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Abstract—The discovery of novel noncoding RNAs has been among the most exciting recent developments in biology. It has been

hypothesized that there is, in fact, an abundance of functional noncoding RNAs (ncRNAs) with various catalytic and regulatory

functions. However, the inherent signal for ncRNA is weaker than the signal for protein coding genes, making these harder to identify.

We consider the following problem: Given an RNA sequence with a known secondary structure, efficiently detect all structural

homologs in a genomic database by computing the sequence and structure similarity to the query. Our approach, based on structural

filters that eliminate a large portion of the database while retaining the true homologs, allows us to search a typical bacterial genome in

minutes on a standard PC. The results are two orders of magnitude better than the currently available software for the problem. We

applied FastR to the discovery of novel riboswitches, which are a class of RNA domains found in the untranslated regions. They are of

interest because they regulate metabolite synthesis by directly binding metabolites. We searched all available eubacterial and archaeal

genomes for riboswitches from purine, lysine, thiamin, and riboflavin subfamilies. Our results point to a number of novel candidates for

each of these subfamilies and include genomes that were not known to contain riboswitches.

Index Terms—Noncoding RNA, database search, filtration, riboswitch, bacterial genome.
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1 INTRODUCTION

NOT all genes encode proteins. Noncoding RNAs

(ncRNAs) form transcripts that are functional mole-

cules by themselves. The involvement of ncRNA in

translation (tRNA), splicing, and other cellular functions is

well-known. As early as 1961, Jacob and Monod hypothe-

sized complementary roles for the two classes of genes,
proposing that “Structural genes encode proteins, and regula-

tory genes produce ncRNA” [16]. Until recently, however,

most novel gene discovery was in the form of protein

coding genes and discovery of ncRNA was limited to

finding novel homologs of commonly occurring ncRNAs

(such as tRNA and rRNA). In part, these discoveries were

fuelled by advances in genomic and computational tech-

nologies as well as large scale genome sequencing projects
leading up to publications of large Eukaryotic genomes [21],

[38], [41]. The complete genomic sequence allowed us to

refine the estimates of the number of human (coding) genes.

Surprisingly, these current estimates (30,000-40,000 genes)

comprise less than 2 percent of the genome, far lower than

earlier estimates and only twice as many as in Drosophila. It

is an intriguing question if these genes and their (alter-

natively spliced) protein products are sufficient to carry out
complex cellular functions. Could it be that many cellular

functions are carried out by as yet undiscovered ncRNA?

Recent discoveries show that this idea of a treasure trove
of undiscovered ncRNA is not without merit. The discovery
of endogenous small interfering RNA (RNAi) has generated
a lot of excitement [30]. Targeted search for other noncoding
RNA (ncRNA) [2], [23], [25] has led to surprising
discoveries of novel subfamilies of ncRNA. Some ncRNA
are not independently transcribed but occur as part of the
untranslated regions of mRNA. For example, Riboswitches
are ncRNA elements that often occur in the 5’ untranslated
regions (UTRs) and regulate the transcription of the
downstream gene by directly binding to metabolites [29],
[39]. It is hypothesized that there is in fact an abundance of
undiscovered, functional ncRNAs with various catalytic
and regulatory functions (the modern RNA world [9]). The
reason these genes remain undiscovered is because genomic
and computational tools for finding ncRNAs are not as
advanced as those for protein coding genes.

Various computational approaches to detecting noncod-
ing genes are under investigation. Some of these are
attempts at de novo prediction, looking for signals that
might suggest a functional RNA in the molecule. The most
promising approach seemed to be the use of secondary
structure as a signal [4], [15], [22] to discover RNA. This
approach builds upon extensive earlier research into
predicting the secondary structure of an RNA molecule
[17], [46]. However, recent reports [31], [44] have concluded
that the secondary structure signal is not sufficient to detect
ncRNA. Random sequences with a biased GC composition,
or with a di-nucleotide composition similar to true RNA
sequences, usually allow folding into energetically favor-
able secondary structures. Other de novo approaches include
looking for the transcription start and similar signals, but
have had limited success. The consensus is that the ncRNA
signals in a genome are not as strong as the signals for
protein coding genes.
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Therefore, a natural way to solve this problem is based
on comparative methods. One approach is to consider the
evidence for RNA structure in sequences that are con-
served through evolution. QRNA [32] tries to find ncRNA
genes by scanning the conserved region alignments from
two distant species. The program has been used to find
ncRNAs in E. coli [33] and in Saccharomyces cerevisiae [28].
Other programs, such as ddbRNA [6], MSARI [5], and
alignfold [40], use multiple alignments as input to detect
conserved RNA secondary structures. However, if the
sequences have diverged, constructing accurate multiple
alignment itself is a challenging problem. Further selecting
appropriate genomic subsequences to align is also challen-
ging because of the divergence in primary sequences.

