
Searching in an Unknown Environment: An Optimal Randomized Algorithm for the Cow-Path Problem 

 

By: Ming-Yang Kao, John H. Reif, and Stephen R. Tate 

 

M. Kao, J. H. Reif, and S. R. Tate. ―Searching in an Unknown Environment: An Optimal Randomized 

Algorithm for the Cow-Path Problem‖, Information and Computation, Vol. 133, No. 1, 1996, pp. 63–80. 

 

Made available courtesy of Elsevier: http://www.elsevier.com/ 

 

***Reprinted with permission. No further reproduction is authorized without written permission from 

Elsevier. This version of the document is not the version of record. Figures and/or pictures may be 

missing from this format of the document.*** 

 
Abstract: 

Searching for a goal is a central and extensively studied problem in computer science. In classical searching 

problems, the cost of a search function is simply the number of queries made to an oracle that knows the 

position of the goal. In many robotics problems, as well as in problems from other areas, we want to charge a 

cost proportional to the distance between queries (e.g., the time required to travel between two query points). 

With this cost function in mind, the abstract problem known as the w-lane cow-path problem was designed. 

There are known optimal deterministic algorithms for the cow-path problem; we give the first randomized 

algorithm in this paper. We show that our algorithm is optimal for two paths (w = 2) and give evidence that it is 

optimal for larger values of w. Subsequent to the preliminary version of this paper, Kao et al. (in “Proceedings, 

5th ACM–SIAM Symposium on Discrete Algorithm," pp. 372-381, 1994) have shown that our algorithm is 

indeed optimal for all w ≥ 2. Our randomized algorithm gives expected performance that is almost twice as 

good as is possible with a deterministic algorithm. For the performance of our algorithm, we also derive the 

asymptotic growth with respect to w—despite similar complexity results for related problems, it appears that 

this growth has never been analyzed.  

 

Article: 

1. INTRODUCTION 

The problem of searching is central to almost all areas of computer science. Variants of searching problems 

come up often in the study of data structures, database applications, computational geometry, and artificial 

intelligence. Due to the importance of searching problems, many variants of simple searching have been 

studied, including searching in unknown environments [2, 7], and searching in the presence of errors [1, 14]. 

 

In this paper, we examine the problem of searching in an unknown environment; specifically, we study a 

problem known as the w-lane cow-path problem. The name comes from the following scenario: Consider a cow, 

Bessie, standing at a crossroads (referred to as the origin) with w paths leading off into unknown territory. On 

one of the paths there is a grazing field (the goal) at distance n from the intersection, and all of the other paths 

go on forever; unfortunately, Bessie's eyesight is not very good—she will not know that she has found the field 

until she is standing in it (i.e., she cannot see down the road). Clearly Bessie must walk at least distance n to get 

to the field; if she knows which path to take, she will walk exactly distance n. When Bessie has no prior 

knowledge of which path the field is on, or of the value n, we would like to know how she can find the field 

while traveling the least distance possible. 

 

This problem plays an important role in many areas of computer science. The most obvious application is in the 

area of robotics—when a robot is put in an unknown environment, this exact problem comes up repeatedly. For 

instance, when a robot is exploring an unknown two dimensional environment (e.g., a mobile robot on the floor 

of a cluttered warehouse), each time it runs into an obstacle, it should find the closest corner of the obstacle to 

go around (see, for example, [4]). This robotics problem is just a case of the w-lane cow-path problem with w = 

2. In addition, this algorithm can be used in the very general context of creating hybrid algorithms. In this case, 

the different paths represent different base algorithms, and execution alternates between different base 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=110
http://www.elsevier.com/


algorithms according to search distances given by the cow-path problem. A previous algorithm for this problem 

was applied in this manner by Fiat et al. in presenting the first competitive algorithm for the online k-server 

problem [8]. A recent paper by Kao et al. [10] further explores the construction of hybrid algorithms from a set 

of known algorithms and is based in large part on a preliminary version of this paper [11]. Furthermore, the 

cow-path problem comes up in artificial intelligence applications where a goal is sought in a largely unknown 

search space (for an overview of searching in artificial intelligence, see [12]). These examples demonstrate the 

breadth of applications and fundamental nature of the cow-path problem. 

