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Abstract. A hidden vector encryption scheme (HVE) is a derivation of identity-based encryp-
tion, where the public key is actually a vector over a certain alphabet. The decryption key is
also derived from such a vector, but this one is also allowed to have “⋆” (or wildcard) entries.
Decryption is possible as long as these tuples agree on every position except where a “⋆” occurs.
These schemes are useful for a variety of applications: they can be used as building block to
construct attribute-based encryption schemes and sophisticated predicate encryption schemes
(for e.g. range or subset queries). Another interesting application – and our main motivation – is
to create searchable encryption schemes that support queries for keywords containing wildcards.
Here we construct a new HVE scheme, based on bilinear groups of prime order, which sup-
ports vectors over any alphabet. The resulting ciphertext length is equally shorter than existing
schemes, depending on a trade-off. The length of the decryption key and the computational com-
plexity of decryption are both constant, unlike existing schemes where these are both dependent
on the amount of non-wildcard symbols associated to the decryption key.
Our construction hides both the plaintext and public key used for encryption. We prove security
in a selective model, under the decision linear assumption.

1 Introduction

With the growing popularity of outsourcing data to third-party datacenters (the cloud), en-
hancing the security of such remote data is of increasing interest. In an ideal world such
datacenters may be completely trustworthy, but in practice they may very well be curious
for your secrets. To prevent this all data should be encrypted. However, this directly results
in problems of selective data retrieval. If a datacenter cannot read the stored information, it
also cannot answer any search queries.

Consider the following scenario about storage of health care records. Assume that Alice
wants to store her medical records on a server. Since these medical records are highly sensitive,
Alice wants to control the access to these records in such a way that a legitimate doctor can
only see specific parts. Now Alice either has to trust the server to honestly treat her records,
or she should encrypt her records in such a way that specific information can only be found
by specific doctors.

Searchable encryption is a technique that addresses the mentioned problem. In general we
will consider the following public-key setting: Bob wants to send a document to Alice, but to
get it to her he has to store it on an untrusted intermediary server. Before sending he encrypts
the document with Alice’s public key. To make her interaction with the server easier he also
adds some keywords describing the encrypted document. These keywords are also encrypted,
but in a special way. Later, Alice wants to retrieve all documents from this server containing
a specific keyword. She uses her secret key to create a so-called trapdoor that she sends to
the server. Using this trapdoor the server can circumvent the encryption of all the encrypted
keywords that it has stored, but only just enough to learn whether the encrypted keyword
was equal to the keyword Alice had in mind. If the server finds such a match it can return
the encrypted document to Alice.



In many applications it is convenient to have some flexibility when searching, like search-
ing for a subset of keywords or searching for multiple keywords at once using a wildcard.
Existing solutions address searching with wildcards using a technique called hidden vector
encryption (HVE) [7]. A HVE scheme is a variation of identity-based encryption where both
the encryption and the decryption key are derived from a vector. Decryption can only be
done if the vectors are the same in every element except for certain positions, which we call
wildcard- or “don’t care”-positions. The relation with searchable encryption comes by viewing
a keyword as a vector of symbols. For every keyword Bob will make a HVE encryption of a
public message, using the keyword as a ‘public key’. The trapdoor Alice sends to the server
is actually a decryption key derived from a keyword. The server can now try to decrypt the
HVE encryptions; if the decryption works the server can conclude that two keywords were
the same, except for the wildcard positions. Because of this relation this paper will focus on
the construction of a HVE scheme.

There have been quite a few proposals for HVE schemes, most notably [3, 7, 15, 16, 18, 22].
These schemes have in general two drawbacks: Firstly, most of them are using bilinear groups
of composite order, whereas the few schemes that do use the more efficient bilinear groups of
prime order [3, 15, 18] are only capable of working with binary alphabets. Secondly, in all these
schemes the size of the ciphertext is linear in the length of the vector it’s key is derived from.
Thirdly, the size of the decryption key grows linearly in the amount of non-wildcard symbols.
This directly influences the number of computations needed for decryption. Therefore, these
schemes are inefficient for applications where the client wishes to query for keywords that
contain just a few wildcard values.