Here, instead of trying to identify novel ncRNA families,
we address the relatively easier problem of identifying
subsequences that are similar in structure and sequence to
query. This approach has been used to find homologs of a
specific RNA, such as tRNA [26]. This has also been
extended to searching for homologs of ncRNA families by
querying with a statistical representations of a multiple
alignments of the family. Examples include CMsearch [12]
using covariance model (CM) [10] and ERPIN using
secondary structure profiles [11], [20]. Recently, Klein and
Eddy developed a tool, RSEARCH [19], for searching a
database with a single ncRNA query. This method depends
upon existing algorithms for computing alignments be-
tween an RNA sequence and substrings of a database,
where the alignment score is a function of sequence and
structural similarity. Known algorithms for computing such
alignments are computationally intensive, which is approxi-
mately Oðmw2nÞ, where m is the length of the query
sequence, n is the length of the database sequence, and w is
the maximum length of a database substring that is aligned
to the query. For a test run on an Intel/Linux PC with
2.8 GHz, 1 Gb memory, a microbial database of size 1.67 Mb,
and a query 5SrRNA sequence, RSEARCH took over
6.5 hours to run. This makes it intractable for a large
genome database.

In this paper, we describe FastR, an efficient database
search tool for ncRNA. FastR is generally two orders of
magnitude faster and, as an example, FastR reduces the
compute time of the previously mentioned query to
103 seconds. Are such algorithmic improvements worth
investigating? An analogy can be made with the BLAST [1]
algorithm, which has had tremendous influence on the
growth of sequence databases such as Genbank and
bioinformatics as a discipline. While tools for sequence
alignment, based on the Smith-Waterman algorithm, had
been available for a long time, BLAST changed the land-
scape largely by its speed and accuracy in searching for
sequence homologs. The main idea here is the development
of filters that efficiently prune most of the database while
retaining the true homologs. This has also been tried for
ncRNAs. For example, to improve speed, Rfam employs an
initial BLAST search to filter genomic sequences before
running the CMsearch [12]. Weinberg and Ruzzo [42]
described filters based on Markov models, which can
provably retain all hits that a covariance model could find.
Because these two filters are based on primary sequences
conservation, many compensatory mutations in ncRNA

sequences that affect the sequence similarity may reduce
their sensitivity or speed. Other approaches to filters are
also studied (see, for example, [7]), which search for simple
motifs which might be shared by many ncRNA families.
Whereas, the idea in FastR is the use of RNA structural
features as filters, where the filters are specific to a family.
Most ncRNAs appear to be selected more for maintenance
of a particular base-paired secondary structure than
conservation of primary sequences. After filtering, we
compute the alignments between the query ncRNA and
all possible hits to find the true homologs.

We apply FastR to the discovery of novel riboswitches,
which are a class of RNA domains found in the UTRs. They
are of interest because they regulate metabolite synthesis by
directly binding metabolites. We searched all available
eubacterial and archaeal genomes (508 mega bases) for
riboswitches from purine, lysine, thiamin, and riboflavin
subfamilies. Our results point to a number of novel
candidates for each of these subfamilies and include
genomes that were not previously known to contain
riboswitches. As an example, a search with the purine
riboswitch (Z99107.2/14363-14264) took 19 hours on a
standard PC and resulted in the discovery of 180 homologs,
including 33 of 35 known riboswitches. Nine of these are of
interest as they lie less than 500 bases upstream of a gene
involved in Purine metabolism. Thus, FastR is a viable tool
for discovering novel homologs of ncRNA.

We describe details of the FastR algorithm in Section 2. In
Sections 3 and 4, the algorithm is validated by testing its
speed and accuracy on known ncRNA subfamilies. Finally,
we describe our findings from a search of the entire
microbial database for novel riboswitches.

2 METHODS

FastR solves following problem: Given an RNA sequence
with known secondary structure, efficiently compute all
structural homologs (computed as a function of both
sequence and structural similarity) in a genomic database.
There are two stages in FastR. In the first stage, the database
is filtered to identify substrings which have structural
features similar to the query (see Sections 2.1 and 2.2). In the
second stage, the selected substrings are locally aligned to
the query using a sequence structure alignment (see
Section 2.5). Finally, p-values are assigned to the top hits.

2.1 Filters

Before introducing our structure-based filtering method, we
first address the question whether sequence similarity with
the query string is sufficient to get an initial set of candidate
regions. To test this, we queried the whole genome of
A. pernix (GenBank NC_000854.1) with an Asn-tRNA
sequence. With default parameters, BLASTN selected
four hits with an E-value < 0:001 and 24 hits with E-value
< 10. Three of the four and 10 of the 24 matched the 43 hits
produced by RSEARCH. Most of the alignments were less
than 20bp in length and would have been discarded.
Another example is presented in Fig. 1. The alignment of
two tRNA sequences (Acc#: X07778.1/115-45 and
AF200843.1/3014-3079) from Drosophila show complete
conservation of structure, but low sequence similarity. From
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this and similar tests not included here, we do not anticipate
a tool based on sequence similarity to be effective in finding
RNA homologs. Therefore, we turn to the secondary
structure of the query RNA sequence as the basis for our
filter design. We will continue to use sequence similarity in
computing the final alignments.

As shown in Fig. 2, the secondary structure of an RNA
has a tree like shape and can be decomposed into various
loops (Interior loops, bulges, multiloops) and stack regions.
Each stem in this tree contains energetically favorable
stacked base-pairs. The stacks are stabilized by hydrogen
bonds between base-pairs. The Watson-Crick base-pairing
(A $ U, C $ G) is energetically the most favorable, but
other pairings such as the wobble base-pair (G $ U) are
possible as well. Fig. 2b provides a “stretched” view of the
RNA structure.

Each stack corresponds to a pair of substrings. These
pairs are typically noninterleaving. While interleaved
stacks, or pseudoknots (such as the pair ðf; f 0Þ, and ðh; h0Þ
in Fig. 2), do occur, they can be ignored for filtering
purposes.

