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Abstract— Gesture recognition has attracted considerable
attention owing to its great potential in applications. Although the
great progress has been made recently in multi-modal learning
methods, existing methods still lack effective integration to fully
explore synergies among spatio-temporal modalities effectively
for gesture recognition. The problems are partially due to the fact
that the existing manually designed network architectures have
low efficiency in the joint learning of multi-modalities. In this
paper, we propose the first neural architecture search (NAS)-
based method for RGB-D gesture recognition. The proposed
method includes two key components: 1) enhanced temporal
representation via the proposed 3D Central Difference Con-
volution (3D-CDC) family, which is able to capture rich tem-
poral context via aggregating temporal difference information;
and 2) optimized backbones for multi-sampling-rate branches
and lateral connections among varied modalities. The resultant
multi-modal multi-rate network provides a new perspective to
understand the relationship between RGB and depth modalities
and their temporal dynamics. Comprehensive experiments are
performed on three benchmark datasets (IsoGD, NvGesture, and
EgoGesture), demonstrating the state-of-the-art performance in
both single- and multi-modality settings. The code is available at
https://github.com/ZitongYu/3DCDC-NAS.
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I. INTRODUCTION

A
S ONE of the multi-modal video understanding prob-

lems, RGB-D based video gesture recognition [1]–[4]

has been applied to many real-world applications, such as

virtual reality [5] and human-computer interaction [6]. 3D

convolutional neural network (3DCNN) [7]–[10] and long

short-term memory (LSTM) [11] have been adopted to learn

the spatial-temporal features for gesture recognition. How-

ever, the learned spatio-temporal representation is still eas-

ily contaminated by irrelevant factors (e.g., illumination and

background). A feasible solution is to add an extra enhanced

temporal feature learning module [12]–[14], which is computa-

tional costly and tricky for the off-the-shelf 3DCNNs. How to

learn efficient spatio-temporal features in basic convolution

operator for enriching temporal context is worth exploring

for gesture recognition.

As gestures have various temporal ranges, modeling such

visual tempos would benefit for gesture recognition. Previous

methods [15]–[17] attempt to construct the frame pyramid for

such purpose, with each branch of the frame pyramid sampling

the input frames at a different rate. However, the architecture

(i.e., network structure) of each branch and relations (i.e.,

lateral connections) among the multi-rate branches are usually

shared and hand-designed, which is sub-optimal for message

propagation. Hence, how to discover better-suited architec-

tures and lateral connections among multi-rate branches

is crucial.

For RGB-D based gesture recognition, complementary fea-

ture learning from different data modalities is beneficial. For

example, the depth data is easy to distinguish foregrounds (i.e.,

face, hands, and arms) from backgrounds while RGB data

provides detailed texture/color appearances. However, most

existing methods [7], [8], [18]–[20] conduct the multi-modal

fusion via coarse strategies (e.g, score fusion or last layer con-

catenation), which may leverage the multi-modal information

insufficiently. Thus, to design more reasonable multi-modal

fusion strategy is not a trivial work.

Recently, both works about expert-designed [15], [21], [22]

and automatically searched [23], [24] networks have been

explored in video-based action recognition. Compared with

action recognition, the main characteristic [25] of RGB-D

gesture recognition derives from: 1) fine granularity within the

body gestures. Actions tend to focus on the body information
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with large motions (such as hugging and sports) while gestures

are produced as part of deliberate actions and signs, involving

the motion of the upper body, especially the arms, hands,

and fingers. Thus, the resultant successive and temporally

correlative movements are hard to be distinguished with only

global or local spatio-temporal context; and 2) rich synergies

between RGB-D modalities. The depth modality provides

the foreground-based attention on upper body movement but

with coarse and noisy local clues, while the RGB modality

describes detailed appearance (e.g., local shape changes of the

hands and fingers) but is easily influenced by the interference

such as background and clothes. To efficiently explore RGB-D

synergies is vital for reliable gesture recognition application.

Motivated by the above observations, we propose a novel

spatio-temporal convolution family called 3D Central Differ-

ence Convolution (3D-CDC), to exploit the rich local motion

and enhance the spatio-temporal representation. Moreover,

over the 3D-CDC-based enhanced search space, Neural Archi-

tecture Search (NAS) is adopted to automatically discover the

optimized multi-rate and multi-modal networks for RGB-D

gesture recognition. Our contributions include:

• A novel spatio-temporal convolution family, 3D-CDC,

is proposed, intending to capture rich temporal context

via aggregating temporal difference information. Without

introducing extra parameters, 3D-CDC can replace the

vanilla 3D convolution, and plug and play in existing

3DCNNs for various modalities with enhanced temporal

modeling capacity.

• We propose a two-stage NAS method to automatically

discover well-suited backbones and lateral connections

for the multi-rate and multi-modal networks, which effec-

tively explores RGB-D-temporal synergies and represents

global dynamics.

• To our best knowledge, this is the first approach that

searches multi-rate and multi-modal architectures for

RGB-D gesture recognition. Our searched architecture

provides a new perspective to understand the relationship

among multi-rate branches as well as modalities.

• Our proposed method achieves state-of-the-art (SOTA)

performance on three benchmark datasets on both single-

and multi-modality testing.

In the rest of the paper, Sec. II provides the related work.

Sec. III formulates the 3D-CDC family, and introduce the

two-stage multi-rate and multi-modal NAS algorithm. Sec. IV

provides rigorous ablation studies and evaluates the perfor-

mance of the proposed models on three benchmark datasets.

