
Searching Game Trees in Parallel Using SSS* 

Subir Bhattacharya and A. Bagchi 
Computer Aided Management Centre 

Indian Institute of Management Calcutta 
P.O. Box 16757, Calcutta - 700 027, INDIA 

Abstract 

PARSSS* is a parallel formulation of SSS* that 
is suitable for shared-memory multiprocessor 
systems. It is based on the distributed tree 
search paradigm of Ferguson and Korf. The 
main difficulty in parallelizing SSS* lies in 
achieving proper coordination between processes 
running on different subtrees of the game tree. 
This has been resolved in PARSSS* by the use 
of a shared array which maintains summary 
information on all processes that are currently in 
execution. Problem-independent speed-up values 
for PARSSS* have been obtained experiment­
ally. It is shown that an earlier algorithm of the 
authors, called ITERSSS*, which allows SSS* to 
run in restricted memory, can also be parallel­
ized using the above scheme. 

1 Introduction 
Shared memory multiprocessor systems, local area 
networks, and other types of parallel and distributed 
computer systems have become increasingly available in 
recent years. This has caused a spurt of activity in the 
development of parallel versions of existing sequential 
algorithms. The general objective has been to achieve an 
effective reduction in net processing time through 
simultaneous execution of code by more than one 
processor. In the area of AI search methods, parallel 
versions of A* [Kumar et a/., 1988] and IDA* [Rao et 
al, 1987] have been announced. Alpha-Beta and other 
game tree search algorithms have been similarly 
parallelized ([Finkel and Fishburn, 1982, Leifkar and 
Kanal, 1985]). 

An efficient parallelization of Alpha-Beta has 
recently been achieved by Ferguson and Korf [1988] 
using their notion of distributed tree search. But a 
corresponding parallelization of SSS* has not yet been 
reported. Indeed, there appears to be no completely 
satisfactory parallelization of SSS* in existence. The 
main hurdle lies in coming up with a suitable 
implementation for a global OPEN list from which 

the highest-valued node must be selected at each 
iteration, and from which some non-promising nodes 
must be purged at intervals. A convenient distributed 
realization would make it imperative to maintain many 
local OPEN lists. Coordination between processes would 
then become a problem, and would have to be accompli­
shed either through shared memory or by message-
passing. 

In this paper we propose a new parallel 
implementation of SSS* based on distributed tree search. 
The basic idea is to let a number of processes execute in 
parallel, each searching a different subtree of the given 
game tree, and each running SSS* on a local OPEN list. 
The game tree can be irregular in shape with a non­
uniform branching factor and depth. The version of our 
algorithm presented here, which we call PARSSS*, 
achieves coordination through the use of shared memory. 
Only minor changes are required to get an alternative 
version where coordination is achieved through message-
passing. The maximum number N of processes that can 
execute at the same time, which can be thought of as 
being equal to the actual number of physical processors, 
can be fed as a parameter at runtime. Our experimental 
results show the approximate variation of speed-up with 
the number N of processors. 

There are two primary reasons for the preference 
shown by users for Alpha-Beta over SSS* : the apparent 
simplicity of the Alpha-Beta algorithm, and the high 
memory requirement of SSS*. It is known, however, that 
SSS* never examines more terminals than Alpha-Beta 
and frequently examines less [Pearl, 1984]. In 
[Bhattacharya and Bagchi, 1986], a method was proposed 
for running SSS* in restricted memory. SSS* was 
modified slightly to yield ITERSSS*, which could be fed 
at runtime the memory M available for use by the 
OPEN list. For successful operation, M had to lie above 
a small threshold value Mo. The number of terminals 
examined by ITERSSS* was a function of M, but never 
exceeded the number of terminals examined by Alpha-
Beta. In PARSSS* each process maintains its own local 
OPEN list, but it is still possible for the size of a local 
OPEN list to become unwieldy. To solve the problem 
we can wed ITERSSS* and PARSSS*. In the resulting 

42 Tools 



algorithm PARITERSSS*, each process would run 
ITERSSS* instead of SSS* on its local OPEN, thereby 
cutting down significantly on the memory requirement. 

