
Searching in Compressed Dictionaries

EXTENDED ABSTRACT

Shmuel T. Klein
Department of Computer Science

Bar Ilan University
Ramat Gan, Israel

tomi@cs.biu.ac.il

Dana Shapira
Department of Computer Science

Brandeis University
Waltham, MA

shapird@cs.brandeis.edu

1. Introduction

The problem of Compressed Pattern Matching , introduced by Amir and Benson [1],
is of performing pattern matching directly in a compressed text without any decom-
pressing. More formally, for a given text T , pattern P and complementary encoding
and decoding functions E and D, respectively, our aim is to search for E(P) in E(T),
rather than the usual approach which searches for the pattern P in the decompressed
text D(E(T)).

Most research efforts in compressed matching were invested in what could be
called “classical” texts. These are texts written generally in some natural language,
and which have been compressed by one of a variety of known compression techniques,
such as Huffman coding [8] or various variants of the Lempel and Ziv methods, in-
cluding LZW [2, 4, 11], gzip, DoubleSpace and many others [7, 9, 10].

We suggest to extend the problem to the search of patterns in the compressed form
of structured files . The idea is that the raw texts form only a (sometimes, small) part
of what needs to be stored in an Information Retrieval system to allow also efficient
access to the data. Since the search on large scale systems is not performed by a linear
scan, auxiliary files are adjoined, which are generally built in a preprocessing stage,
but then permit very fast access during the production stage. These files include
dictionaries, concordances, thesauri, bitmaps, signature files, grammatical files and
many others, and their combined sizes are of the order of magnitude of the text
they are based on. Obviously, these auxiliary files create a storage problem on their
own, and thus are kept in compressed form. However, due to their special internal
structure, which is known in advance, custom tailored compression techniques may
be more effective than general purpose compressors.

In this paper we deal with dictionaries which were compressed by the prefix omis-
sion method (POM) so that pattern matching could be done directly on these files.
Prefix omission is a very simple, yet effective, dictionary compression technique, but

for compressed matching, it raises problems that are reminiscent of the problems for
a compressed match in LZ coded files: the pattern we are looking for, if it appears in
the text, does not necessarily appear there contiguously [8].

The following section recalls the details of POM and presents an algorithm for
searching in POM encoded files. Section 3 deals more specifically with Huffman coding
and in section 4, a new variant based on the use of Fibonacci codes is suggested. The
final section brings some experimental results.

2. Pattern matching in POM encoded dictionaries

The prefix omission method was apparently first mentioned by Bratley and Choueka
[3]. It is based on the observation that in a dictionary of a natural language text,
two consecutive entries will usually have a few leading letters in common. Therefore
we eliminate these letters from the second entry, while adding to it the number of
letters eliminated and to be copied from previous entry. Since the entries have now
variable length, their boundaries have to be identified, for example by adding a field
representing the number of characters of the suffix string in the current entry, that
is, the number of characters remaining after eliminating the prefix characters. More
formally, we relate to the i-th compressed entry Xi as an ordered triple (`i,ni,σi),
where `i is the number of characters copied from the previous entry Xi−1, σi is the
remaining suffix and ni is the length of this suffix, i.e., ni = |σi|.

dictionary POM Pom+Huff (in characters) idem (in bits)

compress (0,8,compress) (0,35,11001-0101-11011-111100-1001-000-1000-1000) (0,35,· · ·)

compression (8,3,ion) (35,12,0110-0101-0111) (35,12,· · ·)

comprise (5,3,ise) (24,11,0110-1000-000) (25,10,110 · · ·)

compromise (5,5,omise) (24,20,0101-11011-0110-1000-000) (26,18,01 · · ·)

compulsion (4,6,ulsion) (20,26,11000-10110-1000-0110-0101-0111) (21,25,1000 · · ·)

compulsive (8,2,ve) (38,9,111110-000) (38,9,· · ·)

compulsory (7,3,ory) (34,14,0101-1001-111010) (36,12,01 · · ·)

compunction (5,6,nction) (25,24,0111-11001-001-0110-0101-0111) (25,24,· · ·)

computation (5,6,tation) (25,22,001-0100-001-0110-0101-0111) (26,21,01· · ·)

compute (6,1,e) (28,3,000) (29,2,00)

computer (7,1,r) (31,4,1001) (31,4,1001)