Sec. V shows the visualization results and discusses transfer-

ability to the action recognition task. Finally, a conclusion with

future directions is given in Sec. VI.

II. RELATED WORK

In this section, we first introduce some recent progress in

multi-modal gesture recognition. Then, previous video-based

NAS methods will be reviewed.

A. Multi-Modal Gesture Recognition

For video-based gesture recognition, it is challenging

to track the motion of hands and arms owing to the

large degree of freedom. Many hand-crafted feature based

[26]–[29] and deep learning-based methods [11], [30]–[33] are

proposed to tackle this issue. As for the learning-based gesture

recognition, on one hand, 3DCNNs including C3D [34],

Res3D [35], I3D [21] and SlowFast [15] are utilized for

gesture feature extractor. On the other hand, LSTM variants

such as AttenConvLSTM [36], [36] and PreRNN [37] are

introduced for temporal memory propagation. Based on the

CNNs, several extended modules [12]–[14], [38] and convo-

lution operators [39], [40] are developed for enhancing the

spatio-temperal representation. However, most of them need

extra structures and learnable parameters to modulate the

original spatio-temporal features. In this paper, we propose

3D-CDC for modeling a rich temporal context, which is vital

for describing fine-grained hands/arms motion. Among these

methods, Lee et al.’s [13] motion feature network (MFNet)

and Yu et al.’s [40], [41] central difference convolution (CDC)

are the most similar to our work. Instead of the fixed motion

filter used in MFNet and only the spatial context in CDC,

our 3D-CDC learns the temporal gradient (motion) filters

automatically in a unified 3D convolution operator.

Due to the development of the RGB-D cameras like Intel

RealSense, RGB and depth modalities [7], [8], [42] are

favorite to complementarily fuse and improve the performance.

Besides the RGB-D data, some other modalities such as optical

flow [7], [43], depth flow [42], skeleton [44], [45], dynamic

images [46] and saliency video [9], [47]–[49], [49] are also

employed for gesture recognition. However, the flow and

saliency modalities need extra computational cost and might

lose some vital information after pre-processing.

In terms of the multi-modal fusion strategy, decision-level

fusion [9], [50], [51] and feature-level fusion [7], [8], [20],

[42] methods have developed for integrating mutual knowl-

edge from varied modalities. Despite achieving SOTA perfor-

mance, the existing multi-modal fusion strategies for gesture

recognition are designed manually and coarsely, which might

be sub-optimal for message propagation between modalities.

In this paper, we prefer to discover well-suitable multi-modal

fusion strategies automatically via NAS.

B. Video-Based Neural Architecture Search

Our work is motivated by recent researches on NAS

[52]–[60], while we focus on searching for multi-rate and

multi-modal networks specially for RGB-D gesture recog-

nition. The existing NAS methods could be summarized in

three categories: 1) Reinforcement learning-based [55], [56],

2) Evolution-based [61], [62], and 3) Gradient-based [53],

[57], [63]. From the perspective of NAS based video clas-

sification applications, single-modal based [64]–[66] and

multi-modal based [23], [24] methods have been developed

for the action recognition task. Unlike AssembleNet [24]

which searches on RGB and optical flow modalities with

single frame rate inputs, our work focuses on searching the

synergies among multi-rate and multi-modal branches. Some

works also consider searching CNN [67] or graph convolu-

tional networks [68] on skeleton modality for video action
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recognition, while our work focuses on multi-modal NAS for

gesture recognition on RGB-D modalities.

In terms of the search space design, cell-based NASNet [56]

space is favorite due to its flexibility and rich capacity. Besides,

some novel operators, such as extended convolution [40], [69]

and attention [66], [70], are introduced into search space,

which is proved to be beneficial for searching more powerful

architecture. However, there are still no operators specially

designed for temporal enhancement.

To our best knowledge, no NAS based method has ever

been proposed for RGB-D gesture recognition. To fill in

the blank, we search multi-rate and multi-modal networks

over the temporal enhanced search space for RGB-D gesture

recognition.

III. METHODOLOGY

In this section, we first introduce the 3D-CDC family in

Sec. III-A. Over the 3D-CDC based space, we then propose

the two-stage multi-rate and multi-modal NAS in Sec. III-B.

A. Temporal Enhancement via 3D-CDC

In classical 3DCNNs, 3D convolution is the most fun-

damental operator for spatio-temporal feature representation.

In this subsection, for simplicity, the 3D convolutions are

described in 3D (without channel) while an extension to 4D

is straightforward. There are two main steps in the vanilla

3D convolution: 1) sampling local receptive field cube C over

the input feature map x ; 2) aggregation of sampled values

via weighted summation with learnable weights w. Hence,

the output feature map V anilla can be formulated as

V anilla(p0) =
∑

pn∈C

w(pn) · x(p0 + pn), (1)

where p0 denotes current location on both input and out-

put feature maps while pn enumerates the locations in

C. In this subsection, 3D convolution with kernel size

3 × 3 × 3 and dilation 1 is used for demonstration,

and the other configurations are analogous. The local

receptive field cube for the 3D convolution is C =

{(−1,−1,−1), (−1,−1, 0), · · · , (0, 1, 1), (1, 1, 1)}.