 

The cow-path problem has much in common with the study of online algorithms, and we use the notion of 

competitive analysis of online algorithms in order to measure the efficiency of algorithms for the cow-path 

problem. The competitive ratio for an algorithm solving the cow-path problem is the worst-case ratio of the 

expected distance traveled by the algorithm to the shortest-path distance from origin to goal. In particular, if the 

worst-case expected distance traveled by a randomized algorithm is at most cn + d, where n is the distance to 

the goal and d is a fixed constant, then the competitive ratio of this algorithm is c. 

 

In previous work, Baeza-Yates et al. gave an optimal deterministic algorithm for the cow-path problem [2]. As a 

function of w, the competitive ratio for their algorithm is asymptotically equal to 1 + 2ew, and for w = 2 the 

ratio is exactly 9. They al o prove that their algorithm give  optimal determini tic performance. In other 

previou  wor , Chroba  and Larmore have  tudied a related problem called  Metrical Service Systems," in 

which requests (which are subsets of points in a metric space) must be served by a single server moving in that 

metric space [5]. While this problem has some substantial differences from the cow-path problem, there are 

several similarities, one of which is striking—Chrobak and Larmore's deterministic algorithm for MSS2 (where 

requests are pairs of points) has competitive ratio 9, just like the deterministic 2-path cow-path problem, and the 

performance of their randomized algorithm for MSS2 is exactly the same as the performance of the randomized 

cow-path algorithm that we present in this paper (approximately 4.5911). Chrobak and Larmore leave open the 

question of whether their algorithms are optimal for MSS2. In one last example of previous work, the cow-path 

problem has also been studied in the context of game theory by Gal [9]. Gal in fact gives many of the results of 

the Baeza-Yates et al. paper [2] and of our paper. A main difference between our work and that of Gal is in the 

focus—our results are self-contained and use results and notation familiar to the theoretical computer science 

community. In addition, the lower bound proof of this paper presents a new, general purpose lower bound 

technique that should be useful in proving lower bounds for many other problems. In fact, it was this technique 

that allowed Kao et al. [10] to extend our optimality proofs to a more powerful result, enhancing both this paper 

and the work of Gal. Finally, we also analyze the growth rate of the competitive ratio of our algorithm, filling in 

an important gap in both Gal's work and the original conference version of this paper [11]. 

 

In this paper, we give the first randomized algorithm for the cow-path problem, and we give a lower bound 

proof to show that our algorithm is optimal for w = 2. The ratio achieved is a rather complicated value—it is 

exactly given in terms of the fixed point of a certain equation—and is asymptotically equal to  w + o(w), where 

  is a constant value approximately equal to 3.088. For the important case of w = 2, the competitive ratio of our 

algorithm is approximately 4.5911, which is almost twice as good as the best that can be done deterministically. 

Subsequent to the publication of the conference version of this paper [11], in which we conjectured that our 

algorithm is also optimal for w ≥ 3, Kao et al. [10] have given a rather intricate proof showing that our 

algorithm is in fact optimal for all w ≥ 2. 

 

A similar problem, known as layered graph traversal, has been studied by Papadimitriou and Yannakakis [13] 

and Fiat et al. [7]. Layered graph traversal is similar to the cow-path problem, but allows shortcuts between 

paths without going through the origin, and when one path is explored, information about the other paths may 

be obtained at no cost. If only deterministic algorithms are considered, then the cow-path problem can be 

considered a special case of layered graph traversal; however, when randomized algorithms are considered, the 

problems are fundamentally different. Fiat et al. showed that in layered graph traversal, an exponential (in the 

number of paths) improvement could be obtained using randomization [7]. 

 



2. DEFINITIONS 

Let   be a deterministic algorithm for the cow-path problem. For any goal position g at distance dist(g) from 

the origin, algorithm   travels a fixed distance, which we denote cost( , g), to find the goal. We say that 

algorithm   has competitive ratio c if, for all goal positions g, 

 
where c and d are constants that are independent of the goal position g. 