In Section 2 we explain how SSS* can be modified 
to run in parallel. The detailed formulation of PARSSS*, 
together with an example of its operation, is given in 
Section 3. The next section summarizes our experimental 
results. PARITERSSS*, the parallel version of 
ITERSSS*, is described in Section 5, and the concluding 
section contains suggestions for further work. 

2 Running SSS* in Parallel 
When searching a game tree T, SSS* sends out 
simultaneous probes across the entire breadth of T, in 
contrast with Alpha-Beta which searches T in an 
essentially left-to-right order. At all instants, SSS* strives 
to keep in OPEN a representative node from each of the 
constituent solution trees of T. However, nodes 
representing sub-optimal solution trees can get purged 
from OPEN. SSS* scans from left to right the most 
promising solution tree currently known; if this is an 
optimal solution tree then the root s gets SOLVED, 
otherwise a more promising solution tree is found and 
the search continues. 

In SSS*, when a LIVE MAX node x is expanded, 
all its LIVE MIN immediate successors enter OPEN, 
since they represent different solution trees in T. We do 
not know in advance which one of these MIN nodes will 
ultimately cause x to get solved. Thus, when 
parallelizing SSS*, it would appear advisable to run 
independent processes on each of these MIN nodes. This 
is what we do in PARSSS*. Each process mns on a 
subtree rooted at a MIN node of T, and all the processes 
are identical. Initially, the algorithm creates a process for 
the root node s; this is the only process that runs on a 
subtree rooted at a MAX node. During execution of this 
root process, the MAX node s splits up into its MIN 
successors. The root process continues the search under 
the leftmost of these MIN nodes, and creates new 
processes for as many as possible of the other MIN 
successors of s. Each of the newly created processes 
maintains its own local OPEN list, and can in its own 
turn spawn processes at lower level MIN successors. At 
no instant of time, however, can the total number of 
processes exceed the given bound N. 

How is coordination between processes achieved ? 
In SSS*, when a SOLVED MIN node x.j is selected 
from OPEN, its father MAX node x can be labelled 
SOLVED, and all successors of x can be purged from 
OPEN. But this cannot be done in PARSSS*. Suppose 
that a process P is running on the subtree of the game 
tree rooted at a MIN node y. When P selects a 
SOLVED MIN node x.j from its local OPEN, other 
processes may be running on other descendants of x, so 
it may not be correct to label x SOLVED. To resolve 
this difficulty, we keep a global array MINPROC in 
shared memory; for each process, there is an entry in 
MINPROC specifying the current h-value of the process. 
The entry for process P stores the associated root MIN 

node y, and the current h-value of the subtree below y. 
This value is the maximum of the h-values of nodes in 
the local OPEN of P and the current h-values of the 
subprocesses spawned by P. When a process P* is 
spawned by the process P at a LIVE MIN node z, the 
h-value of P' is initialized to the current h-value of z in 
P. As the search below z progresses, P* updates its own 
h-value to the value of the last node selected by it from 
its local OPEN (assuming no other processes are running 
below z). Thus when the process P selects a SOLVED 
MIN node x.j from its local OPEN, the current h-values 
of the processes spawned by P at nodes below the MAX 
node x are all available in MINPROC. Among these, 
those that are no greater than the h-value of x.j are no 
longer required, and the corresponding processes can be 
killed. If all satisfy the condition, then x can be labelled 
SOLVED. Otherwise we must wait until the h-values 
drop or some other MIN successor of x solves x. Since 
each process confines its attention to its own local 
OPEN, the total number of terminals examined by 
PARSSS* can in general exceed the number examined 
by SSS*. But PARSSS* takes less time than SSS* since 
the processes run in parallel. 