1) Spatio-Temporal Central Difference Convolution

(3D-CDC-ST): Inspired by the CDC [40] which introduces

spatial gradient cues into representation learning, we integrate

spatio-temporal gradient information into a unified 3D

convolution operator. It is worth noting that such spatial

gradient and temporal difference designs are widely used in

the dense optical flow [71] calculation. Instead of the optical

flow only performed in RGB sequence level, networks with

stacked spatio-temporal CDC would be regularized to learn

more local motion context in both RGB sequence and deep

feature level, which is able to model fine-grained temporal

dynamics for gesture recognition.

Similarly, spatio-temporal CDC also consists of two steps,

i.e., sampling and aggregation. The sampling step is similar to

vanilla 3D convolution but the aggregation step is different: as

illustrated in Fig. 1(a), spatio-temporal CDC prefers to aggre-

gate the center-oriented spatio-temporal gradient of sampled

values. Eq. (1) becomes

C DC(p0) =
∑

pn∈C

w(pn) · (x(p0 + pn) − x(p0)). (2)

When pn = (0, 0, 0), the gradient value always equals to

zero with respect to the central location p0 itself. For the

gesture recognition task, both spatio-temporal intensity-level

semantic information and gradient-level difference message

are crucial and complementary. The former one is good at

global modeling and robust to sensor-based noise while the

latter one focuses more on local appearance and motion details

and might be influenced by noise. As a result, combining

vanilla 3D convolution with 3D-CDC might be a feasible

manner to provide more robust and discriminative modeling

capacity. Therefore we generalize spatio-temporal CDC as

C DCST (p0)

= θ · C DC(p0) + (1 − θ) · V anilla(p0)

=
∑

pn∈C

w(pn)·x(p0+ pn)

︸ ︷︷ ︸

vanilla 3D convolution

+θ · (−x(p0)·
∑

pn∈C

w(pn))

︸ ︷︷ ︸

spatio-temporal CD term

, (3)

where hyperparameter θ ∈ [0, 1] tradeoffs the contribution

between intensity-level and gradient-level information. Please

note that w(pn) is shared between vanilla 3D convolution and

spatio-temporal central difference (CD) term, thus no extra

parameters are added.

2) Temporal Central Difference Convolution (3D-CDC-T):

Unlike the aforementioned spatio-temporal CDC considering

both spatial and temporal gradient cues, we propose a version

with only temporal central differences. As shown in Fig. 1(b),

the sampled local receptive field cube C is separated into

two kinds of regions: 1) the region in the current time step

R0, and 2) the regions in the adjacent time steps R00. In the

setting of a temporal CDC, the central difference term is only

calculated from R00. Thus the generalized temporal CDC can

be formulated via modifying Eq. (3) as

C DCT (p0)

=
∑

pn∈C

w(pn)·x(p0+ pn)

︸ ︷︷ ︸

vanilla 3D convolution

+θ ·(−x(p0) ·
∑

pn∈R00

w(pn))

︸ ︷︷ ︸

temporal CD term

. (4)

3) Temporal Robust Central Difference Convolution (3D-

CDC-TR): In consideration of the sensor noise especially

in the depth modality, we also propose a version with the

temporal robust central difference. Similarly, the temporal

robust CDC only calculates the difference term from the

regions in the adjacent time steps R00. As shown in Fig. 1(c),

the robust temporal center is represented by averaging

the spatial centers of all time steps (i.e., pt−1
0 , p0 and pt+1

0 )

within C. The robust temporal center-oriented gradient might

be less sensitive to the pixel jitters from the adjacent time

steps. The generalized temporal robust CDC can also be
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Fig. 1. Our proposed 3D-CDC family with kernel size 3, which could be used as novel operators for NAS. (a) 3D-CDC-ST considers the central difference
information in the whole local spatio-temporal regions. (b) 3D-CDC-T only calculates the central difference clues from the local spatio-temporal regions of
the adjacent frames. (c) 3D-CDC-TR is similar to 3D-CDC-T but adopts the temporal central mean pooling before calculating the central difference term,
which is more robust to temporal noise. The symbols 	 and ⊕ denote element-wise subtraction and mean operations, respectively. (d) Feature response of
various convolutions in RGB modality. Compared with vanilla 3D convolution, the 3D-CDC family enhances the temporal context obviously.

Fig. 2. Architecture search space in the first stage. Single-modal (RGB or depth) multi-rate frames are adopted as inputs. Here we utilize 3 branches with
different frame rates (e.g., uniformly sampling the original videos into 8, 16, and 32 frames, respectively), and it also can be extended to more branches
according to the actual situation. In this search stage, inspired by [15], the architectures of all lateral connections are fixed with temporal convolutions. And
the outputs of the lateral connections are concatenated with the features from the target branch. The channel numbers are doubled after each MaxPool layer.
The architecture of the cells from multi-rate branches to be searched can be shared or unshared (see Sec. IV-C for ablation study).

formulated via modifying Eq. (3) as

C DCT R(p0)

=
∑

pn∈C

w(pn) · x(p0 + pn)

︸ ︷︷ ︸

vanilla 3D convolution

+ θ ·(−Avg[x(pt−1
0 ), x(p0), x(pt+1

0 )]·
∑

pn∈R00

w(pn))

︸ ︷︷ ︸

temporal robust CD term

. (5)

We will henceforth refer to these three generalized ver-

sions (i.e., Eq. (3), (4) and (5)) as 3D-CDC-ST, 3D-CDC-T

and 3D-CDC-TR, respectively. The ablation studies about

the 3D-CDC family and hyperparameter θ are conducted in

Sec. IV-C.