Figure 1: Example of the prefix omission method

Consider the example given in Figure 1. The first column is a list of some con-
secutive words which were taken from the Oxford Dictionary of current English. The
following column gives the compressed form of these words using the prefix omission
method.

Often the POM files are further compressed by some general method E , such as
gzip, in order to reduce space. Accessing the dictionary itself is then done in two

stages: first decompressing the file T by the corresponding decompression function
D and then reversing the POM file, or more formally, searching for the pattern P in
POM−1(D(T)). The following algorithm, adapted from [3], is more direct.

Let P = p1 · · · pm denote the pattern of length m to be searched for, and P [i, j]
the sub-pattern pi · · · pj, i.e, P [i, j] is the sub-pattern of P , starting at position i and
ending at position j, both included. Let E and D denote two complementary encoding
and decoding functions. Given two strings S = s1 · · · sk and T = t1 · · · t` the function
pre(S, T) returns the length of the longest common prefix of the two strings (or zero,
if this prefix is empty), that is

si = ti for 1 ≤ i ≤ pre(S, T), and sj 6= tj for j = pre(S, T) + 1.

In particular, pre(S, T) = |S| if S is a prefix of T . Denote by � the lexicographic
order relation, i.e., S � T if the string S follows T in lexicographic order.

1 i←− 2; j ←− pre(P,D(σ1));

2 while (j < m) // Pattern not found
{

2.1 while D(`i) > j
2.1.1 i←− i+ 1
2.2 if D(`i) < j // The closest lexicographically preceding word
2.2.1 return i− 1
2.3 else // D(`i) = j

{
2.3.1 tmp←− pre(P [j + 1,m],D(σi))
2.3.2 if tmp = 0 and P [j + 1,m] � D(σi) return i− 1
2.3.3 j ←− j + tmp

2.3.4 i←− i+ 1}}
3 return i− 1

Figure 2: Searching for P in D(T)

The algorithm for searching in compressed POM dictionaries, based on decom-
pressing each entry, is given in Figure 2. It returns the index of the closest lexicograph-
ically preceding word to the word we are searching for. As long as the component
`i, indicating the number of characters copied from the previous entry, is larger than
the current longest match, we simply move to the following entry (line 2.1) by skipping
over D(σi). This is done by decoding the following ni codewords. The correctness
here is based on the fact that in this case there is at least one character following the
characters of the longest match that is not part of an extended match. If the com-
ponent `i is less than the current longest match, we have already found the closest
lexicographically preceding word in the previous entry, and we return its index (line

2.2). When `i is exactly equal to the current length of the longest match, we try to
extend the match to the following characters (line 2.3).

Line 2.3.2 deals with the special case when several consecutive words share a com-
mon prefix. Relying here only on `i without lexicographically comparing the suffixes
could yield errors, as can be seen in the following example. If the sequence of dictio-
nary entries is {aba, abb, abd, abe, aca} and we are looking for abc, the algorithm
without line 2.3.2 would return abe instead of abb.

Note that it might be that the three fields of each POM entry are encoded in
different ways. This would then imply that instead of using one decoding function
D, we use several different ones, e.g., D1 in lines 2.1, 2.2 and 2.3, D2 in lines 1 and 2.3.1

and D3 for ni.

3. Combining POM with Huffman coding

To perform the pattern matching directly in the Huffman compressed dictionary, we
need to identify the codeword boundaries in order to skip to the beginning of the
following dictionary entry by counting the number of characters left in the current
entry. If the field ni represents the number of codewords to the following entry, we
have to decode each one to know where the next one starts. By using Skeleton trees
[6], we could skip over a part of the bits, to the beginning of the following codeword,
but still each codeword has to be processed on its own. However, defining ni as the
number of bits to the following entry, provides a way to jump directly to the beginning
of the following entry, without any processing of the bits. But this way we increase
the storage requirements, since larger numbers need be stored.

