1s−1 for time-integrated
analyses.
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Figure 3: The relation between the time-integrated flux at 1TeV and the flaring time for V404 Cyg. The
dashed black line is the flaring time converted from the best-fit threshold and the red triangle shows the
90% CL upper limit. The orange line is the 5f discovery potential in IceCube. Purple lines illustrate
the estimated sensitivity at 90% CL and 5f discovery potential in IceCube-Gen2. The shaded regions are
the time-integrated neutrino flux prediction assuming an E−2 spectrum with an energy cutoff at 100 TeV
estimated following the jet model [20]. The uncertainties are from flux densities in different frequencies in
VLA radio measurements during the flaring time in 2015. The two colors correspond to varying the energy
fraction of the jet carried by accelerated protons [? .

is found for Cyg X-3, which exhibits pre-trial p-value of 9 × 10−3, leading to a post-trial ?-value
0.036 after considering the 4 trials. In the flare analysis, Cyg X-3 has a pre-trial ?-value 0.09, less
significant than the time-integrated results. Within 1◦ around the source location, there are 44 events
above 1 TeV, and the most energetic one among them has deposited energy about 5 TeV, leading to
a soft best-fit spectrum. Since there is no significant signal found, we set the 90% confidential level
(CL) upper limits to the neutrino flux from the sources studied. A summary is shown in Table. 1.

For microquasars, relativistic jets are expected to be the CR acceleration sites. Possible
neutrino emission is expected from the beam dump on either radiation from the compact object
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Figure 4: Red and purple lines indicate a comparison between current upper limits and estimated 10 yr
sensitivity (light) & discovery potential (dark) in IceCube-Gen2 for Cyg X-3. As the high-energy neutrino
events nearby cut at several TeV, an exponential cutoff at 5 TeV is also applied for computing upper limits.
The shaded regions show predictions of ?? [21] and ?W [22] scenarios. The inclusion of a cutoff is also to
be compared to the shaded pink region which includes a cutoff of CR energy at 100 TeV with the spectral
index ranging from 2.4-2.7. 3.25 corresponds to the best-fit spectral index. The gray shaded region shows
the uncertainty from the collision radius.

itself or gas from the companion star. Parameters for neutrino flux prediction in [20], based on the
photohadronic model of [5] can be constrained for some microquasars. Nevertheless, the simplified
estimation has large uncertainties. For V404 Cyg, the X-ray flare in June 2015 was observed in
multiple wavelengths, and the jet activity during that outburst was studied, e.g., in [24, 25]. A
simple estimation of the neutrino flux using the jet model can be performed with the radio jet
information when the source is in an outburst state. The upper limits reported here are compared
to the time-integrated flux estimation in Fig. 3. The collision region is estimated from the flaring
duration. The values of jet parameters in the estimation are from [24, 25], and the spectrum is
assumed to be a power-law with an index of 2 and an exponential cutoff of 100 TeV.

For Cyg X-3, one of the microquasars identified as a gamma-ray source in early observations,
many predictions have been calculated in the past decades depending on different models for
microquasars. For a comparison to the upper limits, we take [22] and [21], which discussed the
general ?W and ?? scenarios based on the AGILE observation respectively, shown in Fig. 4. What
needs to be mentioned is that Cyg X-3 lies in the direction of the Cygnus X region and is close to
the Cygnus OB2 association but with a further distance compared to the Cygnus X region. The
possibility of contamination from the Cygnus X complex cannot be excluded.

The next generation of the IceCube experiment, IceCube-Gen2, will provide a factor of eight
increase in volume [26], leading to an expected ∼5-time increase in the effective area compared to
IceCube, corresponding to an improvement in sensitivity by the same order, which advances the
identification of neutrino sources. Here, we extend the study to IceCube-Gen2 and estimate the
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sensitivity and discovery potential for V404 Cyg, as an example of a flaring source and Cyg X-3,
for persistently emitting sources. The estimated improvement can be seen in Fig. 3 and Fig. 4.
The effective areas of muon tracks are computed from the proposed IceCube-Gen2 configuration,
and the projection is evaluated similar to that in [26] without considering a contribution from the
existing IceCube detector. In comparison with theoretical calculations, it demonstrates the power
to either identify those sources or rule out models with IceCube in the future.

4. Summary

A Galactic contribution to the high-energy neutrino flux observed by IceCube is expected. We
present a study of neutrino emission from XRBs, long-standing candidates for the Galactic sources
of CRs and neutrinos. We performed a time-dependent analysis based on the assumption of flaring
neutrino emission. In parallel, a time-integrated search is also performed on 4 notable sources
and 2 stacked lists. In the absence of any significant excess, we set upper limits on the neutrino
emission in the scenarios discussed. The results of the most significant sources in this search are
compared to models of neutrino production in XRBs. Our estimation of the improved detectability
by IceCube-Gen2 due to higher neutrino event statistics demonstrates the potential for the future
detection and presents a promising outlook of identifying Galactic cosmic-ray accelerators in the
upcoming years.
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