Consider a nucleotide string s with jsj ¼ n. We define a
ðk; wÞ-stack as a pair of indices ði; jÞ; i < j if ðj� iÞ � w,
s½i . . . iþ k� 1�, and s½j . . . jþ k� 1� can form an energeti-
cally favorable base-pair stack. As an example, the indices
of the substring ða; a0Þ in Fig. 2 form a ð5; wÞ-stack if they

are at most w bases apart. A simple filter choice for an
RNA structure is the set of all starting positions i which
contain a ðk; wÞ-stack for appropriately chosen k and w. Let
p be the probability that a pair of randomly chosen bases is
part of a stack. The probability that a pair of indices ði; jÞ

with ðj� iÞ � w forms a ðk; wÞ-stack is pk. Define Xi;j as the
indicator variable with Xi;j ¼ 1 if and only if ði; jÞ forms a
ðk; wÞ-stack. Using linearity of expectation, the expected
number of hits in a random string of length n is

E
X

n

i¼1

X

iþw

j¼iþk

Xi;j

 !

¼
X

n

i¼1

X

iþw

j¼iþk

EðXi;jÞ � nwpk:

See Table 1 for the expected number of hits per starting
position (’ wpk). Obviously, for large k and small w, even
this simple filter can be quite powerful. Assume for
exposition purposes that the base-pairing is limited to the
Watson-Crick base (A $ U, C $ G) and the wobble base-
pair (G $ U). For a randomly and uniformly chosen pair of
bases, the probability p of pairing is p ¼ 3

8
. As an example,

typical tRNA structures have a clover-leaf shape with the
outermost stem having a seven base-pair stack separated by
about 70 bases. The ð7; 70Þ filter would eliminate over
90 percent of the starting positions from consideration. In
fact, we can do better as this base-pair unit is in fact
separated by at least 50 bases in all tRNA, therefore making
w effectively 20 (50 � w � 70), eliminating 98 percent of the
starting positions. Note that the assumption that the bases
are independent and identically distributed (i.i.d.) is not
valid for real genomic sequence. However, the same
principle applies and similar results are observed in
practice.

2.2 Filter Design

We will use the ðk; wÞ-stack as the basis for our filter design.
However, we need to design more sophisticated filters as
indels may sometimes disrupt base-pair stacks (decreasing
the effective value of k), and variability in separation may
increase the effective value of w. We quantify some design
goals for filters to evaluate different designs, spur further
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Fig. 1. Alignment of two tRNA sequences from Drosophila melanogaster
(tRNA_Gly, Acc#: X07778.1/115-45) (top) and Drosophila simulans
(tRNA_Leu, Acc#: AF200843.1/3014-3079) (bottom). The two mole-
cules have identical secondary structure (there are four stacks and
two same-colored blocks form a stack), but very low sequence similarity
(only four bases are matched in stacked region). Note that these are
diverged members of a large superfamily. However, they underscore the
need for structure-based alignments.

Fig. 2. (a) An RNA structure with various structural elements including stacked base-pairs, bulges, hairpin, and multiloops. (b) An alternative view.

The set of bases in ða; a0Þ forms a ðk; wÞ-stack. Two substrings a and a0 are w0 bases apart where w0 <¼ w.



research in this area. A good filter must be efficient. The time
to filter should be no more than the time to align and score
the filtered hits and preferably as small as possible.
Additionally, the filters must have high sensitivity and
specificity. Sensitivity is described as the fraction of all
members of the ncRNA family that is admitted by the filter,
and should be as close to 1 as possible. It may be acceptable
to work with lower sensitivities, for example, to look for
members in a subfamily. We define specificity as the
expected number of hits per base-pair and should be as
small as possible. Finally, the filters must be general and
simply described so as to be applicable (with appropriate
parameter tuning) to every ncRNA family. We propose the
following Nested and Multiloop filters:

NestedFilters:Considering theRNAsecondarystructureasa
tree and goingdepth first downapath (see Fig. 2),we have
many nested ðk; wÞ-stacks. Consider ðk; wÞ-stacks s1 ¼
ði1; j1Þ and s2 ¼ ði2; j2Þ. Stack s1 is nested in stack s2 if i1 �
i2 þ kand j2 � j1 þ k.A ðk; w; lÞ-nested stack is a collection
of l ðk; wÞ-stacks s1; s2; . . . ; sl such that, for all i 2 ½1; l� 1�,
siþ1 is nested in si. For example, in Fig. 2, the configuration
ða; a0Þ; ðc; c0Þ; ðd; d0Þ; ðe; e0Þ is a ðk; w; 4Þ-nested stack.

Parallel and Multiloop Stacks: Yet another way of looking
at RNA structural elements is to locate nonnested,
nonoverlapping ðk; wÞ-stacks. Consider stacks s1 ¼
ði1; j1Þ and s2 ¼ ði2; j2Þ. Stack s1 is parallel to stack s2 if
j1 < i2 or j2 < i1. A ðk; w; lÞ-parallel stack is a set of stacks
s1; s2; . . . ; sl such that any pair of stacks is parallel to each
other. This definition can be extended to a multiloop_
stack. A ðk; w; lÞ-multiloop stack is a configuration in
which a ðk; w; l� 1Þ-parallel stack and each of the stacks
is nested in a ðk; wÞ-stack. The units ðb; b0Þ, ðd; d0Þ, ðf; f 0Þ,

and ðg; g0Þ in Fig. 2 form a ðk; w; 4Þ-parallel stack.
Correspondingly, fða; a0Þ; ðb; b0Þ; ðd; d0Þ; ðf; f 0Þ; ðg; g0Þg is a
ðk; w; 5Þ-multiloop stack.