4) Relation Between 3D-CDC and 3D Vanilla Convolution:

Compared to 3D vanilla convolution, 1) 3D-CDC-ST regu-

larizes the spatio-temporal representation with more detailed

spatial cues and temporal dynamics, which might be suitable

for scene-aware video understanding tasks; 2) 3D-CDC-T

enhances the spatio-temporal representation with only rich

temporal context, which might be assembled for video tem-

poral reasoning tasks; and 3) 3D-CDC-TR introduces robust

but slighter temporal evolution cues for spatio-temporal repre-

sentation, which might perform robustly even in noisy scenar-

ios. In particular, 3D-CDC-ST, 3D-CDC-T, and 3D-CDC-TR

degrade to vanilla 3D convolution when θ = 0. As illustrated

in Fig. 1(d), the 3D-CDC family provides more details about

the trajectory of the left arm, and such a local motion context is

crucial to gesture recognition. More visualizations are shown

in Sec. V-C.

B. Multi-Rate and Multi-Modal NAS

In order to seek the best-suited backbones and lateral

connections for multi-rate and multi-modal networks, we pro-

pose a two-stage NAS method to 1) search backbones for
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Algorithm 1 Two-Stage Multi-Rate and Multi-Modal NAS

multi-rate single-modal networks first, and then 2) search

lateral connections for multi-modal networks based on the

searched backbones. The iterative procedure is outlined in

Algorithm 1. More technical details can be referred to two

gradient-based NAS methods [53], [57].

1) Stage 1: Searching Backbones for Multi-Rate

Single-Modal Networks: In SlowFast Networks [15],

low- and high-rate branches are utilized for complementarily

capturing dynamic visual tempos. However, the coarse

hand-defined architecture with vanilla convolutions limits its

representation capacity. Here we search optimal rate-aware

backbones over the temporal enhanced search space.

As illustrated in Fig. 2, in the first stage, our goal is to

search for cells to form multi-rate backbones for single-modal

gesture recognition. As for the cell-level structure, simi-

lar to [53], each cell is represented as a directed acyclic

graph (DAG) of K nodes {n}K−1
i=0 , where each node rep-

resents a network layer. We denote the operation space as

Ob, which consists of seven designed candidate operations:

‘Zero’, ‘Identity’, ‘Conv_1 × 3 × 3’, ‘CDC-T-06_3 × 1 × 1’,

‘CDC-T-06_3 × 3 × 3’, ‘CDC-TR-03_3×1×1’ and ‘CDC-TR-

03_3 × 3 × 3’. To be specific, ‘CDC-T-06’ and ‘CDC-TR-03’

denote the 3D-CDC-T with θ = 0.6 and 3D-CDC-TR with

θ = 0.3, respectively. These settings of θ are based on the

ablation study results in Section IV-C. We also consider a

vanilla operation space with vanilla 3D convolutions instead

of 3D-CDC for comparison.

The multi-rate backbones for each of modalities M to be

searched have the architecture parameters α
(i, j )
b . Each edge

(i, j) of DAG represents the information flow from node ni to

node n j , which consists of the candidate operations weighted

by the architecture parameter α
(i, j )
b . Specially, each edge (i, j)

can be formulated by a function õb
(i, j ) where õb

(i, j )(ni ) =
∑

ob∈Ob
η

(i, j )
ob

· ob(ni ). Softmax η
(i, j )
ob

=
exp(α

(i, j)
ob

)
∑

o0
b
∈Ob

exp(α
(i, j)

o0
b

)
is

utilized to relax architecture parameter α
(i, j )
b into operation

weight ob ∈ Ob. The intermediate node can be denoted as

n j =
∑

i< j õb
(i, j )(ni ). The output node nK−1 is depth-wise

concatenation of all the intermediate nodes excluding the input

nodes.

In the searching stage, cross-entropy loss is utilized for

the training loss Ltrain and validation loss Lval . Network

parameters 8b and architecture parameters αb are learned via

solving the bi-level optimization problem:

min
αb

Lval(8
∗
b(αb), αb),

s.t . 8∗
b(α) = arg min

8b

Ltrain(8b, αb). (6)

When the searching is converged, we derive the final architec-

tures via: 1) setting o
(i, j )
b = arg maxob∈Ob,ob 6=zero η

(i, j )
ob

, and

2) for each intermediate node, choosing two incoming edges

with the two largest values of maxob∈Ob,o 6=zero η
(i, j )
ob

.

2) Stage 2: Searching Lateral Connections for Multi-Rate

Multi-Modal Networks: The lateral connections from most

existing multi-rate [15] or multi-modal [7], [9], [20]

spatio-temporal networks are designed manually, which might

be sub-optimal for information exchange. Here we propose

to search best-suited lateral connections among rate-aware

and modality-aware branches, intending to effectively explore

RGB-D-temporal synergies. In the second stage, our goal

is to search for lateral connections among the multi-rate

and multi-modal branches. As most of the definitions and

the search procedure are similar to those in the first stage,

here we only show the two main differences from the first

stage.

On one hand, the composition of architecture search space

is different. As shown in Fig. 3 (see low-level connections for

example), the lateral connections search space can be repre-

sented as a bidirectional graph of K 0 = 6 nodes (branches)

within the modalities M. Specially, the lateral connections

from the lower frame rate branches to the higher ones are

not considered because we assume that the lower frame rate

branches always have less information than the higher ones.