1.1 Related work

Searchable data encryption was first popularized by the work of Song, Wagner and Perring
[23]. They propose a scheme that allows a client to create both ciphertexts and trapdoors
(resulting is a symmetric-key setting), while a server can test whether there is an exact
match between a given ciphertext and a trapdoor. Searchable encryption in the symmetric
key setting was further developed by [10, 11, 13, 24] to enhance the security and the efficiency
of the scheme. While these schemes are useful when you want to backup your own information
on a server, the symmetric key makes them hard to use in a multi-user setting

In [4], Boneh et. al. consider searchable encryption in an asymmetric setting, called public
key encryption with keyword search (PEKS). Here everybody can create an encrypted key-
word, but only the owner of the secret key can create a trapdoor, thus making it relevant
for multi-user applications. This setting has been enhanced in [2, 19]. The PEKS scheme has
a very close connection to anonymous identity-based encryption as introduced in [6], This
connection has been studied more thoroughly by [1]. For this reason, most work (including
ours) on asymmetric searchable encryption has a direct use for identity-based encryption, and
vice versa. Improved IBE schemes useful for searchable encryption have been proposed in [8,
12, 17, 18].

These schemes are usable for equality search, i.e. a message can be decrypted if the trap-
door keyword and the associated keyword of the message are the same. In [14, 20] the concept
of attribute-based encryption is introduced. Here, multiple keywords are used at encryption
time, but a trapdoor can be made to decrypt using (almost) any access structure. Both
schemes lack the anonimity property however, which makes them unusable for searchable
encryption.



Adding anonimity results in schemes that offer so-called called hidden vector encryption,
introduced in [9, 21]; in these schemes the trapdoor is allowed to have wildcard symbols “⋆”
that matches any possible keyword in the encryption, They all use rather inefficient bilinear
groups of a composite order. The same holds for [16, 22], which introduce inner product and
predicate encryption. Finally, [15] provides a solution for binary hidden-vector encryption
that is based purely on bilinear groups of prime order.

1.2 Our results

Here, we propose a public-key hidden vector encryption (HVE) scheme, which queries en-
crypted messages for keywords that contain wildcard entries.

Our contributions in comparison to previous HVE schemes are as follows:

– Our construction uses bilinear groups of prime order, while [7, 21] use hardness assump-
tions based on groups of composite order. Our scheme can also take keywords over any
alphabet, unlike [3, 15, 18] that only take binary symbols.

– The size of the decryption key and the computational complexity for decrypting cipher-
texts is constant, while in earlier papers these grow linearly in the number of non-wildcard
entries of the vector.

– The size of the ciphertext is approximately limited to one group element for every wild-
card we are willing to allow (chosen at encryption time), where in previous schemes the
ciphertext needs one group element for every symbol in the vector.

Our construction is proven to be semantically secure and keyword-hiding in the selective-
keyword model, assuming the Decision Linear assumption [5] holds.

The rest of the paper is organized as follows: in Section 2 we discuss the security definitions
we will use and the building blocks required. In Section 3 we introduce our HVE and prove
its security properties. In Section 4 we analyze the performance of our scheme and compare
it with previous results.

2 Preliminaries

Below, we review searchable data encryption, its relation to hidden vector encryption and their
security properties.. In addition we review the definition of bilinear group and the Decision
linear (DLin) assumption.

2.1 Searchable Data Encryption

Our ultimate goal is to provide a technique for searching with wildcards. As a basis we will
use the concept of public key encryption with keyword search as introduced by Boneh et. al.[4].
Suppose Bob wants to send Alice an encrypted e-mail m in such a way that it is indexed by
some searchable keywords W1, . . . ,Wk. Then Bob would make a construction of the form

(Epk(m) ‖ Spk(W1) ‖ · · · ‖ Spk(Wk)) ,

where E is a regular asymmetric encryption function, pk is Alice’s public key, and S is a special
searchable encryption function. Alice can now – using her secret key – create a trapdoor to
search for emails sent to her containing a specific keyword W̄ . The e-mail server can now test



whether the searchable encryption and the trapdoor contain the same keyword and forward
the encrypted mail if this is the case. During this process the server learns nothing about the
keywords used.