The nested, parallel, and multiloop stacks are all general-
izations of the ðk; wÞ-stack and, therefore, applicable to all
families of ncRNA. There are conserved structural elements
in every ncRNA family that enforce the correct folding, so it
should be possible to find multiloop and nested structures
with high sensitivity. Also, the simple description allows us
to compute specificity using combinatorial techniques. To
increase the specificity of these filters, we need to extend the
design to include distance constraints (number of base-
pairs) in between the various ðk; wÞ-stacks. For a filter with l
ðk; wÞ-stacks, there are 2l substrings of length k each with
2l� 1 distances between adjacent substrings. To this, we add
an additional distance between the first and the last
substring and we have a vector of 2l distances. We constrain
the distances by a 2l-dimensional vector ~ww containing the
allowed ranges for each of these distances. Choose w0 to be
the range of distances between the first and last substring,
and wj; j > 1 to be the range of distances in the substrings
ordered from left to right. A (multiloop/nested) filter
satisfying these constraints is a ðk; ~ww; lÞ-filter. Note that
ðk; w; lÞ-multiloop stack can be redefined by choosing ~ww such
that wj ¼ ð0; wÞ for all j. A ð4; ~ww; 4Þ-multiloop stack for tRNA
with appropriate distance constraints is shown in Fig. 3.

Specificity and Sensitivity: To compute the specificity of
a (multiloop or nested) filter, we address the following
combinatorial problem: What is the probability that an
arbitrary position in the random database is the start of a
ðk; ~ww; lÞ-multiloop stack or nested_stack? In general, this is
hard to compute because of the various dependencies
between overlapping units, so we approach it indirectly.
Consider a 2l-dimensional vector ~vv. If the distances in ~vv are
within the range specified by ~ww, then ~vv denotes a
configuration of a ðk; ~ww; lÞ-multiloop stack obtained by fixing
the 2l positions of the l ðk; wÞ-stacks using distances in~vv. The
probability of occurrence of an arbitrary configuration is
exactly pkl. For an arbitrary starting position and a
configuration ~vv, define an indicator variable

X~vv ¼
1 if aðk; ~ww; lÞ-multiloop stack occurs

with configuration ~vv
0 otherwise:

8

<

:
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TABLE 1
Expected Number of Hits in a Random String in a ðk; wÞ-Filter

Fig. 3. A ðk; ~ww; 4Þ-multiloop stack for tRNA with distance constraints, with ~ww ¼ ½ð50; 75Þ; ð3; 7Þ; ð3; 15Þ; ð0; 7Þ; ð5; 15Þ; ð0; 7Þ; ð5; 15Þ; ð3; 7Þ�.



LetY ¼
P

~vv X~vv.We are interested in computingPr½Y > 0�.
By linearity of expectation, EðY Þ ¼

P

~vv EðX~vvÞ ¼ nk;~ww;lp
kl,

where nk;~ww;l is number of possible configurations of a
ðk; ~ww; lÞ-multiloop stack. nk;~ww;l can be computed using stan-
dard combinatorial arguments. We consider two special
cases:

1. Let 0 � wj � w for all j. Then,

nk;~wwe;l ¼
w� 2ðk� 1Þl� 1

2l� 1

� �

:

2. Let 0 � w0 � 1 and, for all j > 0, let 0 � wj < x.
Then, nk;~ww;l ¼ x2l�1.

Ideally, we choose the distance constraints so that
nk;~ww;lp

kl << 1. For those values, we can use the Markov
inequality (Pr½Y > 0� < EðY Þ) to get the desired bound. For
higher values of EðY Þ, we need other techniques to bound
the probability. These computations allow us to quantify

the sensitivity-specificity trade-off due to a change in the
distance constraints. Further increases in specificity are
obtained by using intersections of nested and multiloop_
stacks. In Section 3, we describe our filtering results on
various test cases. Informally, making a filter restrictive
increases specificity at the cost of sensitivity. However, in
most families of interest, we can design effective filters that
reduce the database size by two orders of magnitude.

2.3 Optimal Filter Design

Given a family R of ncRNA sequences, an ideal (nested or
multiloop) filter would seek to minimize nk;~ww;lp

kl (increase
specificity) while admitting a large fraction of the members
(sensitivity) and allow efficient filtering. Initial tests on the
purine filters resulted in a ten-fold improvement in total
running time with no loss of sensitivity. We will describe

our results on optimal filter design elsewhere.
As the input to FastR is a single query ncRNA, we

employ a dynamic programming algorithm that automati-
cally generates nested and multiloop filters with high
specificity. The algorithm takes advantage of the tree-like
structure of RNA. It iterates over every value of k; l. For
each such pair of values and every node v in the tree, it
checks if a ðk; lÞ-nested (multiloop) filter is possible. The

final filter chosen is one that maximizes kl, while keeping k

as low as possible. The software then allows users to tweak
the computed parameters to get the desired sensitivity
while retaining specificity. However, our results test results
show that the automatically generated filters have sensitiv-
ity that is comparable to the fine tuned filters.