Thus, there are total 18 edges (lateral connections) inside the

bidirectional graph and each edge consists of the candidate

operations weighted by its corresponding architecture para-

meter αc. The final output of each node is the depth-wise

concatenation of all outputs of the incoming edges.

On the other hand, the design of the operation space is dif-

ferent. The operation space for lateral connections is denoted

as Oc, which consists of two parts: 1) ‘Zero’, ‘Conv_5×1×1’,

‘CDC-T-06_5×1×1’, ‘CDC-TR-03_5×1×1’ with stride =

(4,1,1) for the edges from the high frame rate branches to the

low frame rate branches; and 2) ‘Zero’, ‘Conv_3 × 1 × 1’,

‘CDC-T-06_3×1×1’, ‘CDC-TR-03_3×1×1’ with stride =

(2,1,1) for the others. Specially, stride = 1 is utilized for

edges between the branches of different modalities with same

frame rate. When the search is converged, for each edge (i, j),

only the operation in Oc with the largest α
(i, j )
c is adopted. With

the two-stage multi-rate and multi-modal NAS in Algorithm 1,

both the final backbones and lateral connections are derived.
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Fig. 3. Architecture search space in the second stage. Multi-modal and multi-rate frames are adopted as inputs. Here we utilize 3 branches with different
frame rates for two modalities (RGB and depth), respectively. In this search stage, all cells are initialized with the searched structures in the first stage and
then fixed. The architecture of the low-, mid- and high-level lateral connections to be searched can be shared or unshared.

IV. EXPERIMENTS

In this part, we first give details for benchmark datasets and

experimental setup. Then, we thoroughly evaluate the impacts

of 3D-CDC family, multi-rate configuration, and two-stage

NAS. Finally, we evaluate and compare our results with state-

of-the-art methods on three benchmark datasets.

A. Datasets

We evaluate our method on three widely used RGB-D

gesture datasets: Chalearn IsoGD [2], [25], NVGesture [1] and

EgoGesture [4] datasets. The Chalearn IsoGD dataset [2]

contains 47,933 RGB-D gesture videos divided into 249 kinds

of gestures and is performed by 21 individuals. The dataset

contains 35878 training, 5784 validation, and 6271 testing

samples. We follow the SOTA methods [36], [42], [51] to

evaluate performance on the validation set. The NVGesture

dataset [1] focuses on touchless driver controlling. It contains

1532 dynamic gestures fallen into 25 classes. It includes

1050 samples for training and 482 for testing. The videos are

recorded with three modalities (RGB, depth, and infrared). For

fair evaluations with SOTA methods, infrared modality is not

used in our experiments. The EgoGesture dataset [4] is a

large multi-modal egocentric hand gesture dataset. It contains

24,161 hand gesture clips of 83 classes of gestures, performed

by 50 subjects. Videos in this dataset are captured with an Intel

RealSense SR300 device in RGB-D modalities across multiple

indoor and outdoor scenes.

B. Implementation Details

Our proposed method is implemented with Pytorch. Cell

nodes K = 4 and K 0 = 6 are used as the default setting.

The optical flow is extracted by pyflow [72] - a python

wrapper for dense optical flow [71]. In the search phase,

partial channel connection and edge normalization [57] are

adopted. The initial channel numbers for low, mid, and high

Fig. 4. Impact of 3D-CDC for RGB, depth and optical flow.

frame rate branches are 24, 16, and 8, respectively, which

double after searching. There are 8 cells for each branch in

the search stage, which increases to 12 cells after searching.

SGD optimizer with learning rate lr=1e-2 and weight decay

wd=5e-5 is utilized when training the network weights. The

architecture parameters are trained with Adam optimizer with

lr=6e-4 and wd=1e-3. The lr decays with factor 0.5 in the

20th epoch. We search 30 epochs on the training set of IsoGD

dataset [2] with batch size 20 while architecture parameters

are not updated in the first 10 epochs. Especially, Ltrain is

calculated on the first half of the training set while Lval on

the latter part. The whole two-stage NAS costs 12 days on four

P100s. In the training phase, models are trained with SGD

optimizer with initial lr=1e-2 and wd=5e-5. The lr decays

with factor 0.1 when the validation accuracy has not improved

within 3 epochs. Random horizontal flip and spatial crops are

utilized for data augmentation. We train models with batch

size 12 for maximum 80 epochs on four RTX-2080Ti GPUs.

C. Ablation Study

All ablation studies are trained from scratch and evaluated

on the validation set of the IsoGD dataset.
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Fig. 5. The ablation study of the multi-rate networks. ‘8 + 16 + 32
frames’ means that there are three branches with different frame rate (i.e.,
temporally downsampling to 8, 16 and 32 frames, respectively) as inputs.
‘CDC-T_0.6_RGB’ and ‘CDC-TR_0.3_Depth’ denotes using 3D-CDC-T with
θ = 0.6 for RGB inputs and 3D-CDC-TR with θ = 0.3 for depth inputs,
respectively.