If the trapdoor-keyword is allowed to have wildcard keywords we can get a much more flex-
ible search. As an example, searching for the word ‘ba*’ results in encryptions with ‘bat’, ‘bad’
and ‘bag’. We can also do range queries: ‘200*’ matches ‘2000’ up to ‘2009’ and ‘04/**/2010’
matches the whole of april in 2010. These and other applications were first studied in [7].

Definition 1. A non-interactive public key encryption with wildcard keyword search (wild-
card PEKS) scheme consists of the following four probabilistic polynomial-time algorithms
(KeyGen, Enc, Trapdoor, Test):

– Setup(κ): Given a security parameter κ and a keyword-length L output a secret key sk
and a public key pk.

– Enc(pk, W ): Given a keyword W of length at most L characters, and the public key pk
output a searchable encryption Spk(W ).

– Trapdoor(sk, W̄ ): Given a keyword W̄ of length at most L characters containing wildcard
symbols ⋆ and the secret key sk output a trapdoor TW̄ .

– Test(SW , TW̄ ): Given a searchable encryption SW and a trapdoor TW̄ , return ‘true’ if all
non-wildcard characters are the same or ‘false’ otherwise.

Such a scheme can typically be made out of a so-called hidden-vector encryption scheme
[7], using a variation of the new-ibe-2-peks transformation in [1]. If the HVE is semantically
secure, then the constructed wildcard PEKS is computationally consistent, i.e. it gives false
positives with a negligible probability. If the HVE is keyword-hiding, then the constructed
wildcard PEKS does not leak any information about the keyword used to make a searchable
encryption.

2.2 Hidden Vector Encryption

Let Σ be an alphabet. Let ⋆ be a special symbol not in Σ. This star ⋆ will play the role of
a wildcard or “don’t care” symbol. Define Σ⋆ = Σ ∪ {⋆}. The public key used to create a
ciphertext will be a vector W = (w1, . . . , wL) ∈ ΣL, called attribute vector. Every decryption
key will also be created from a vector W̄ = (w̄1, . . . , w̄L) ∈ ΣL

⋆ . Decryption is possible if for
all i = 1...L either wi = w̄i or w̄i = ⋆.

Definition 2 (HVE). A Hidden Vector Encryption (HVE) scheme consists of the following
four probabilistic polynomial-time algorithms (Setup, Extract, Enc, Dec):

– Setup(κ, Σ, L): Given a security parameter κ, an alphabet Σ, and a vector-length L, output
a master secret key msk and public parameters param.

– Extract(msk, W̄ ): Given an attribute vector W̄ ∈ ΣL
⋆ and the master secret key msk,

output a decryption key TW̄ .
– Enc(param, W, M): Given an attribute vector W ∈ ΣL, a message M , and the public

parameters param, output a ciphertext SW,M .
– Dec(SW,M , TW̄ ): Given a ciphertext SW,M and a decryption key TW̄ , output a message M ,

These algorithms must satisfy the following consistency contraint:

Dec
(

Enc(param, W, M),Extract(msk, W̄ )
)

= M if wi = w̄i ∨ w̄i = ⋆ for i = 1 . . . L.



Security Definitions Here, we define the notion of security for hidden vector encryption
schemes. Informally, this security definition states that a scheme reveals no non-trivial in-
formation to an adversary. In other works there is a seperation between semantic security –
which formalizes the notion that an adversary cannot learn any information about the message
that has been encrypted – and keyword hiding – which formalizes the notion that he cannot
learn non-trivial information about the keyword or vector use for encryption. These notions
are both integrated into our security definition. As setting, we assume the selective model, in
which the adversary commits to the encryption vector at the beginning of the “game”.

Definition 3 (Semantic Security). A HVE scheme (Setup,Extract,Enc,Dec) is semanti-
cally secure in the selective model if for all probabilistic polynomial-time adversaries A,

∣

∣

∣Pr
[

ExpA(κ) = 1
]

−
1

2

∣

∣

∣< ǫ(κ)

for some negligible function ǫ(κ), where ExpA(κ) is the following experiment:

– Init. The adversary A chooses an alphabet Σ, a length L and announces two attribute
vectors W ∗

0 ,W ∗
1 ∈ ΣL, different in at least one position, that it whishes to be challenged

upon.
– Setup. The challenger runs Setup(κ, Σ, L), which outputs a set of public parameters

param and a master secret key msk. The challenger then sends param to the adversary
A.