The third column of Figure 1 is an example of the dictionary obtained by using
a Huffman code based on empirical statistics. Note that `i and ni are now given in
bits, but their values still refer to the lengths of one or more whole codewords. In the
last column of Figure 1, the definition of `i is extended to be the maximal number of
bits copied from the previous entry, regardless of codeword boundaries. Though the
number of copied bits is only occasionally increased and only by a small number of
bits, the extension frees the function pre(S, T) of the need of checking for codewords.
One can thus apply pre on bitstrings regardless of their interpretation as codewords,
which can be done efficiently with a few assembly commands.

There is, however, a drawback when moving to perform the pattern matching
directly on Huffman encoded dictionaries. In the algorithm of Figure 2, when the
pattern word does not appear in the dictionary, we are able to locate the closest
lexicographically preceding word, basing ourselves on the lexicographic order of the
dictionary entries. The problem here stems from the fact that Huffman coding does
not necessarily preserve the lexicographic order. Even if canonical Huffman codes
are used which do preserve such order in its consecutive codewords, this order does
not always coincide with the lexicographic order of the represented characters. For
example, refer to the alphabet {t, c, b, a, q} encoded by the canonical code {00, 01,
10, 110, 111}. The the string qt precedes tq, but for their encodings, 11100 follows
00111. We can therefore only either locate the pattern, or announce a mismatch.

The compressed matching algorithm in POM files which were compressed by using

1.1 i←− 2; j ←− pre(E(P), σ1);
1.2 security ←− maxc∈P {|E(c)|}
2 while (j < |E(P)|) // Pattern not found

{
2.1 while D(`i) > j
2.1.1 skip ni bits to the following entry
2.1.2 i←− i+ 1
2.2 if D(`i) + security < j return FALSE
2.3 else // j − security ≤ D(`i) ≤ j

{
2.3.1 tmp←− pre(E(P)[D(`i) + 1, |E(P)|], σi)
2.3.2 j ←− D(`i) + tmp
2.3.3 skip ni − tmp bits to the following entry
2.3.4 i←− i+ 1}}
3 return i− 1

Figure 3: Searching for E(P) in T for Huffman coding

Huffman coding is given in Figure 3, with pre now working on bit strings. Note that
instead of decompressing the σi components, as done in the previous approach, we
compress the pattern P and refer to bits instead of characters.

i dictionary POM POM & Huffman
entry (`i, ni, σi) `i, ni refer to bits

1 abc (0, 3, abc) (0, 7, 110-10-01)
2 abqt (2, 2, qt) (5, 5, 111-00)
3 abtq (2, 2, tq) (5, 5, 00-111)

Figure 4: Example for the need of a security number

An additional complication for this variant is the need for a security number to
assure correctness. In the algorithm of Figure 2, the closest lexicographically preced-
ing word is found once `i is smaller than the longest common prefix we have already
detected. Here, to guarantee that the word does really not appear, the condition has
to be reinforced and we check that D(`i)+security is still less than j. To illustrate the
need for that change, refer to the above mentioned canonical Huffman code and the
dictionary of Figure 4. Suppose we are searching for the pattern abtq, the encoded
form of which is 110-10-00-111. Performing line 1 of Figure 3 we get that j = 6. As
j < |E(P)| = 10, we perform line 2. But as D(`2) = 5 < j, we would return FALSE,
which is wrong. The security number gives us a security margin, forcing a closer
analysis in the else clause.