 

If algorithm   is a randomized algorithm, then the distance traveled to find a particular goal position is no 

longer fixed. Instead, cost( , g) is a random variable, and we define the competitive ratio by the expected value 

of this random variable. In other words, algorithm   has competitive ratio c if, for all goal positions g, 

 
where c and d are constants as before. 

 

In particular, if an algorithm for the cow-path problem has competitive ratio c, then for any goal position that is 

distance n from the origin, the expected distance that the algorithm has to travel in order to find the goal is at 

most cn plus some small constant. 

 

3. ALGORITHM 

In this section we describe SmartCow, our randomized algorithm for the cow-path problem. SmartCow is a 

randomized geometric sweep algorithm with geometric ratio r > 1, a constant that is fixed for the duration of the 

algorithm. For ease of reference, assume that the w paths are labeled with integers 0, 1, ..., w & 1. The general 

outline of SmartCow can be found in Fig. 1; the analysis of the competitive ratio will be done in terms of the 

constant r, and in Section 5 we will see how to find the best possible r. 

 

 
 

It should be noted that the use of randomization is very limited; randomization is used only at the very 

beginning of the  earch, in order to pic  a random permutation and a random  initial search distance." The 

algorithm never needs access to a random number generator once the search has begun. We define the function 

 
which we will next prove to be the competitive ratio of algorithm SmartCow. 

 

Theorem 3.1. For any fixed r > 1, Algorithm SmartCow has competitive ratio R(r, w). 

 

Proof. For a given goal position, let n denote the distance from the origin to the goal, and let q be the path on 

which the goal lies. If n < 1 we can handle this as a special case in the analysis—the distance traveled is clearly 

at most (r
w
 - 1)1(r - 1), which is independent of n, and so can be entirely covered by the constant term d in Eq. 

(1). Therefore, for the remainder of this proof we assume that n ≥ 1. Furthermore, let k be an integer, and let δ 

be a real value satisfying 0 ≤ δ < 1, where k and δ are such that n = r
k+δ

. 



Notice from Fig. 1 that SmartCow proceeds in stages, where at stage i   {0, 1, 2, ... } the algorithm sweeps 

distance       on path σ(i mod w). Let m be the first stage where SmartCow sweeps distance at least r
k
 on the 

same path as the goal. More formally, m is the least integer such that m ≥ k and σ(m mod w) = q. The value m 

always satisfies k ≤ m ≤ k + w - 1. 

 

Case 1. m ≥ k + 1. In this case, the sweep distance is at least r
k+1 

at stage m, so SmartCow always finds the goal 

on stage m. If D is the random variable denoting the distance traveled by our algorithm, then it is easy to see 

that when m = c ≥ k + 1 

 
and the expected value is easily calculated as 

 
Calculating E[   | m = c] is relatively straightforward. The density function for    is calculated from the fact 

that   is uniformly distributed, giving 

 
Thus, the resulting expected distance traveled in this case is 

 
 

Case 2. m = k. In this case, SmartCow may or may not find the goal on sweep m, depending on whether or not 

  ≥ δ. Let F denote the event that SmartCow finds the goal at stage m. Then 

 
Using these values, 

 
 

The competitive ratio of SmartCow depends on the overall, or unconditional, expected distance E[D]. This is 

calculated by combining the above results, using the formula 

 



At the beginning of the search, the algorithm chooses a random permutation σ, so Prob(m = i) = 1/w for every i 

such that k ≤ i ≤ k + w - 1. 

 

Therefore, the above equation can be expanded to 

 
The competitive ratio is simply the expected distance traveled (E[D]) divided by n: 

 
which is exactly the value claimed in the theorem.  

 

From the preceding theorem, it is difficult to see how the performance of algorithm SmartCow compares to 

that of the optimal deterministic algorithm given by Baeza-Yates et al. [ 2 ]. For example, when w = 2 their 

algorithm has a competitive ratio of 9, while Theorem 3.1 states that SmartCow has competitive ratio 1 + (1 + 

r)/ln r. In Section 5 we will see how to choose r so that the competitive ratio of SmartCow is approximately 

4.5911, or almost twice as good as the deteministic algorithm. In the next section we will see that this is in fact 

the best ratio that can be achieved by any randomized algorithm. 