– Query Phase I. In this phase A adaptively issues key extraction queries for attribute
vectors W̄ ∈ ΣL

⋆ , under the restriction that w̄i 6= w∗
0i and w̄i 6= w∗

1i for at least one
w̄i 6= ⋆. Given an attribute vector W̄ the challenger runs Extract(msk, W̄ ) which outputs
a decryption key TW̄ . The challenger then sends the TW̄ to A.

– Challenge. Once A decides that the query phase is over, A picks a pair of messages
(M0,M1) on which it wishes to be challenged and sends them to the challenger. Given the
challenge message (M0,M1) and the challenge attribute vectors (W ∗

0 ,W ∗
1 ), the adversary

picks a fair coin β ∈R {0, 1}, and invokes the Enc(param, W ∗
β ,Mβ) algorithm to output

SW ∗

β
,Mβ

. The challenger then sends SW ∗

β
,Mβ

to A.
– Query Phase II. Identical to Query Phase I.
– Output. Finally, the adversary outputs a bit β′ which represents its guess for bit β. If

β = β′ then return 1, else return 0.

Intuitively, this experiment simulates a worst-case scenario attack, where the adversary
has access to a lot of information: it knows that the challenge ciphertext is either an encryption
of M0 under W ∗

0 or an encryption of M1 under W1, all of which are chosen by him. In addition,
it is allowed to know any decryption key that does not directly decrypt the challenge. Query
phase I allows the adversary to choose the challenge messages based on decryption keys it
already knows. Query phase II allows the adversary to ask for more decryption keys based on
the challenge ciphertext it received.

If the encryption scheme would have a flaw and leak even a bit of information, a smart
adversary would choose the message and attribute vector in such a way that this weakness
would come to light. Thus the statement that no adversary can do significantly better than
guessing implies that the encryption scheme does not leak information.

We wish to note that there is a stronger notion of security – the non-selective model –
where the adversary chooses W ∗

0 and W ∗
1 in the challenge phase. This allows the adversary



to make those dependent on the public parameters and on known decryption keys. Creating
a secure HVE in that setting is still an open problem.

2.3 Bilinear Groups

Definition 4 (Bilinear Group). We say that a cyclic group G of prime order q with gen-
erator g is a bilinear group if there exists a group GT and a map e such that

– (GT , ·) is also a cyclic group, of prime order q,
– e(g, g) is a generator of GT (non-degenerate).
– e is an bilinear map e : G × G → GT . In other words, for all u, v ∈ G1 and a, b ∈ Z

∗
q, we

have e(ua, vb) = e(u, v)ab.

Additionally, we require that the group actions and the bilinear map can be computed in
polynomial time. A bilinear map that satisfies these conditions is called admissable.

Our scheme is proven secure under the Decision Linear assumption (DLin), which has
been introduced by [5]:

Definition 5 (Decision Linear Assumption). There exist bilinear groups G such that for
all probabilistic polynomial-time algorithms A,

∣

∣

∣Pr
[

A(G, g, ga, gb, gac, gd, gb(c+d)) = 1
]

− Pr
[

A(G, g, ga, gb, gac, gd, gr) = 1
]

∣

∣

∣
< ǫ(κ)

for some negligible function ǫ(κ), where the probabilities are taken over all possible choices of
a, b, c, d, r ∈ Z

∗
q.

Informally, the assumption states that given a bilinear group G and elements ga, gb, gac, gd

it is hard to distinguish h = gb(c+d) from a random element in G. The Decision Linear as-
sumption implies the decision bilinear Diffie-Hellman assumption. The best known algorithm
to solve the Decision Linear Problem is to compute a discrete logarithm in G.

3 Construction

Before we present our scheme we will first explain the intuition behind it.

3.1 Intuition

Existing HVE schemes hide a message using a one-time pad construction, i.e. multiplying the
message with a session key. This session key is constructed using a secret sharing method
over the elements of the encryption-vector, in such a way that not all of the elements are
needed for decryption. This automatically leads to a ciphertext that is linear in the length of
the vector and a decryption key that is linear in the amount of non-wildcard symbols in the
vector.