3 Algorithm PARSSS* 

For a description of SSS*, we refer the reader to 
[Stockman, 1979], [Pearl, 1984, pp. 240-245], and 
[Bhattacharya and Bagchi, 1986]. Algorithm PARSSS* 
consists of a short root procedure PARSSSROOT, and a 
process PARSSS*. Many copies of process PARSSS* 
are simultaneously in execution, as has been explained 
above. Before presenting the algorithm, we clarify some 
of its features below. 

(a) Each copy of process PARSSS* has an entry in the 
global list MINPROC which is located in shared 
memory. The entry has three components : 
(i) the root node x of the subtree on which the 

process is running (except for s, all such 
nodes are MIN nodes); 

(ii) the current h-value of the subtree; 
(iii) the current status, LIVE or SOLVED, of x. 

(b) The local OPEN list of each process has been split 
up for convenience into two sublists, OPEN and 
LIVEMINS. The list OPEN keeps track of SOLVED 
nodes and LIVE MAX nodes, while LIVEMINS 
contains the LIVE MIN nodes on which other 
processes can be initiated in future. The list 
LIVEMINS is kept sorted on the depth of the MIN 
nodes. 

(c) The procedure FIRST returns the highest valued 
node from OPEN U LIVEMINS. 

(d) N is an upper bound on the maximum number of 
concurrent PARSSS* processes that can be spawned 
by the algorithm. The value of N is fed as a 
parameter to PARSSSROOT, and is stored in shared 
memory. 

Bhattacharya and Bagchi 43 



(* root program *) Remark 1 The SOLVED descendants of p which are 
being transferred from MINPROC to OPEN 
correspond to those M I N nodes below p at 
which processes were initiated earlier from 
this process and which have now been solved. 

Remaik2: On selecting the node x from OPEN U 
L IVEMINS , the h-value of the process p in 
MINPROC must be updated to max (h(x), 
h(q): q is the root of a process below p} . This 
is done to avoid purging nodes below which 
other processes are running with higher h-
values. 

Remark3: The algorithm tries to distribute its workload 
by initiating independent processes at as many 
L IVE M I N nodes below p as possible. 
L IVEMINS is kept sorted by depth, so nodes 
higher up in the tree get priority in the 
assignment of processors. 

Remark4: When a SOLVED M I N node x = x ' . j is 
selected from OPEN, instead of immediately 
inserting its father M A X node x' in OPEN, 
PARSSS* first finds out whether other 
processes are running at descendants of x\ 

The two shared databases are MINPROC and N. 
Only operations on N need to be locked. Although 
MINPROC is modified by different processes, it is 
possible to implement it without locking since a specific 
entry can be modified by only one process. MINPROC 
is small in size and has no more entries than the 
maximum number of processes that are allowed to run 
concurrently. 

We illustrate the operation of PARSSS* with an 
example. 

Example : Let the game tree be a uniform binary tree 
of depth 4, so that there are 16 terminal nodes. Let us 
suppose that the terminal node values from left to right 
are as follows 

where X indicates a DON'T -CARE term. We make the 
simplifying assumption that during the execution of SSS* 
and PARSSS*, only the examination of terminal nodes 
takes any significant time, and we ignore all other 
factors contributing to processing time. Thus our unit of 
time is the terminalcount, which is the time taken to 
examine one terminal node. This time is taken to be the 
same for all terminal nodes. The above simplifying 
assumption is not needed for the correct operation of 
PARSSS*; its purpose is to make the example easier to 
fol low, and it plays a role in our experiments described 
in the next section. 

On the above sequence, the execution of SSS* takes 
12 terminalcounts. Now suppose N = 2, which means 
there are two physical processors. Table 1 shows what 
happens when PARSSS* runs on the sequence. Nodes 
are represented in Dewey decimal notation, with 1 
corresponding to a left l ink and 2 to a right l ink. Time 

44 Tools 



is indicated in terminalcounts. Process 1 runs on the root 
and its left subtree; it spawns Process 2 which runs on 
the subtree rooted at node 2. At each terminalcount we 
show the values of a terminal node when it is L IVE 
(i.e., prior to being examined) and when it is SOLVED 
(i.e., after being examined). 