2.4 Filtering Algorithms

Filtering speed is critical to fast homolog computation. We
use a combination of string matching and dynamic
programming techniques (see, for example, [13]) to filter
databases with multiloop and nested filters.

1. Hash: Build a hash table to compute all kmer

positions in the database. The time taken is OðmÞ,
where m is the size of the database.

2. Identify ðk; wÞ-stacks: Let si denote the kmer at an
arbitrary position i in the database. For each si,
compute a neighborhood NðsiÞ of all “complemen-
tary” kmers. To identify ðk; wÞ-stacks efficiently, we
use the hash table to compute all positions j such
that sj 2 NðsiÞ, and j� i satisfies distance con-
straints. The time taken is linear in the number of
ðk; wÞ-stacks, which is typically smaller than the size
of the database.

3. Filters: Note that multiloop and nested filters are
combinations of ðk; wÞ-stacks. We scan the database
with a moving window of size w. An “active” list of
ðk; wÞ-stacks within the window is maintained and a
dynamic programming technique is used to com-
pute filters from this list. The total computation is
bounded by OðmkwÞ, where mk is the number of
ðk; wÞ-stacks. Typically, mk <

m
w .

In general, any kmer that can form an energetically
favorable stack with s should be in NðskÞ. In our current
implementation, we do not allow indels and allow at most
two G $ U pairs. To test this, a scan of all of the structures
in Rfam 5.0 [12] showed that at least 93 percent of all stacks
contain an ungapped base-pairing of at size at least four.
Note that even the absence of an ungapped stack does not
preclude the formation of a filter using other stacks in the
same molecule. Therefore, this is a reasonable choice that
does not affect sensitivity too much. The current filter time
is a few seconds per Mb of sequence, which is easily
dominated by the time for computing alignments. Also, the
filters are very effective in eliminating a large fraction of the
database while retaining most of the true hits.

2.5 Computing RNA Sequence Structure Alignment

After filtering, we need to align the filtered regions to the
query. There are three types of alignments for RNA
sequences: 1) RNA plain sequence alignment, which takes
into account the secondary structures in the sequences [27],
[36], 2) RNA structure structure alignment, which aligns
tree-like secondary structures together [14], [45], and
3) RNA sequence structure alignment, which aligns a plain
sequence to a secondary structure or a structure profile [3],
[8], [24]. In this paper, we are dealing with the third type of
alignment: The filtered database substrings must be
structurally aligned to the query to identify true homologs.
This problem has been well-studied in the literature, with
scoring based on a Nussinov like counting model [3], [18],
[36] and probabilistic models such as Covariance Models
and Stochastic Context free grammars for RNA [8], [35]. It is
also possible to extend the Zuker-Turner thermodynamic
model [17], [46] for scoring sequence structure alignments.

Here, we extend the approach from Bafna et al. [3] to
include a new binarizing procedure, banded alignment for
efficient computation, and more realistic score functions.
We use the scoring matrix (RIBOSUM) from Klein and
Eddy [19] and empirically generated affine gap penalties to
score the alignments. We note that our filtering approach
generates candidates which can be used in conjunction with
any alignment method. However, we use the extra informa-
tion from the filter match to speed up alignment computa-
tion using banding techniques.
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Given two RNA sequences, s½1; . . . ;m� and t½1; . . . ; n�. We
know the secondary structure of s, which is a set of base-
pairs, S, where ði; jÞ 2 S implies that s½i� bonds with s½j�.
The alignment A of two RNA strings s and t can be
described by a matrix of two rows. The first row A½1; ��
contains the string s with gaps, and the second row A½2; ��
contains the string t with some interspersed gaps. Each
column has at most one gap in it. If A½1; i� and A½1; j� form a
base-pair, we score for both sequence and structure using
the function �ðA½1; i�; A½1; j�; A½2; i�; A½2; j�Þ. As long as A½2; i�
and A½2; j� also form a base-pair, we will give a high score to
capture complementary mutations. Additionally, we score
each column that does not participate in base-pairing by a
function �ðA½1; i�A½2; i�Þ that measures sequence conserva-
tion. Alignments are scored by summing up the contribu-
tions of sequence and structural alignments.

A naive algorithm would iterate over all pairs of
intervals in s and t. We can do better by exploiting the
structure of s. Ignoring pseudoknots, each base-pair has a
unique enclosing base-pair; thus, S can be shown to be a
tree with each node denoting a base-pair, and the obvious
parent-child relation. First, we augment the tree (see
algorithm and an illustration in Fig. 4) by adding spurious
base-pairs so that each nucleotide (originally base-paired or

not) is in some base-pair, each node has at most
two children, and the number of nodes is OðmÞ, where
jsj ¼ m. For any unpaired base, there should be a spurious
edge added between this base and the most left base
without crossing real base-pairing edges. Additionally,
each node v 2 S has at most one child in the augmented
structure which is denoted by S0.

A schematic algorithm for aligning an RNA query
against a sequence is given in Fig. 5. Note that this
algorithm uses linear gap penalties. In our implementation,
we use a slightly more sophisticated affine gap function
(omitted in Fig. 5 for exposition). Our alignment is local in
the subject sequence (there is no penalty for aligning ends of
the sequence), but global in the query sequence (the entire
query must be aligned).