Our construction works quite different. We also choose a session key based on all the
elements of the encryption-vector, but the trapdoor contains the information to cancel out
the effect of the symbols at unwanted wildcard-positions. More specifically, we exploit the
following polynomial identity that can be evaluated using a bilinear map in Dec:

l
∑

i=1

∏

j∈J

(i − j)wi =

l
∑

i=1
i/∈J

∏

j∈J

(i − j)wi, (1)



where the set J ⊂ {1, . . . , l} denotes the position of wildcard symbols, and wi is the entry of
the ciphertext keyword at position i. This identity can be computed using pairings, leading
to a ciphertext and decryption key length dependent on |J |. However, since this value is not
known at the time of encryption, we’ll have to replace it by an upper bound.

As an example consider an encryption using the vector W = (w1, w2, w3) and a decryption
key using W̄ = (w̄1, ⋆, w̄3), i.e. there is a wildcard at position 2. In the Dec we will compute
the following in the exponent of the pairing:

3
∑

i=1

(i − 2)wi = (1 − 2)w1 + (2 − 2)w2 + (3 − 2)w3 = (1 − 2)w̄1 + (3 − 2)w̄3,

Since the polynomial (i − 2) has a root at 2, the second entry of the ciphertext keyword is
canceled out, while the rest will be used in the computation of the session key.

We can construct the polynomial
∏

j∈J(x−j) that occurs in (1) by using Viète’s formulas.
∏

j∈J(x − j) is a polynomial of degree n = |J | defined over an integral domain Zq with the

roots in J . Then
∏

j∈J(x − j) = xn + an−1x
n−1 + . . . + a0, where each coefficient can be

computed according to Viète’s formulas:

an−k = (−1)i−n
∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik , 0 ≤ k ≤ n (2)

where n = |J |. If J is clear from the context we will write ai.
For instance when J = {j1, j2, j3} we get for the polynomial (x − j1)(x − j2)(x − j3),

a2 = −(j1 + j2 + j3)

a1 = (j1j2 + j1j3 + j2j3)

a0 = −j1j2j3

3.2 Construction

We are now ready to give our construction for a hidden vector encryption scheme. Without
loss of generality, we look at vectors of maximum length L over a fixed alphabet Σ ⊂ Z

∗
q . Other

alphabets – like ascii characters – can always be mapped onto such a subset. In addition, we
need to pick an upper bound N to the number of wildcards that are allowed in a decryption
vector. While this upper bound can be equal to L, performance increases if N ≪ L.

This construction allows for shorter vectors of a length l < L. Intuitively we’ll pad these
vectors with zeroes up to a length L, but in practice this padding can be safely ignored in
the computations.

Our scheme comprises of the following algorithms:

– Setup(κ, Σ, L): First, choose an upper bound N ≤ L to the number of wildcard symbols
in decryption vectors. Next, given security parameter κ:
1. Generate a bilinear group G of a large prime order q and choose a bilinear map

e : G × G −→ GT .
2. Pick L + 1 random elements V0, U1, ..., UL ∈R G.



3. Pick random exponents α, t1, t2, (x1, . . . , xN ) ∈R Zq.
4. Let Ω1 = e(g, V0)

αt1 and Ω2 = e(g, V0)
αt2 .

5. Let Vj = V
xj

0 for j = 1, . . . , N .
The public parameters are:

param =
(

(

V0, V1, . . . , VN

)

,
(

U1, . . . , UL

)

, gα, Ω1, Ω2, q, G, GT , e(·, ·)
)

The master secret key is msk =
(

α, t1, t2, (x1, . . . , xN )
)

.
– Extract(msk, W̄ ): Let W̄ = (w̄1, . . . , w̄l) ∈ Σl

⋆, where l ≤ L. Assume that W contains
n ≤ N wildcards which occur at positions J = {j1, . . . , jn}. Pick a random s ∈R Zq and
compute: s1 = t1 + s, s2 = t2 + s. By means of Viète’s formulas ai for i = 1, . . . , n, first
compute m = (

∑n
k=0 xkak)

−1 and then the decryption key TW̄ (where x0 = 1):

TW̄ =











T0 = gαms

T1 = V s1
0

∏l
i=1 U

ms
∏n

k=1(i−jk)w̄i

i

T2 = V αs2
0

∏l
i=1 U

αms
∏n

k=1(i−jk)w̄i

i

A = {αms2a1, . . . , αms2an}











.