 

4. LOWER BOUND 

To prove our lower bound for randomized algorithms, we appeal to Yao's corollary to the famous von Neumann 

minimax principle [ 16]. In particular, we define a probability distribution for inputs to the cow-path problem 

and then lower bound the performance of any deterministic algorithm on this input distribution. Yao's result 

states that this lower bound must also be a lower bound for the expected performance of any randomized 

algorithm on its worst-case input. 

 

We actually use a family of probability distribution functions, parameterized by   > 0. We will denote a 

particular distribution function by     , and we will use Opt( , w) to denote the optimal competitive ratio of any 

deterministic algorithm with input distribution     . Our goal will be to show that        Opt( , w) exists, and 

give a value for this limit. The following lemma shows that this limit is a lower bound for the original problem. 

 

Lemma 4.1. Let OptR(w) denote the optimal competitive ratio for any randomized cow-path algorithm on 

inputs with w paths. If   =        Opt( , w), then OptR(w) ≥  . 

 

Proof. For the sake of contradiction, assume that there is a randomized cow-path algorithm that achieves 

competitive ratio p <  . Let δ = (  - p)/2. Now by the formal definition of the limit, there exists an  0 such that 

for all   <  0, | Opt( , w) -   | ≤ δ. In other words, for any   <  0, 

 



But, by Yao's lemma, this implies that OptR(w) > p, which contradicts to the original assumption that there 

exists a randomized algorithm with competitive ratio p.  

 

Now we define the density function     . To specify the position of the goal, we need to specify both the path on 

which the goal lies and the distance down that path to the goal. For all values of =, the path is chosen uniformly 

from all possible paths. Thus, we will use      to denote only the distance down the chosen path to the goal. The 

density function we use is 

 
Any deterministic algorithm can be defined by a sequence (s0, p0), (s1, p1), ..., (sk , pk), ... , where sk is the 

distance of the kth sweep and pk is the path on which the kth sweep is taken. In fact, since the goal is placed on a 

uniformly chosen ray, we can assume that the sequence of path explorations goes in a fixed cyclic order. 

Without loss of generality, we assume that pk = (k mod w), and then the algorithm is completely specified by the 

sequence s0, s1, ... , sk, ···. Since the distance from the origin to the goal is at least one, we can safely assume 

that s0 ≥ 1. In fact, by adding an extra search probe in the beginning, we can assume that s0 = 1; the cost of this 

extra probe is just an additive constant, which does not affect the competitive ratio. Using this notation, we can 

prove the following lemma. 

 

Lemma 4.2. Let algorithm A be a deterministic algorithm defined by the sequence s0, s1, ... , sk, ... . For input 

distribution      , the expected competitive ratio of A is 

 
 

Proof. The position of the goal can be specified by defining two random variables. The first, P, is uniformly 

distributed over {0, 1, ..., w - 1 }and determines the path that the goal lies on. The second random variable, D, is 

distributed according to     , defined above, and represents the distance from the origin to the goal. 

 

We will also define some conditions Ci for i = 0, 1, 2, ..., where Ci is true exactly when algorithm A finds the 

goal on sweep i. More formally, 

 
Notice that the conditions Ci partition the space of all possible goal positions, so if we let pi = Prob(Ci), then it 

should be clear that     
  pi = 1. Furthermore, if R is a random variable denoting the competitive ratio achieved 

by algorithm A, then 

 
In computing the expected values E[ R | Ci] there are three cases: i = 0, 1 ≤ i < w, and i ≥ w. We present the 

analysis for i ≥ w below; the remaining cases are similar. 

 

Computing E[R | Ci], we know that Ci holds, so the distance traveled by the algorithm is 

 
Dividing by D, we see that the expected competitive ratio under this condition is given by 

 
To calculate E[(1/D) | Ci], we simply refer back to the distribution for D, scale this by pi since we want the 

conditional expectation, and integrate to find the expected value. In other words, 



 
Combining this with Eq. (4) gives the conditional expected competitive ratio.  