We limit the intervals in s to nodes v 2 S0, which are
bounded by OðmÞ. Fig. 5 describes the algorithm for
aligning sequence t against sequence s (with known
structure). Each node v in the tree structure of s is aligned
against each interval ði; jÞ of t. Suppose v 2 S and let lv and
rv denote the indices of the left and right end-points of v. If,
for example, s½lv� ¼ t½i� and s½rv� ¼ t½j�, then clearly

A½i; j; v� ¼ A½iþ 1; j� 1; childðvÞ� þ �ðt½i�; t½j�; s½lv�; s½rv�Þ:
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Fig. 4. Procedure to create a Binary tree for s with structure S, having OðmÞ nodes such that each node has at most two children. (a) Nodes in the

horizontal line represent sequence s. a, f, g, and h are paired bases. i, j, k, and b are unpaired bases. c, d, and e are representing the branches. The

solid edges correspond to base-pairs in S, while the dotted edges correspond to augmented spurious edges. (b) A binary tree representation for (a),

by changing solid edges into solid nodes and dotted edges into void nodes. (c) The Binarize procedure.



If, on the other hand, v 2 S0 � S and has two children, then

we need to iterate over all k such that the right_child(v) can

align with the interval ðk; jÞ. The procedure alignRNA

(Fig. 5) describes the dynamic programming algorithm to

handle all the cases. Let m1 and m2 ¼ m�m1 denote the

number of nodes with one and two children, respectively.

The complexity of alignRNA, with a query of length m and

a target of length n, is Oðn2m1 þ n3m2Þ. This parameteriza-

tion is useful because in typical structures m2 << m. In our

case, the complexity can be further reduced. The sequence

pairs that need to be aligned have been filtered for an

underlying substructure. The preliminary alignment ob-

tained by this filter allows us to limit the nodes in S0 that

can be applied to a position i in t, based on the left end-

point of v and the width. This banding reduces the number

of nodes to a constant, effectively making the complexity

Oðn2�2mÞ, where �m << m is the size of the banded region.

The banding forces a trade-off. Overlapping hits from the

filter can either be aligned independently with a tight band

or merged and aligned once with larger band size.

2.6 P-Value

For an effective database search, we need to have p-values

for the probability that a hit was obtained by chance. Klein

and Eddy make the argument that the distribution of scores

of RNA structural alignments follow the Gumbel distribu-

tion. As this is a strong assumption, and determination of a

true p-value is a challenging research problem. Therefore,

we choose to express the p-value by using the nonpara-

metric Chebyshev’s inequality. To obtain the mean and

variance, the query is aligned against randomly generated

sequence with a similar GC-content as the database after

each query. The bound provided by this inequality is

conservative and overestimates the probability of obtaining

a similar score by chance. We have found that a cut-off of

0:03 is a reasonable value in practice.

3 RESULTS

We describe the results on filtering and alignment inde-
pendently before giving combined results. To test our
algorithms, we worked with ncRNA subfamilies of known/
predicted structure from the Rfam [12] and the 5S Ribosomal
RNA database [37]. Four subfamilies are considered here,
tRNA, 5S rRNA, the hammerhead ribozyme, and four
riboswitches, purine, lysine, thiamin, and riboflavin [39],
[43]. Of these, tRNA and rRNA are well-studied subfami-
lies. Most genome annotations include screening and
annotation for tRNA. The different riboswitches are of
great interest because they regulate metabolite (nucleic-
acids, amino-acids, vitamins) synthesis by direct binding to
metabolites. In subsequent tests, we search the entire
complement of eubacterial and archaeal genomes for novel
riboswitches.

For every subfamily, we chose representative members,
inserted them in a random database of size 1Mb, and tested
our algorithms on the composite sequence. The probability
of finding stacks at random depends on the GC-content, so,
in some cases, the random database was created by first
choosing the GC-content and subsequently generating
bases with appropriate fixed probability. Gþ C probabil-
ities of 0.35, 0.5, and 0.75 were chosen to study the effect of
GC-content. All experiments were performed on an Intel PC
(3.4 GHz, 1 Gb RAM), running Linux.

3.1 Filtering for ncRNA

Table 2 describes results of applying various filters. As
expected, as the filters become more stringent (higher k; l,
less variable distances), the number of false negatives
increases. However, for each family, there exist appropriate
filters that filter out a large portion of the database while
retainingmost of themembers of the family. Also, as the GC-
content is biased away from 0.5, the number of false hits
increases. The false negatives are all explained by one of
three possibilities: 1) The proposed structure contains
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Fig. 5. An algorithm for aligning a query RNA s of length m with a database string t of length n. The query structure S has been Binarized to get S0.

The index pair in s corresponding to each node v 2 S0 is denoted by ðlv; rvÞ.



noncanonical base-pairs, which are not allowed by FastR.
For example, 10=100 tRNAsequences containA$ G,A$ A,
or A $ C base-pairs. 2) One of the ðk; wÞ-stacks is missing
due to indels, mismatches or short stacks. 3) Distance
constraints are not satisfied. In ongoing work, we plan to
change the neighborhood computation to include all kmers

that form low energy stacks according to the Zuker-Turner
[17] thermodynamic considerations. With respect to varying
distance constraints, one has to choose the correct speed/
sensitivity trade-off. The filters we have selected are all fast
and lead to very few hits in the random database. This
number will increase as the distance constraints are
increased.

3.2 Alignment

To test alignment quality, we computed alignments on a
randomly generated 300Kb database sequence with set of
ncRNA sequence for each family inserted in it. No filtering
was used for FastR. Fig. 6 shows ROC plots for the
two alignment algorithms. The two are comparable, with
RSEARCH performance better for distant homologs. The
time taken for FastR (banded) tRNA alignment is 3 minutes
and 48 seconds, compared to 20 minutes and 42 seconds for
RSEARCH.