– Enc(param, W, M): Let W = (w1, . . . , wl) ∈ Σl, where l ≤ L and M ∈ GT a message. Pick
two random values r1, r2 ∈R Z

∗
q . The ciphertext SW,M is:

SW,M =













Ĉ = MΩr1
1 Ωr2

2 ,













C0 =
(

V0
∏l

i=1 Uwi

i

)r1+r2

C1 =
(

V1
∏l

i=1 U i wi

i

)r1+r2

...

CN =
(

VN
∏l

i=1 U iN wi

i

)r1+r2













,

(

gαr1

gr2

)













.

– Dec(SW,M , TW̄ ): Given a decryption key TW̄ and a ciphertext SW,M , first use J to compute
Viète’s formulas ai i = 1, . . . , n, then decrypt the message as:

M = Ĉ
e(T0,

∏n
k=0 Cak

k )

e(T1, gαr1)e(T2, gr2)

3.3 Correctness

We now show that the Dec algorithm indeed returns the correct message when using a de-
cryption key that should be able to decrypt a given ciphertext. Without loss of generality
we assume that the vectors contain l symbols and that there are n wildcards at positions
{j1, . . . , jn}. Then

e(T0,

n
∏

k=0

Cak

k ) = e
(

g
αs∑n

m=0 xmam ,

n
∏

k=0

V
ak(r1+r2)
k

)

e
(

g
αs∑n

m=0 xmam ,

n
∏

k=0

l
∏

i=1

U
ikakwi(r1+r2)
i

)

=

n
∏

k=0

(

e(g, V0)
αs(r1+r2)xkak∑n

m=0 xmam

l
∏

i=1

e(g, Ui)
αs(r1+r2)wiikak∑n

m=0 xmam

)

= e(g, V0)
αs(r1+r2)

∑n
k=0 xkak∑n

m=0 xmam

l
∏

i=1

e(g, Ui)
αs(r1+r2)wi

∑n
k=0 ikak∑n

m=0 amxm

= e(g, V0)
αs(r1+r2)

l
∏

i=1

e(g, Ui)
αs(r1+r2)wi

∏n
k=1(i−jk)

∑n
m=0 amxm (3)



where for (3) we use that
∑n

k=0 ikak =
∏n

k=1(i − jk).

e(T1, g
αr1) = e(V0, g)αr1s1 e

(

l
∏

i=1

U

s
∏n

k=1(i−jk)w̄i∑n
m=0 amxm

i , gαr1
)

= Ωr1
1 e(g, V0)

αsr1

l
∏

i=1

e(g, Ui)
αsr1

∏n
k=1(i−jk)w̄i∑n

m=0 amxm (4)

e(T2, g
r2) = e(V0, g)αr2s2 e

(

l
∏

i=1

U

αs
∏n

k=1(i−jk)w̄i∑n
m=0 amxm

i , gr2
)

= Ωr2
2 e(g, V0)

αsr2

l
∏

i=1

e(g, Ui)
αsr2

∏n
k=1(i−jk)w̄i∑n

m=0 amxm (5)

e(Tn+1, g
αr1)e(Tn+2, g

r2) = Ωr1
1 Ωr2

2 e(g, V0)
αs(r1+r2)

l
∏

i=1

e(g, Ui)
αs(r1+r2)w̄i

∏n
k=1(i−jk)

∑n
m=0 amxm (6)

If the decryption key is a valid, then wi = w̄i when i /∈ {j1, . . . , jn}. Thus

Ĉ

∏n
k=0 e(Tk, Ck)

e(Tn+1, gαr1)e(Tn+2, gr2)
=

MΩr1
1 Ωr2

2

∏n
k=0 e(Tk, Ck)

e(Tn+1, gαr1)e(Tn+2, gr2)
= M (7)

3.4 Semantic Security

Theorem 1. The hidden vector encryption scheme in Section 3 is semantically secure in the
selective model assuming that the Decision Linear assumption holds in group G.