 

Summarizing all cases for the conditional expectation, 

 
Combining these results with Eq. (3) gives (after some algebraic manipulation) 

 
which is exactly what we are proving.  

 

Using the two preceding lemmas, we can prove that the algorithm of the previous section is optimal for w = 2. 

 

Theorem 4. 1. For w = 2, the optimal competitive ratio is given by 

 
Since this ratio is achievable by the algorithm of the previous section, the algorithm SmartCow is optimal. 

 

Proof. Assume that the values s0, s1, ..., sk, ..., define the optimal deterministic algorithm for a fixed  , and let 

Opt( , 2) denote the competitive ratio given in Lemma 4.2. Rewrite this formula in cleaner form for w = 2: 

 
For a fixed  , to lower bound this equation, we need only find a lower bound for 

 
(recall that s0 = 1 is fixed). 

 

By setting ti = (si+1)/s1, we obtain a new sequence with t0 = 1. The above sum can be written in terms of this new 

sequence as 

 
But this is easily lower bounded by 

 
In other words, 

 
so 

 
By setting si =   

  and recalling Lemma 4.2, we see that the geometric sweep algorithm has exactly the 

competitive ratio stated above as a lower bound. In other words, the above is not just a lower bound, it is in fact 

the exact optimal value when minimized over s1. So for fixed  , 

 



By Lemma 4. 1, we know that OptR(2) ≥        Opt( , 2), so we can bound OptR(2) by 

 
 

The last line above is exactly the bound claimed in the theorem statement.  

 

Subsequent to the conference publication of this paper, Kao et al. used similar reasoning to show that, in fact, 

SmartCow is optimal for all w ≥ 2 [10]. Their proof is closely related to the one just presented, using small 

variants of Lemmas 4.1 and 4.2—an important contribution of their paper is a very intricate and involved proof 

that replaces our Theorem 4.1 and works for all w ≥ 2. 

 

5. MINIMIZING THE COMPETITIVE RATIO  

Recall from Theorem 3.1 that the algorithm SmartCow has competitive ratio 

 
where r is a fixed algorithm parameter. In other words, for a fixed w SmartCow is really a class of algorithms, 

indexed by the parameter r. In order to get the best performance possible, we would like to pick a value of r that 

minimizes R(r, w). 

 

Theorem 5.1. The unique solution of the equation 

 
for r > 1, denoted by   

 , gives the minimum value for R(r, w). 

 

Proof. To minimize R(r, w) for a fixed w, we need only minimize the part that depends on r. Call this function 

fw(r), where 

 
This function is continuous, and fw(r) goes to positive infinity when either end of the interval (1,  ) is 

approached. Therefore, any minimum of the function on this interval must be a local minimum, and we can find 

this by taking a derivative: 

 
 

The denominator is non-zero and finite for all r   (1,  ), and the numerator is zero exactly when Eq. (5) is true. 

In other words, the minimizing r must satisfy Eq. (5)—by showing that there is only one such r, we will have 

proved the theorem. 

 

We need to show that Eq. (5) has exactly one solution for r > 1. To see this, first note that the function ln r is 

monotonically increasing for r > 1. Next, we will show that the right-hand side of Eq. (5) is monotonically 

decreasing, so it follows that Eq. (5) can have at most one solution. To see this, consider the right-hand side of 

Eq. (5): 

 



Taking the derivative with respect to r gives 

 
The denominator of   

  (r) is clearly positive and non-zero for r > 1, and the numerator can be written as a 

polynomial in r. After some algebraic manipulation, it is discovered that the numerator of   
  (r)  can be written 

as       
   k r

k
, where the coefficients ck are 

 
 

 
Clearly, all these coefficients are negative, so for r > 1 the numerator of   

  (r), and hence   
  (r) itself, is 

negative. In other words, we have shown that gw(r) is monotonically decreasing for r > 1. 

 

Now that we have shown that Eq. (5) has at most one solution, we will show that it has at least one solution. To 

see this, consider the function 

 
For any fixed w, this function is clearly negative for r = 1 and positive in the limit as r →  . Furthermore, since 

the function is continuous, it must have a root in the interval (1,  ). Thus we have proved that Eq. (5) has 

exactly one solution for r > 1.  