If we detect an entry the `i component of which is less than the current longest
match, we can be sure the word we are looking for is missing only if the difference
is more than the length of the encoding of one character. Therefore, the security

number could be chosen as the maximum number of bits which are used to encode
the characters of the alphabet, i.e, security= max

c∈Σ
{|E(c)|}. As we deal only with

the characters of the pattern, we can choose the security number to be the maximum
number of bits needed to encode one of the characters of P , i.e, security= max

c∈P
{|E(c)|}.

4. Combining POM with Fibonacci coding

In the previous section we used Huffman codes in order to perform compressed pattern
matching on POM files. This way we could skip to the following entry by counting
the bits with no need of decompressing the σi coordinates. We still had to decompress
the `i components for arithmetic comparison. In this section we present a pattern
matching algorithm working on a POM file which has been compressed using a binary
Fibonacci code. This is a universal variable length encoding of the integers based on
the Fibonacci sequence rather than on powers of 2, and a subset of these encodings
can be used as a fixed alternative to Huffman codes, giving obviously less compression,
but adding simplicity (there is no need to generate a new code every time), robustness
and speed [5]. The particular property of the Fibonacci encoding is that there are no
adjacent 1’s, so that the string 11 can act like a comma between codewords, yielding
the following sequence: {11, 011, 0011, 1011, 00011, 10011, 01011, 000011, . . .}.

In our case, we wish to encode dictionary entries, each consisting of several code-
words. We know already how to parse an encoded string into its constituting code-
words, what still is needed is a separator between adjacent dictionary entries. At
first sight it seems that just an additional 1-bit would be enough, since the pattern
111 never appears within a codeword. However, a sequence of 3 consecutive ones
can appear between adjacent codewords, as in 011-1011. Therefore we must add two
1-bits as separators between dictionary entries. The additional expense is alleviated
by the fact that the ni component becomes redundant and can be omitted.

There is, however, a problem with the first codeword 11, which is exceptional,
being the only one which does not have the suffix 011. Our goal is to be able to
jump to the beginning of the following dictionary entry without having to decode the
current one completely. If the first codeword 11 were to be omitted, one could then
simply search for the next occurrence of the string 01111, but if 11 is permitted, a
sequence of 1’s of any length could appear, so no separator would be possible. Our
first solution is thus simply omitting 11 from the Fibonacci code, which comes at the
price of adding one bit to each codeword which is the last one of a block of codewords
of the same length.

Another solution is using the first codeword 11, but making sure that two such
codewords cannot appear adjacently. This can be achieved by adding a new codeword
for encoding the sequence of two occurrences of the most popular character. For
Example, if e is the most popular character in a given text file, we use the codeword
11 to encode a single occurrence of e. But if the sequence ee occurs in the text, it
will be encoded by a special codeword (taking the probability occurrence of ee into
account). In other words, if Σ denotes the alphabet, the new alphabet to be encoded

by the Fibonacci code is Σ ∪ {ee}. If, e.g., the string eeeee occurs, we can use the
special codeword twice and follow it by 11, the codeword for e. The longest sequence
of 1-bits would thus consist of 5 1’s, as in 1011-11-1011. Therefore, to identify a new
entry in the POM file, a sequence of six 1-bits is needed, that is, our separator consists
of four 1-bits, rather than just two in the previous solution. Comparisons between
the compression performance of these two solutions are given in the following section,
showing, at least on our data, that the first solution (omission of 11) is preferable to
the second. The rest of our discussion therefore assumes this setting.

1 i←− 2; j ←− fib-pre(E(P), σ1);
2 while (j < m) // Pattern not found

{
2.1 while `i > Fib(j)
2.1.1 skip to the following occurrence of the string ’11110’
2.1.2 i←− i+ 1
2.2 if `i < Fib(j) return FALSE
2.3 else // `i = Fib(j)

{
2.3.1 tmp←− fib-pre(E(P [j + 1,m]), σi)
2.3.2 j ←− j + tmp
2.3.3 skip to the following occurrence of the string ’11110’
2.3.4 i←− i+ 1