Proof. Suppose there exists a PPT adversary A that can break the selective semantic security,
i.e. A has an advantage in the experiment of Definition 3 larger than some nonnegligible ǫ.
We build an algorithm B that uses A to solve the Decision Linear problem in G.

The challenger selects a bilinear group G of prime order q and chooses a generator g ∈ G,
the group GT and an efficient bilinear map e : G × G → GT . Then the challenger picks four
random values a, b, c, d ∈R Z

∗
q , computes Z0 = gb(c+d) and chooses Z1 ∈R G. After flipping a

fair coin β ∈R {0, 1} the challenger hands the tuple (g, ga, gb, gac, gd, Zβ) to B. Algorithm B’s
goal is to guess β with a better chance of being correct than 1

2 . In order to come up with a
guess, B interacts with adversary A in a selective semantic security experiment as follows:

Init. Adversary A chooses an alphabet Σ ⊂ Z
∗
q , a length L and announces two attribute

vectors W ∗
0 ∈ Σl0 , W ∗

1 ∈ Σl1 , where l0, l1 ≤ L, which are different in at least one position.
B flips a coin γ ∈ {0, 1}. Let W ∗

γ =
(

w∗
1, . . . , w

∗
lγ

)

.
Setup. B chooses an upper bound N ≤ L to the number of wildcard symbols. Then B picks

random values v0, u1, . . . , uL ∈R Zq and sets

xj =

∑l
i=1 ijui

∑l
i=1 ui

for j = 0, . . . , N

Vj = (gb)xjv0g−
∑lγ

i=1 ijui for j = 0, . . . , N

ui =

{

g
ui
w∗

i for i = 1 . . . lγ

gui for i = lγ + 1, . . . , L



B picks σ1, σ2, σ3 ∈R Zq and computes Ω1 = e(ga, V0)
σ1−σ2 and Ω2 = e

(

gσ3(ga)−σ2 , V0

)

.
The public parameters are:

param =
(

(

V0, V1, . . . , VN

)

,
(

U1, . . . , UL

)

, ga, Ω1, Ω2, q, G, GT , e(·, ·)
)

The master secret key is implicitly given by

msk =
(

α = a, t1 = σ1 − σ2, t2 =
σ3

a
− σ2, (x1, . . . , xN )

)

.

Query Phase I. In this phase A adaptively issues key extraction queries. Each time A
queries for the decryption key of an attribute vector W̄ = (w̄1, . . . , w̄l) ∈ Σl

⋆, consisting of
l ≤ L symbols and n ≤ N wildcards at positions J = {j1, . . . , jn}, algorithm B responds
by computing

T0 = (ga)
σ2∑n

m=0 xmam ,

T1 = V σ1
0

l
∏

i=1

U

σ2
∏n

k=1(i−jk)w̄i∑n
m=0 xmam

i ,

T2 = (gb)σ3v0g−σ3
∑lγ

i=1 ui(ga)

σ2
∑ lγ

i=1
ui
w∗

i

∏n
k=1(i−jk)w̄i

∑n
m=0 xmam

+
σ2

∑ l
i=lγ+1 ui

∏n
k=1(i−jk)w̄i

∑n
m=0 xmam ,

which is basically a correct trapdoor for W̄ with s = σ2. B returns to A the decryption
key

TW̄ =
(

T0, T1, T2, J
)

. (8)

Challenge. Once A decides that the query phase is over, A picks a pair of messages M0,M1 ∈
GT on which it whishes to be challenged. B computes SW ∗

γ ,Mγ by first computing

Ĉ = Mγ · e
(

gac, gb
)(σ1−2σ2)v0 · e

(

gac, g
)(σ1−σ2)

∑lγ
i=0 ui ·

e
(

ga, gd
)−σ2

∑lγ
i=0 ui · e

(

gb, gd
)σ3v0 · e

(

ga, Zβ

)σ2v0 (9)

and then computing C0 = Zv0
β and Ck = Zxkv0

β for k = 1, . . . , N . B sends the challenge
ciphertext

SW ∗

γ ,Mγ =
(

Ĉ,
{

Ck

}N

k=0
,
(gac

gd

)

)

, (10)

to A. When β = 0 this is actually a correct encryption of Mγ under W ∗
γ with r1 = c and

r2 = d.