 

The value   
  can be found for any given w from Eq. (5) using standard numerical techniques, and using this 

value we can construct the best algorithm from the family of algorithms described by SmartCow. Approximate 

values for small values of w are given in Table 1, with the optimal deterministic ratio shown for reference. 

 

Due to the results of Section 4 and of Kao et al. [ 10], the competitive ratios shown in Table 1 are in fact 

optimal for randomized algorithms. 

 

6. GROWTH WITH THE NUMBER OF PATHS 

In this section, we consider the growth of the competitive ratio of algorithm SmartCow as the number of paths 

grows. Recall that R(r, w) was defined in Eq. (2) and shown to be the competitive ratio of algorithm 

SmartCow, and that in Theorem 5.1 we showed that for each w there is a unique r > 1 (called   
 ) that gives the 

best performance for algorithm SmartCow. We will use OR(w) = R(  
 , w) to denote the optimum performance 

of SmartCow for w values. Furthermore, we define a special constant   to be the value 

 
We will show that the competitive ratio of algorithm SmartCow is  w + o(w). 



In our proof, we will make use of the following easily verified inequalities. For all x > 0, 

 
We are now prepared to prove an upper bound on the competitive ratio of algorithm SmartCow. 

 

LEMMA 6. 1. OR(w) ≤  w + Θ(1). 

 

Proof. Fix some constant c > 0 and define the sequence of values rw = 1 + (c/w). From inequality (7) we know 

that 

 
Now clearly OR(w) ≤ R(rw, w), so for w > c/2 we can derive 

 
This is true for any arbitrarily chosen c, so in particular this is true for the c that minimizes the constant of the 

linear term. Therefore, 

 
as claimed in the lemma statement.  

 

Lemma 6.1 gives an upper bound on the growth of the competitive ratio with the number of paths, and we now 

show a similar lower bound; however, first we need a preliminary result bounding   
 . 

 

LEMMA 6.2 For any w ≥ 5,   
  ≤ 1 + (5/w). 

 

Proof. From Theorem 5.1 we know that for any w the optimizing   
  satisfies Eq. (5) and that the right-hand side 

of this equation, named gw(r) in Eq. (6), is monotonically decreasing, while the left-hand side is monotonically 

increasing. Therefore, if we can show that for all w ≥ 5, 

 
then we know that for all w ≥ 5,   

  ≤ 1 + (5/w). 

 

 

To prove this, first notice that since gw(r) is monotonically decreasing for all r ≥ 1, we can bound 

 
Next, from inequality (8) we can derive, for w ≥ 5, 

 
Combining these two bounds, we get 



 
so from the discussion at the beginning of the proof it follows that 

 
as claimed.  

 

LEMMA 6.3. OR(w) ≥  w – o(w). 

 

Proof. First, define  w =   
  - 1 (so   

  = 1 +  w). Now notice that (  
 ) = (1 +  w)w can be bounded using 

inequality (7) as 

 
Thus we can bound 

 
Now, let dw = (1 –  w/2) ww, so that the above becomes 

 
 

Next, let δ be an arbitrary positive constant. From Lemma 6.2 we know that  w ≤ 5/w for w ≥ 5, so for all w ≥ 

max(3/δ, 5) we have 

 
which implies that 

 
Since this is true for arbitrarily small δ, this then implies that OR(w) ≥  w & o(w), as claimed in the lemma.  

 

The main theorem of this section is a direct and obvious consequence of Lemmas 6.1 and 6.3. Of the several 

definitions of asymptotic notation, we use the standard definition in which f(n) is o(g(n)) if for any constant c > 

0 there is a constant n0 ≥ 1 such that | f(n) | < cg(n) for all n ≥ n0—the absolute value on f(n) is necessary for the 

following theorem to be an exact statement. 

 

Theorem 6.1. The competitive ratio for algorithm SmartCow is  w+o(w), where 

 
The use of o(w) in the above theorem is due entirely to the lower bound on the growth rate. As far as the 

algorithm's performance goes, Lemma 6.1 shows that it is perfectly valid (and somewhat stronger than Theorem 

6.1) to say that the competitive ratio is at most  w + Θ(1). For the sake of comparison, recall that the optimal 

deterministic algorithm of Baeza-Yates et al. [2] has competitive ratio 2ew + Θ(1), or approximately 5.437w + 

Θ(1). 