Finally, we evaluate FastR after combining filtering and
alignment. We randomly select the query for each family
from Rfam seed alignment and search the random
sequences using FastR and RSEARCH. Table 3 summarizes
the results of our search. Similar results are achieved when
repeating the tests with different queries. As can be seen,
FastR is close to two orders of magnitude faster than
RSEARCH while maintaining comparable sensitivity. Much
of the loss of sensitivity is due to filtering. As seen in the
previous section, FastR alignments and scores are good for
the high quality hits, but decrease thereafter leading to a
loss of sensitivity. As expected, much of the loss of
sensitivity can be attributed to filtering. For 5S rRNA, the

filter allows 80 of the 100 true positives, which are almost
completely retrieved by FastR. In contrast, RSEARCH gets
the top 97 but needs two orders of magnitude more time,
making it much harder to conduct large scale searches. It
should also be pointed out that many of the true positives
were initially discovered using covariance models which
are not unlike the model used by RSEARCH. As a final
validation of the FastR algorithm, we apply it to the
discovery of novel members of Riboswitches. Our results
point to a number of interesting findings.

3.3 Riboswitches

Riboswitches are cis-regulatory elements typically found in
the 5’ untranslated region of the gene they regulate. To date,
six such motifs have been identified that control the
anabolism of three vitamins (riboflavin, thiamin, cobalamin),
as well as the biosynthesis of methionine, lysine, and purine
[29], [34], [39], [43]. Similar to previously characterized RNA
regulatory structures, each riboswitch is capable of folding
into a consensus structure which may result in either
transcription attenuation or translation inhibition. However,
the riboswitch element is unique in that it binds directly to
ligands and is therefore able to sense the level of cellular
metabolites without the need of transacting protein factors.

It is believed that this class of ncRNA appeared early in
evolution and, accordingly, riboswitch elements have been
found in a wide range of bacterial species. The vitamin
riboswitches are the most diverse and can be identified in
archaea and eubacteria. In particular, the thiamin riboswitch
has been characterized in fungi and plants such as rice and
Arabidopsis [39]. Conversely, the methionine, lysine, and
purine riboswitches are more common in gram-positive
bacteria. The repression mechanism is also biased by a
bacterium’s phylogeny. Gram positive bacteria typically
prefer transcription termination, whereas gram-negative
microorganisms tend to mediate gene repression by inhibit-
ing translation.
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TABLE 2
The Results of Applying Nested and Multiloop Filters (with Various Parameters) to Random Databases that Contain True Positives

As the filters become more stringent, the number of hits decrease and the number of false-negatives increase. In all but (*) cases, at most two G$ U
base-pairs are allowed in a stack. (*) refers to cases where only one G$ U base-pair is allowed by the multiloop filter. The false negatives are due to
noncanonical base-pairing, small stacks (k ¼ 3), or the distance constraints being out of range, as described in the last three columns.



While riboswitches are ubiquitous, homologs show little
sequence similarity. Even in the most conserved regions,
typically for ligand binding, the sequence identity may be

less than seven nucleotides. We used FastR to search both
plus and minus strands of bacterial and archaeal genomes
with queries from purine, thiamin, lysine, and riboflavin
riboswitches. A data set of nonredundant, known ribos-

witches existing within our genome files was assembled
from the Rfam database. This data set was used to

determine the p-value cutoffs and a single member used
as the query sequence. A total of 245 genomes comprising
508 Mb were searched in both strands. Candidate ribos-

witch sequences generated by FastR were filtered in order
to find the best predictions. First, known riboswitches from
the Rfam database and low-complexity and AT-rich
predictions were discarded. The remaining predictions

were filtered by their distance from the 5’ start of an exon.
Finally, the predictions were manually examined to
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Fig. 6. ROC plots for the alignments generated by RSEARCH and FastR. Alignments were tested using a 300 kb random sequence with a set of true
ncRNAs inserted in it. The X-axis represents the number of false-positives and the y-axis represents the number of true positives. The horizontal line
represents the number of true hits in the random sequences.



determine if the downstream gene was biologically rele-
vant. The results are summarized in Table 4 (which can be
found on the Computer Society Digital Library at http://
computer.org/tcbb/archives.htm).

We focus on the 18 most promising hits, even though the
remaining hits are likely to contain many interesting
candidates. See Table 5. These predictions represent either
those elements which are upstream from genes involved in
the metabolic pathway under regulation or predictions with
strong sequence similarity in regions thought to mediate
ligand binding. There are six of the nine putative purine
riboswitches that are found in the 5’ UTR of either the
xanthine transport protein, xanthine phosphoribosyltrans-
ferase, purine nucleotide phosphorylase, adenine deami-
nase, or GMP synthase. Moreover, prediction 2 (gij42519879)
lies upstream from a hypothetical protein with homology to
the xanthine permease family. This observation highlights a
hidden value in identification of riboswitches—the possibi-
lity of assigning annotations to genes of unknown function.
Similarly, of the seven reported lysine riboswitch predic-
tions, there are five predictions that are located upstream of
genes encoding an amino acid permease, diaminopimelate
decarboxylase, dihydrodipicolinate synthase, or lysine spe-
cific permease. The final predictions for the riboflavin and
thiamin riboswitches are found upstream of genes encoding
diaminohydroxyphosphoribosylaminopyrimidine deami-
nase and phosphomethylpyrimidine kinase, respectively.