}}
3 return i− 1

Figure 5: Searching for E(P) in T for Fibonacci coding

The reason for defining the codewords with the string 11 at their end is to obtain a
prefix code, which is instantaneously decodable. If we add the 11 separator between
dictionary entries at the end of the `i field, the appearance of the sequence 01111
can tell us that we have just read the `i part of the following entry. If we reverse
the order of the bits in all the codewords, the string 11110 will physically separate
two consecutive entries. Moreover, the codewords are then in numerical order, i.e.,
if i > j, then the Fibonacci encoding of i, when regarded as a number represented
in the standard binary encoding, will be larger than the corresponding encoding of
j. The compressed search in a dictionary using both POM and Fibonacci coding
is given in Figure 5, where Fib(i) stands for the above Fibonacci representation of
the integer i. There is no need in decompressing the Fibonacci encoded field `i, so
that the comparisons in lines 2.1 and 2.3 can be done directly with the encoded binary
strings.

Given the pattern to be searched for, we can compute, as before, the longest
common prefix of σi and E(P). However, it might be that this common prefix is not
the encoding of the longest common prefix of D(σi) and P . For example, if E(P) =
1100-1101 and σ1 = 1100-110101, then the longest common prefix in characters is of
length 1, (i.e. the decoding of 1100), but the longest common prefix in bits is the

binary string 1100-1101, which could be wrongly interpreted as two codewords. This
can be corrected by checking whether the string which follows the longest common
binary prefix in both E(P) and σi is at the begining of a codeword, i.e., starts with
11. The function fib-pre in Figure 5 refers to this corrected version; though getting
binary strings as parameters, it returns the number of codewords, rather than the
number of bits, in the common prefix.

5. Experimental results

The experiments were performed on small POM files of several K bytes because of the
following particular application: POM is often used to store dictionaries in B-trees;
since the B-tree structure supports an efficient access to memory pages, each node is
limited to a page size, and each page has to be compressed on its own, that is, for
the first entry of each page, `1 = 0.

File size Huffman (bit) Fibonacci Huffman (char) POM

bib1 2044 775 716 616 1171
bib2 4095 1709 1666 1413 2754
bib3 8067 2769 2749 2253 4663
bib4 16199 5242 5379 4276 9217
xml1 2047 1097 999 905 1481
xml2 4093 1640 1527 1327 2457
xml3 8190 2427 2350 1957 4079
xml4 16383 3898 4001 3156 7336

Hebbib 253230 72514 80079 55149 148890

Table 1: Comparative chart of compression performance

For our experiments, we have chosen files of different nature: the English Bible
bib, and a large XML file xml. Their dictionaries were built from all the words that
occur in these files. We then considered different prefixes of these dictionaries, so that
we get sub-dictionaries of approximate sizes 2K, 4K, 8K and 16K. To see how the
methods scale up, we have also included as last line the dictionary of all the words
in the Hebrew Bible. Table 1 gives the compression performance: the second column
gives the sizes of the original sub-dictionaries, the third column gives the size of the
POM file after using Huffman coding, when the values for ni and `i are expressed in
bits, the fourth column contains the corresponding values for the Fibonacci variant,
`i being expressed in characters, the fifth column corresponds to a Huffman encoded
POM file, for which ni and `i represented character counts, and the last column is the
performance of POM alone. The POM-Huffman methods use three Huffman trees,
one for each of the components σi, `i and ni. The POM-Fibonacci method uses only
two components σi and `i. As can be seen, Fibonacci performs better for small files.
This advantage could be explained by the use of two fields instead of three, and the

fact that Huffman coding requires more additional space for the alphabet and its
distribution.

size Fibonacci without 11 Fibonacci with 11

8002 1812 1836
16496 3811 3855
23985 5558 5585

Table 2: Memory storage of the two Fibonacci methods

Table 2 compares the storage performance of the two different Fibonacci encod-
ings, discussed in the previous section, on three sub-dictionaries of different sizes.
The first column gives the size, in bytes, of the uncompressed dictionaries, the second
and third columns the sizes of the POM-Fibonacci compressed dictionaries, without
and with the use of the first codeword 11, respectively. As can be seen, it is worth
eliminating the 11 codeword, though the difference is small.