1) Impact of 3D-CDC for Modalities: In these experi-

ments, we use C3D [34] as the backbone and sequence size

3 × 16 × 112 × 112 as the inputs. According to Eq. (3), (4)

and (5), θ controls the contribution of the temporal difference

cues. As illustrated in Fig. 4, 3D-CDC-T improves the accu-

racy of RGB modality dramatically. Compared with vanilla

3D convolution (i.e., θ = 0), 3D-CDC-T gains 7.3% when

θ = 0.6, which indicates the advantages of temporal difference

context. One highlight is that, assembled with 3D-CDC-T,

the RGB modality is able to obtain comparable accuracy

(44.06% vs. 47.02%) with optical flow modality, indicating an

excellent dynamic modeling capacity of 3D-CDC-T. In terms

of the depth and optical flow modalities, the best performance

(42.86% and 52%) could be achieved when using 3D-CDC-TR

with θ = 0.3 and θ = 0.4, respectively. Compared with

3D-CDC-T, 3D-CDC-TR is more robust for depth and opti-

cal flow modalities because it alleviates sensor noises and

pre-processing artifacts between frames in these two modali-

ties. By the observation, the 3D-CDC-ST performs relatively

poorly. The reason might be that the gesture recognition task

prefers more temporal reasoning context than spatial gradient

cues and appearance details. According to their enhanced

temporal representation abilities, 3D-CDC-T with θ = 0.6

and 3D-CDC-TR with θ = 0.3 are considered in our NAS

operation space.

2) Impact of Multi-Rate Branches: As gestures have various

temporal scales, modeling such visual tempos of different ges-

tures facilitates their recognition. Here we conduct the ablation

study with C3D [34] network to explore how the branches with

different frame rates influence the gesture recognition task.

As illustrated in Fig. 5, for the single rate network, the higher

the frame rate it has, the better performance it will be. This is

because a higher frame rate usually has less sampling temporal

information loss, which has richer fine-grained temporal cues

for gesture recognition. Furthermore, we could find that the

TABLE I

COMPARISON AMONG VARIOUS CONFIGURATIONS OF THE TWO-STAGE

NAS FOR VARIED MODALITIES. THE UPPER PART IS ABOUT THE

FIRST STAGE NAS1 WHILE BOTTOM PART IS ABOUT THE SECOND

STAGE NAS2. THE EVALUATION METRIC IS ACCURACY (%)

performance could be further improved when cooperated with

the multi-rate branches (e.g., ‘16 + 32 frames’ and ‘8 +

16 + 32 frames’). In terms of the impact of multi-rate

branches for different modalities, it is obvious that multi-rate

branches contribute more to RGB than depth modality. When

assembling with 3D-CDC-T for RGB or 3D-CDC-TR for

depth, the trends of multi-rate networks are analogous as the

vanilla cases but achieving holistic performance gains (due to

the excellent representation capacity of 3D-CDC).

We also reimplement SlowFast [15] Networks (trained from

scratch) with ‘8 + 32 frames’ multi-rate setting on the IsoGD

dataset. However, it only achieves respective 22.28% and

40.69% accuracy on RGB and depth inputs, which indicates

the importance of suitable architecture design for multi-rate

networks in the gesture recognition task.

3) Effectiveness of the Two-Stage NAS: Based on the best

multi-rate setting (‘8 + 16 + 32 frames’), we study the

two-stage NAS for both single and multiple modalities. The

first stage NAS (NAS1) intends to find well-suited multi-rate

single-modal networks. As illustrated in Tab. I, when searching

over the vanilla search space w/o CDC, the architectures found

by NAS1 improve 0.79% and 0.47% accuracy (compared

with multi-rate C3D) for RGB and depth inputs, respectively.

Moreover, the gains consistently occur when searching over

3D-CDC based search space for both RGB (+1.12%) and

depth (+0.8%) modalities.

Based on the searched multi-rate networks for RGB and

depth modalities, ‘NAS2_Fixed’ utilizes late fusion directly

without searching the lateral connections between two modal-

ities. Out of expectation, it performs even worse than the

single-modal NAS1 searched models. It means that simply

late fusion will encounter the problem of insufficient informa-

tion exchange in feature levels. With the second stage NAS

(NAS2), ‘NAS2_Unshared’ achieves more than 50% accuracy,

which indicates the advantages of NAS that mines the efficient

integration of multi-rate and multi-modal branches. Further-

more, compared with ‘NAS2_Shared’ searching the shared

lateral connections for low-mid-high levels, ‘NAS2_Unshared’

performs better (+3.74%), which implies the importance of the

specific design for interactions of each level.
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TABLE II

RESULTS ON THE VALIDATION SET OF ISOGD [2]

D. Comparison With State-of-the-Art Methods

After studying the components in Sec. IV-C, we evaluate

our models on three benchmark datasets. Note that in this

subsection, our models are firstly pre-trained on the Jester [78]

gesture dataset, which is similar to [36], [51], [79].

1) Results on IsoGD: As shown in Table II, although

the existing methods [8], [11], [51] adopt 3DCNNs to learn

from single RGB or depth modality, it is still challenging

to represent the discriminative and robust spatio-temporal

features with vanilla 3D convolutions and coarsely designed

architecture. With the enhanced temporal representation capac-

ity via 3D-CDC and multi-rate collaboration, our proposed

multi-rate single-modal NAS method ‘NAS1’ obtains the best

accuracy on every single modality. This exactly demonstrates

the superiority of the searched architecture. In terms of

the RGB-D gesture recognition, our searched architecture

with two-stage NAS (NAS2) obtains more than 1% and 4%

accuracy gains compared with the ‘NAS1’ with RGB and

Depth modality, respectively. It demonstrates the effective-

ness of RGB-D-temporal synergies at earlier stages. Similar

to [36] ensembling the results from varied modalities, our

‘NAS1+NAS2’ boosts the accuracy to 65.54%.