Table 1 

PARSSS* executes for 7 terminalcounts. After 5 
terminalcounts, the first process solves node 1, but the 
root node s cannot be solved yet, since the h-value in 
MINPROC corresponding to process 2 is still too high. 
Only at the end of the 7th terminalcount can s be 
solved. Note that h-values in MINPROC are being 
updated right after FIRST selects the highest-valued node 
from OPEN. 

4 Experimental Results 

We conducted some experiments on a V A X 11/750 to 
find out the order of speed-up obtained by PARSSS* 
over SSS* when run on uniform game trees (with 
branching factor b and depth d) with randomly generated 
terminal values. To get problem-independent results, 
running time was determined in terminalcounts. The 
computer system had only one physical processor, but 
multiprocessing was simulated by setting N to a value 
greater than one and then running N processes 
concurrently under the VMS operating system. Programs 
were written in C. Terminalcount was initialized to zero 
for the process corresponding to the root node s, and 
thereafter whenever a new process got spawned, its 
terminalcount was initialized to the current terminalcount 
of its father. Since in this environment the speed-up 
obtained becomes dependent on the order in which 
processes get scheduled by the operating system from the 
ready queue, it is necessary to run the same problem 
instance a number of times. For the purposes of this 
experiment we randomly selected only one problem 
instance for each set of (b, d) values. We ran each 
problem instance 20 times and took the minimum of the 
20 running times, as shown in Table 2. The 
corresponding values of the total number of terminals 
examined by all the processes together are also shown in 
the table. In order to restrict the number of processes 
that get created within a reasonable bound, we did not 
allow processes to be spawned on nodes at heights < 4. 

Owing to the use of local OPEN and L I V E M I N lists, the 
speed-ups are less than linear. In a true parallel 
processing environment it is l ikely that higher speed-ups 
would be realised for the fol lowing reason. Before 
declaring a M A X node SOLVED, PARSSS* updates the 
terminalcount of the current process with the maximum 
of its terminalcount and the terminalcounts of all 
processes spawned from the current process. When there 
is a single processor, time slices get allocated to 
processes in a sequential manner, and no true parallel 
processing takes place; this puts some restrictions on 
when processes can get kil led. When processes execute 
simultaneously, it is possible for a process P to be kil led 
by an ancestor process P' in the middle of a timeslice as 
soon as the h-value of P' is updated by a descendant of 
P\ This also explains why it is more reasonable to take 
the minimum rather than the average of the running 
times for a specific instance. The execution of a true 
parallel processing system cannot be simulated exactly on 
a single processor system because the user has little 
direct control on the length of the time slice or on the 
way processes get scheduled from the ready queue. The 
smaller the time slice, and the closer it is in duration to 
the time taken to examine a terminal, the closer the 
analogy. 

5 Running ITERSSS* in Parallel 

A scheme almost identical to the one described above 
enables us to parallelize ITERSSS* [Bhattacharya and 
Bagchi, 1986]. The total memory requirements of 
PARSSS* and SSS* are of the same order. If so much 
storage is not available, the memory that is available can 
be distributed among a number of processes; of course, 
each process must be given the minimum storage space 
required for running ITERSSS* on the subtree assigned 
to this process. 

In ITERSSS*, every node in OPEN has an 

Bhattacharya and Bagchi 45 



additional field named TYPE which can be either 
ACTIVE or INACTIVE. ITERSSS* starts by setting the 
root node s ACTIVE. When an ACTIVE MIN node that 
is selected from OPEN can not be expanded immediately 
because of lack of space, its TYPE is changed to 
INACTIVE. An INACTIVE node can be looked upon as 
the root of a subtree whose exploration has been 
temporarily suspended, to be taken up later when the 
required storage space has been released as a 
consequence of the selection of a SOLVED ACTIVE 
MIN node. 