File size Huffman Fibonacci Huffman decode

bib1 2044 6.7 2.8 7.7
bib2 4095 7.5 3.7 8.8
bib3 8067 8.4 4.9 8.9
bib4 16199 9.9 6.8 10.1
xml1 2047 7.3 3.2 7.0
xml2 4093 7.9 3.8 7.6
xml3 8190 8.5 4.7 8.3
xml4 16383 9.7 6.1 9.7

Hebbib 253230 50 65 64

Table 3: Empirical comparison of processing time

To empirically compare the processing times, we considered all of the words which
occur in the dictionary. We thus considered one pattern for each entry in the dictio-
nary, and averaged the search times. The results in milliseconds are given in Table 3.
The last column is added for comparison: it corresponds to the character oriented
Huffman coded POM file which is decoded and then scanned with the algorithm of
Fig. 2. For the smaller files, there is a clear advantage of the Fibonacci approach since
a part of the encoded file is not scanned. For the larger files, the Huffman variant
is better, which could be explained by the smaller file to be processed. Both com-
pressed matching techniques are generally better than decompressing and searching
afterwards.

6. Conclusion

We introduced two new methods to represent a POM file so that direct search could
be done in these compressed dictionaries. The processing time is typically twice as
fast for the Fibonacci variant than for the Huffman based algorithm, and also com-
pared to decoding a Huffman encoded POM file and searching on the uncompressed
version. We see that in the case of small files, which is the important application
since dictionaries are usually kept in small chunks, the Fibonacci variant is much
faster than decoding and searching or than the POM–Huffman method. Even though
the compression performance might be slightly inferior to the character version of
Huffman (but is still generally better than the bit version), this might well be a price
worth to pay for getting the faster processing.

References

[1] Amir A., Benson G., Efficient two-dimensional compressed matching, Proc. Data
Compression Conference DCC–92 , Snowbird, Utah (1992) 279–288.

[2] Amir A., Benson G., Farach M., Let Sleeping Files Lie: Pattern Matching in
Z-compressed Files, Journal of Computer and System Sciences 52 (1996) 299–307.

[3] Bratley.P, Choueka.Y, Processing Truncated Terms in Document Retrieval Sys-
tems, Information Processing & Management18(5), (1982) 257–266.

[4] Farach M., Thorup M., String Matching in Lempel-Ziv Compressed Strings, Proc.
27th Annual ACM Symposium on the Theory of Computing , (1995) 703–712.

[5] Fraenkel A.S, Klein S.T., Robust universal complete codes for transmission and
compression, Discrete Applied Mathematics 64 (1996) 31–55.

[6] Klein S.T., Skeleton Trees for efficient Decoding of Huffman Encoded Texts, Infor-
mation Retrieval 3 (2000) 7-23.

[7] Klein S.T., Shapira D., A new compression method for compressed matching,
Proc. Data Compression Conference DCC–2000, Snowbird, Utah (2000) 400–409.

[8] Klein S.T., Shapira D., Pattern Matching in Huffman Encoded Texts, Proc. Data
Compression Conference DCC–2001, Snowbird, Utah (2001) 449–458.

[9] Manber U., A Text Compression Scheme That allows Fast Searching Directly in
the compressed File, ACM Trans. on Inf. Sys. 15 (1997) 124–136.

[10] Navarro G., Kida T., Takeda M., Shinohara A., and Arikawa S., Faster
Approximate String Matching over Compressed Text, Proc. Data Compression Con-
ference DCC–2001, Snowbird, Utah (2001) 459–468.

[11] Navarro G., Raffinot M., A general practical approach to pattern matching
over Ziv-Lempel compressed text, Proc. 10th Annual Symposium on Combinatorial
Pattern Matching CPM–99, LNCS 1645, Springer Verlag, (1999) 14–36.