To evaluate the modality generalization of the architecture

searched from RGB-D, we retrain the same model ‘NAS2’

with RGB-Flow and Flow-Depth modalities separately and

TABLE III

RESULTS ON THE NVGESTURE [1] DATASET

also achieve comparable performance (61.22% and 62.47%,

respectively). To our best knowledge, it is the first to explore

the modality generalization issues for multi-modal NAS.

We also compare with other multi-modal NAS-based archi-

tectures Assemblenet [24] and Assemblenet++ [77], which

are initially designed for RGB-Flow based action recog-

nition. Due to the task gap between action and gesture

recognition, Assemblenet and Assemblenet++ perform poorly

(53.3% and 54.7%, respectively) in RGB-Flow gesture recog-

nition on IsoGD dataset. In terms of modality generalization,

Assemblenet and Assemblenet++ achieve 52.0% and 53.6%

accuracy on Flow-Depth modalities, indicating the moderate

transferability of the architectures. In contrast, our proposed

multimodal NAS2 (searched on RGB-D) could generalize

well on both RGB-Flow (61.22%) and Flow-Depth (62.47%),

which further demonstrates the excellent transferability of our

method.

Finally, the best accuracy (66.23%) could be achieved when

ensembling the scores from all three ‘NAS2’ models among

RGB-D-Flow modalities. Although the FOANet [42] reports

the best performance (80.96%) on IsoGD, the high accuracy is

achieved by fusing 12 channels (i.e., global/left/right channels

for four modalities) with manual hand detection. Note that

without hand detection preprocessing, our ‘NAS2_all’ outper-

forms FOANet (66.23% vs. 61.4%) by a large margin using

only RGB-D-Flow modalities. This exactly demonstrates the

superiority of our searched architectures.
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Fig. 6. The confusion matrices obtained by comparing the ground-truth labels
and the predicted labels from the NAS1 and NAS2 networks trained on the
NVGesture dataset. Best seen on the computer, in color and zoomed in.

TABLE IV

RESULTS ON THE EGOGESTURE [84] DATASET

2) Results on NVGesture: Table III compares the perfor-

mance of our method with SOTA methods on the NVGesture

dataset. It can be seen that our approach performs the best for

both single-modal and multi-modal testing, which indicates

1) our searched architecture is able to represent discrimina-

tive spatio-temporal features for single/multi-modal gesture

recognition; and 2) the architecture searched on the source

dataset (IsoGD) via the proposed two-stage NAS transfers well

on the target dataset (NVGesture), demonstrating the excellent

generalization ability of the proposed NAS method.

Fig. 6 evaluates the coherence between the predicted labels

from the searched ‘NAS1’ and ‘NAS2’ architectures, and

the ground truths on the NVGesture dataset. The coherence

is calculated by their confusion matrices. We observe that

with RGB-D-temporal synergies, ‘NAS2’ has less confusion

between the input classes and provides generally a more

diagonalized confusion matrix. This improvement is better

observed in the first three and last six classes.

TABLE V

RESULTS ON THE RGB-D ACTION RECOGNITION DATASET

THU-READ [84] WITH THE CROSS-SUBJECT PROTOCOL. THE

ARCHITECTURES OF ‘NAS1’ AND ‘NAS2’ ARE SEARCHED ON

ISOGD AND THEN RETRAINED/EVALUATED ON THU-READ

Fig. 7. Impacts of the 3D-CDC family on two benchmark action recognition
datasets (a) UCF101 [89], and (b) HMDB51 [90]. We use 3D-ResNet18 [35]
as the backbone and sequence size 3 × 16 × 112 × 112 as the inputs. All
experiments are trained from scratch for fair comparison.

3) Results on EgoGesture: We also evaluate the robust-

ness of our searched architectures on egocentric (first-person

view) gesture recognition. Compared with the third-person

view gesture recognition, the main challenges include the

complex scene background and motion blurriness caused by

the subject walking. It can be seen in Table IV that our

approach achieves the best performance (‘NAS2’ with 94.38%

and ‘NAS1+NAS2’ with 95.52%) on the EgoGesture dataset

using RGB-D modalities, which indicates the strong general-

ization ability of the proposed 3D-CDC and two-stage NAS
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Fig. 8. The searched architecture from (a) the first stage NAS, and (b) the second stage NAS. The three rows in (a) represent the searched cell structure in
the low, mid, and high frame branches, respectively.

method. Note that ResNeXt-101 [79] needs an extra detector to

capture the key segments for preprocessing. As our proposed

multi-rate and multi-modal network recognizes the gesture on

original video clips directly, the performance might be further

boosted with the gesture detector.

V. DISCUSSION AND VISUALIZATION

In this section, we first discuss the transferability of the

proposed two-stage NAS and 3D-CDC on action recognition

task, which is interesting and necessary because it exists

task-oriented biases (gesture recognition is less relied on the
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Fig. 9. Features visualization from C3D assembled with varied convolutions on the IsoGD dataset. With (a) RGB and (b) Depth modality inputs, the four
rows represent the neural activation with 3D vanilla convolution, 3D-CDC-ST, 3D-CDC-T, and 3D-CDC-TR, respectively. Best view when zoom in.

scene but more related to the fine-grained temporal cues when

compared with the action recognition). Then, we give the

visualization of the searched architecture and feature response.