Of the 16 novel purine and lysine riboswitch predictions,
there are 13 predictions from gram-positive bacteria,
supporting earlier conclusions. There are four of the
seven novel purine hits that are to Lactobacillus johnsonii

and Lactobacillus plantarum, which have no previously
identified purine riboswitches. Likewise, four lysine predic-
tions and one riboflavin prediction are fromgenomeswith no
previous riboswitches from that family. While none of these
predictions appears in Rfam, it has been brought to our
attention that some of these predictions overlap with the
predictions in [34]. As these were made using completely
different techniques, they provide additional validation of
our approach.

Free energy minimization approaches to secondary
structure prediction are not well suited to riboswitches
because the repressing structure is contingent upon ligand
binding. FastR offers an advantage for such RNA motifs in
that the biologically significant structure can be inferred
from the alignment. The secondary structures derived from
the top predictions in each riboswitch family in Table 5 can
be seen in Fig. 7.

4 DISCUSSION

Our results show that FastR is an effective tool for finding
novel homologs of query ncRNA sequences. In general, the
development of fast filtering and searching tools for ncRNA
is a natural area of research, analogous to the development
of sequence similarity tools like BLAST and Fasta. How-
ever, as the discussion above shows, the underlying
structure and diversity of ncRNA makes this problem quite
different in character. Consequently, the filters must be
more complex than the (approximate) keyword matches
used for sequence similarity. The ideas presented here open
many lines of research, which we are actively pursuing.
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TABLE 3
Comparison of FastR and RSEARCH

A p-value cutoff for FastR, 0.05, was chosen that approximately matched the total number of hits in RSEARCH with cutoff E-value of 10. The hits
column refers to the number of true positives out of the total hits found. The filtered hits column represents the number of true positives passed the
filters. No filtering is used for RSEARCH.



The first is regarding sensitivity. For diverged families,
the filters miss out a few true homologs. Our analysis
showed that, in many cases, this was due to a stem loop not
being recognized as a ðk; wÞ-stack. This can be due to too
few base-pairs, bulges, and noncanonical base-pairing.
However, the stem must still have low-energy that allows
it to maintain that conformation. Therefore, we plan to
generalize the definition of a ðk; wÞ-stack allowing all pairs
that form energetically favorable structures. While non-
canonical base-pairs are easy to handle, bulges and interior

loops are computationally more challenging. It will be
interesting to see how these changes affect sensitivity. Some
homologs are filtered out because they do not satisfy
distance constraints. Relaxing the distance constraints could
decrease specificity. One approach to increasing sensitivity
without compromising specificity is to relax the distance
constraints, but employ multiple nested and multiloop
filters. While keyword matches are not good filters,
Weinberg and Ruzzo [42] show that filters based on Markov
Models can be very effective. These capture conservation in
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TABLE 4
Summary of the FastR Riboswitch Search

(a) The p-value cutoffs were determined from alignments of known riboswitches. (b) Number of novel hits returned by FastR after removing the
annotated hits in Rfam database. (c) Number of novel hits after removing annotated hits in Rfam database and filtering for low-complexity, AT-content,
and distance from a gene.

TABLE 5
Description of the 18 Most Promising Candidates from the 468 Putative Riboswitches Discovered by FastR

Each predicted riboswitch is either upstream from a biologically relevant gene, or contains strong sequence similarity in regions thought to mediate
ligand binding. (a) Genome coordinates of the riboswitches. “þ” and “�” refer to the strand. (b) Distance between the start of the riboswitch and the 5’
end of an exon. (*) Genomes with no previously identified riboswitches from that family.



sequence, but not structure. However, they are constructed
from covariance models in a way that ensures the same
level of sensitivity as the CM. It will be interesting to
combine the two filters to see how well they perform.

Another direction is the design of optimal multiloop and
nested filters. Currently, the filters were constructed by
changing parameters empirically. We are working to
automate the design of optimal (multiloop and nested)
filters for an ncRNA family. Preliminary results on the
purine riboswitch show a 10-fold speedup with no loss of
sensitivity and we are testing the methodology on other
families. These filters are constructed when the secondary
structure is known for all members of the ncRNA family. In
general, the secondary structure might not be known and it
would be interesting to automate the filter design after
inferring common structural elements. This is a simpler and
more tractable version of the well-studied problem of RNA
multiple alignment because it only requires an alignment of
the stacks involved in the filters.

In many cases, the FastR results themselves need to be
filtered to remove obvious false positives. However, the
advantage of using the tool is that good candidates can be
found with relatively little effort. If the “Modern RNA
world” hypothesis is true, many ncRNA sequences will be
discovered in the coming years. Our tool can be used to
rapidly identify novel homologs of these ncRNA. Finally,

many RNA motifs, including riboswitches, fold into the
correct structure only in combination with other molecules.
Programs that predict structure based on de novo energy
minimization are challenged in their ability to find the
correct structure for these molecules. In contrast, compara-
tive tools such as ours can be used to infer structure
relatively easily.

Similar to most bioinformatics tools, the results of the
searchmust be validated in the lab for final confirmation.We
plan to collaborate with experimental scientists in system-
atically testing the results on various families of interest. Our
software is freely available for use upon request.
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