In the parallel algorithm PARITERSSS*, while 
spawning a new process, preference is given to those 
subtrees whose MIN roots are currently INACTIVE. This 
is achieved by keeping the list LIVEMINS sorted first 
on TYPE and then on depth. The function FIRST in 
PARITERSSS* selects the highest h-valued node from 
OPEN U LIVEMINS from among the nodes that are 
currently ACT IVE . But when MINPROC 
[MINPROC_ENTRY].h is updated, the values of 
INACTIVE nodes must also be taken into account. 

When the root process PARITERSROOT is invoked, 
two parameters are supplied, viz. N, which is an upper 
bound on the number of simultaneous processes, and M, 
which specifies the storage space that each spawned 
process can utilise for storing the lists OPEN and 
LIVEMINS. For successful operation of PARITERSSS*, 
M must be > Mo where Mo = [d/21 * (b-1) + 1. The 
rest of the algorithm follows PARSSS* closely. 

For PARITERSSS* we conducted some experiments 
on a uniform tree with b = 3 and d = 10. In this case 
the memory requirement for OPEN in SSS* is 243; and 
for ITERSSS*, Mo = 11. We ran PARITERSSS* for 
different combinations of N and M on a randomly gener-

46 Tools 



Table 3 

ated problem instance. Results are given in Table 3. 
Speed-up computations were made relative to SSS*; 
since PARITERSSS* allocates memory M to each of the 
processes that get generated, it would not be meaningful 
to compute speed-up with respect to ITERSSS* running 
with memory M. Note that when M = 243, ITERSSS* is 
identical to SSS*. As in the case of PARSSS*, we did 
not allow processes to be spawned on nodes at heights 
< 4. 

6 Conclusion 

The objective of this paper has been to suggest ways to 
parallelize SSS* and ITERSSS*. Our stress has been on 
the formulation of the parallel algorithms because of our 
belief that no other completely satisfactory formulation 
exists in the literature. We have run the algorithms and 
obtained problem-independent speed-up estimates 
empirically. These results are only indicative. The 
algorithms should now be run on true multiprocessor 
systems and on real game trees from different games, 
and speed-ups should be determined for each problem on 
the basis of total running time. It also appears possible 
to reformulate PARSSS* and PARITERSSS* for 
distributed systems, though the details of the algorithm 
would depend on the specific features of the distributed 
system under consideration. Another interesting area 
where further work is possible concerns the theoretical 
derivation of upper and lower bounds on the speed-ups 
obtainable by PARSSS* and PARITERSSS* under 
different sets of assumptions. 

References 

[Bhattacharya and Bagchi, 1986] Subir Bhattacharya and 
A. Bagchi. Making best use of available memory 
when searching game trees. Proc. AAAI-86, pp. 163-
167. 

[Ferguson and Korf, 1988] C. Ferguson and R.E. Korf. 
Distributed tree search and its application to Alpha-
Beta pruning. Proc. AAAJ-88, pp. 128-132. 

[Finkel and Fishburn, 1982] R.D. Finkel and J.P. 
Fishburn. Parallelism in Alpha-Beta search. 
Artificial Intelligence, Vol . 19, 1982, pp. 89-106. 

[Kumar et al., 1988] Vipin Kumar, K. Ramesh and V. 
Nageshwara Rao. Parallel best-first search of state-
space graphs: a summary of results. Proc. AAA1-88, 
pp. 122-127. 

[Leifkar and Kanal, 1985] D.B. Leifkar and L.N. 
Kanal. A hybrid SSS*/Alpha-Beta algorithm for 
parallel search of game trees. Proc. IJCA1-85, pp. 
1044 -1046. 

[Pearl, 1984] J. Pearl. Heuristics : Intelligent Search 
Strategics for Computer Problem Solving. Addison-
Wesley, 1984. 

[Rao et al, 1987] Nageshwara Rao, V. Kumar and K. 
Ramesh. A parallel implementation of Iterative 
Deepening-A*. Proc. AAAI-87, pp. 133-138. 

[Stockman, 1979] G. Stockman. A minimax algorithm 
better than Alpha-Beta ? Artificial Intelligence, Vol. 
12, 1979, pp. 179-196. 

Bhattacharya and Bagchi 47 