Query Phase II. In Query Phase II B behaves exactly the same as in Query Phase I.

Output. Eventually, A outputs a bit γ′.

Finally, B outputs 1 if γ′ = γ and 0 if γ′ 6= γ.

We will now analyze the probability of success for algorithm B. First, note that if β = 0,
then B will behave correctly as a challenger to A. Thus, A will have probability of 1

2 + ǫ of
guessing γ. Next note that if β = 1, then Zβ is random in G and SW ∗

γ ,Mγ is independent from

γ, thus A will have a probability of 1
2 of guessing γ.



To conclude the proof we have
∣

∣

∣
Pr

[

B(G, g, ga, gb, gac, gd, gb(c+d)) = 1
]

− Pr
[

B(G, g, ga, gb, gac, gd, gr) = 1
]

∣

∣

∣

≥
∣

∣

∣Pr
[

β = 0 ∧ γ′ = γ
]

− Pr
[

β = 1 ∧ γ′ = γ
]

∣

∣

∣

=
∣

∣

∣

1

2
Pr

[

γ′ = γ
∣

∣ β = 0
]

−
1

2
Pr

[

γ′ = γ
∣

∣ β = 1
]

∣

∣

∣

=
1

2

∣

∣

∣Pr
[

ExpA(κ) = 1
]

−
1

2

∣

∣

∣

≥
1

2
ǫ,

which is nonnegligible, contradicting the Decision Linear Assumption. ⊓⊔

4 Conclusion

We presented a new hidden vector encryption scheme which can work as a wildcard searchable
encryption scheme that is a more efficient than existing schemes in some scenarios. The tables
below summarize the efficiency of our scheme when compared with other schemes. The scheme
is proven selectively secure in the sense of hiding the contents of the message and hiding the
keywords associated to the message. This is the same model as is used in the other schemes
in the literature. A hidden vector encryption scheme that is secure in the adaptive standard
model is still an open problem, as is finding any other construction for wildcard searchable
encryption in that model.

The following table compares the performance of our scheme with existing searchable
encryption schemes from the point of view of memory requirement. Table 1 shows that for the
situations where n ≪ l (i.e. the number of wildcards is not large) constructing the decryption
key is more efficient than the existing schemes. Moreover, in this situation since N could be
small, the ciphertext is constructed in a more efficient way.

Size of Size of Size of Maximum allowed

Schemes ciphertext Decryption key public parameters Wildcards

Boneh , Waters [7] 2l + 2 2(l − n) + 1 3L + 3 Arbitrary
Katz et al. [16]

Shi, Waters [22] l + 4 l − n + 3 4L + 2 Arbitrary

Iovino , Persiano [15] 2l + 2 l − n + 3 2L + 4 Arbitrary
Blundo et al. [3]

Nishide et al. [18] l + 2 l + 1 3L + 1 Arbitrary

Our N + 4 n + 3 L + N + 1 N

Scheme
Table 1. Comparison of the performance of our scheme with existing searchable encryption schemes from the
memory requirement point of view. The notation in this table is as follows: l: the length of the (ciphertext or
decryption key) keyword, L: the maximum allowed number of entries in the ciphertext keyword, n: the number
of wildcard entries, N : the maximum allowed number of wildcard entries.

The next table compares the performance of our scheme with existing searchable encryp-
tion schemes from the point of view of decryption cost. Table 2 shows that the decryption cost



in our scheme is constant and less than other schemes since only three pairings is required
for the decryption.

Number of pairings Order of Alphabet of entries

Schemes for decryption bilinear group

Boneh, Waters [7] and 2(l − n) + 1 Composite order Arbitrary
Katz et al. [16]

Shi, Waters [22] (l − n) + 3 Composite order Arbitrary

Iovino,Persiano [15] and 2(l − n) Prime order Binary
Blundo, Iovino, Persiano [3]

Nishide et al. [18] l + 1 Prime order Binary

Our 3 Prime order Arbitrary
Scheme

Table 2. Comparison of the performance of our scheme with existing searchable encryption schemes from the
point of view of decryption cost. The notation in this table is as follows: l: the length of the (ciphertext or
decryption key) keyword, n: the number of wildcard entries.
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