A. Task Transferability

1) Generalization to RGB-D Action Recognition: In order

to validate the generalization ability of our 3D-CDC based

two-stage NAS, we transfer the searched architecture (‘NAS1’

and ‘NAS2’) to another multi-modal video understanding task,

i.e., RGB-D action recognition. Here one of the largest RGB-D

egocentric dataset THU-READ [84] is used for experiments.

It consists of 40 different actions and 1920 videos. We adopt

the released leave-one-split-out protocol. For fair comparison,

C3D [34], SlowFast [15], ‘NAS1’, and ‘NAS2’ are pre-trained

on Jester gesture dataset. Table V compares the performance

of our method with SOTA methods on THU-READ. It can be

seen that our approach outperforms the mainstream 3DCNNs

(e.g., C3D [34] and SlowFast [15]) with a convincing margin,

indicating that the architecture searched on the source task

(gesture recognition) could be generalized well on the target

video understanding task (e.g., action recognition).

2) Impact of 3D-CDC for RGB Action Recognition: Here

we explore the effectiveness of 3D-CDC for scene-based

action recognition tasks. Fig. 7 illustrates the results of

two classical scene-related action datasets (UCF101 [89]

and HMDB51 [90]). It is obvious that compared with the

3D vanilla convolution (θ = 0), 3D-CDC-ST improves

the performance dramatically in both datasets (+3% for

UCF101 when θ = 0.6 and +2.1% for HMDB51 when

θ = 0.4, 0.6, 0.8). The reason might be twofold. On one hand,
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TABLE VI

COMPUTATIONAL COMPLEXITY OF THE SEARCHED ARCHITECTURES ON A

SINGLE GEFORCE RTX 2080 TI GPU. THE INPUT TENSOR SIZES FOR

NAS1 AND NAS2 ARE 3 × 32 × 112 × 112 AND 6 × 32 × 112 × 112,
RESPECTIVELY

an enhanced spatio-temporal context is helpful to represent

scene-aware appearance and motions. On the other hand,

the spatio-temporal difference term can be regarded as a

regularization term to alleviate overfitting. Another highlight is

that, without extra parameters, 3D-ResNet18 assembled with

3D-CDC-ST outperforms that with Spatio-Temporal Channel

Correlation (STC) Block [38] by +2.1% on UCF101 split 1.

In contrast, 3D-CDC-T performs the worst because of its weak

spatial context representation capacity and vulnerability to the

scene noises, which are vital in these two scene-aware datasets.

B. Visualization of the Searched Architecture

Fig. 8 shows the searched cells and lateral connections with

the proposed two-stage NAS. It can be seen from Fig. 8(a)

that there are more ‘CDC-T-06’ based operators in all three

RGB branches while more ‘CDC-TR-03’ based operators in

the depth branches. This consists with the observations in

our ablation study of ‘Impact of 3D-CDC for Modalities’ in

Section 4.1. In Fig. 8(b), it is interesting to find that the

lower-level lateral connections are sparser (i.e., with more

‘Zero’ operators) and the high-level lateral connections have

more learnable operators (i.e., convolution operators). This

might inspire the video understanding community to design

more reasonable multi-modal networks in the future.

C. Feature Visualization

The neural activation (before Pool3 in C3D) are visu-

alized in Fig. 9. It can be seen from Fig. 9(a) that the

proposed 3D-CDC-ST, 3D-CDC-T, and 3D-CDC-TR enhance

the spatio-temporal representation and enforce the model to

focus more on the trajectories of arms and hands. As for the

depth modality shown in Fig. 9(b), all the convolutions are able

to make the accurate attention on the movements from arms

and hands due to the benefits from the foregrounds provided by

the depth inputs. Despite more robust representation achieved

by the 3D-CDC family, the interferences from the sensor-based

noise and undesirable movements (e.g., head and hair) still

occur. Thus, it is necessary to explore RGB-D-temporal syn-

ergies to overcome such limitation.

D. Model Size and Computational Cost

Table VI displays the model size and computational cost &

runtime of the searched architectures. Compared with the RGB

modality (the first row of Table VI), the searched architecture

on Depth modality (the second row of Table VI) is more

lightweight and efficient, and has only about 85% model size

as well as computational cost & runtime. It is reasonable as the

information hidden in depth modality is relatively sparser and

less than the RGB modality with full color channels. Both

NAS1 and NAS2 models could be performed less than half

a second on a signle RTX 2080 Ti GPU with the input sizes

3 × 32 × 112 × 112 and 6 × 32 × 112 × 112, respectively.

Despite with state-of-the-art performance, the searched archi-

tectures are large and inefficient, which limits the real-world

applications in gesture recognition. Thus, our future work is

to search more efficient mobile-level architectures with more

compact 3D-CDC search space and size/latency regularization.

VI. CONCLUSION

We present a novel 3D convolution family called 3D-CDC

for enhancing the spatio-temporal representation for video

understanding tasks. Over the 3D-CDC search space, we pro-

pose a two-stage NAS method to discover well-suited

multi-rate and multi-modal networks with RGB-D-temporal

synergies. Extensive experiments show the effectiveness of our

method. Future directions include: 1) exploring 3D-CDC fam-

ily on other video understanding tasks (e.g., temporal local-

ization); 2) searching temporal synergies with more modalities

(e.g., audio and skeleton).
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