 

7. CONCLUSIONS 

In this paper we have given a new randomized algorithm, SmartCow, for the cow-path problem. We analyzed 

the competitive ratio of SmartCow and showed that randomization gives our algorithm almost a factor of 2 



improvement over the best possible deterministic algorithm. Furthermore, we have shown that for the important 

two-path problem our algorithm is an optimal randomized algorithm. The lower bound proof of Section 4 

includes a general form for lower bounds when w ≥ 2, but a closed form was obtained only for w = 2 (showing 

that SmartCow is optimal for w = 2). This was recently extended by Kao et al. [10], who gave an involved 

proof showing that SmartCow is in fact optimal for all w ≥ 2. 

 

REFERENCES 

1. Aslam, J. A., and Dhagat, A. (1991), Searching in the presence of linearly bounded error , in ―Proceedings, 

23rd ACM Symposium on Theory of Computing," pp. 486-493. 

2. Baeza-Yates, R. A., Culberson, J. C., and Rawlins, G. J. E. (1993), Searching in the plane, Inform. and 

Comput. 16, 234-252. 

3. Bentley, J. L., and Yao, A. C.-C. (1976), An almost optimal algorithm for unbounded searching, Inform. 

Process. Lett. 5, 82-87. 

4. Blum, A., Raghavan, P., and Schieber, B. (1991), Navigating in unfamiliar geometric terrain, in 

―Proceedings, 23rd ACM Symposium on Theory of Computing," pp. 494-504. 

5. Chrobak, M., and Larmore, L. (1991), The server problem and on-line game , in ―On-Line Algorithms: 

Proceedings of a DIMACS Workshop," pp. 11-64, American Math. Society. 

6. Deng, X., and Papadimitriou, C. H. (1990), Exploring an unknown graph, in ―Proceedings, 31st IEEE 

Symposium on Foundations of Computer Science," pp. 355-361. 

7. Fiat, A., Foster, D. P., Karloff, H., Rabani, Y., Ravid, Y., and Vishwanathan, S. (1991), Competitive 

algorithms for layered graph traver al, in ―Proceedings, 32nd IEEE Symposium on Foundations of Computer 

Science," pp. 288-297. 

8. Fiat, A., Rabani, Y., and Ravid, Y. (1990), Competitive k- erver algorithm , in ―Proceedings, 31st IEEE 

Symposium on Foundations of Computer Science," pp. 454-463. 

9. Gal, S. (1980), ―Search Games," Academic Press, New York. 

10. Kao, M. Y., Ma, Y., Sipser, M., and Yin, Y. (1994), Optimal constructions of hybrid algorithms, in 

―Proceedings, 5th ACM-SIAM Symposium on Discrete Algorithms," pp. 372-381. 

11. Kao, M. Y., Reif, J. H., and Tate, S. R. (1993), Searching in an unknown environment: An optimal 

randomized algorithm for the cow-path problem, in ―Proceedings, 4th ACM-SIAM Symposium on Discrete 

Algorithms," pp. 441-447. 

12. Pearl, J. (1984), ―Heuristics: Intelligent Search Strategies for Computer Problem Solving," Addison-

Wesley, Reading, MA. 

13. Papadimitriou, C. H., and Yannakakis, M. (1989), Shortest paths without a map, Theoret. Comput. Sci. 84, 

127-150. 

14. Rivest, R. L., Meyer, A. R., Kleitman, D. J., Winklmann, K., and Spencer, J. (1980), Coping with errors in 

binary search procedures, J. Comput. System Sci. 20, 396-404. 

15. Sleator, D. D., and Tarjan, R. E. (1985), Amortized efficiency of list update and paging rules, Comm. ACM 

28, 202-208. 

16. Yao, A. (1977), Probabilistic computations: Towards a unified mea ure of complexity, in ―Proceedings, 

18th IEEE Symposium on Foundations of Computer Science," pp. 222-227. 


