
Searching Off-line Arabic Documents

Jim Chan
jdchan@gmail.com

Celal Ziftci
cziftci@uiuc.edu

University of Illinois
201 N. Goodwin Ave, Urbana, IL 61801

David Forsyth
daf@uiuc.edu

Abstract

Currently an abundance of historical manuscripts, jour-
nals, and scientific notes remain largely unaccessible in li-
brary archives. Manual transcription and publication of
such documents is unlikely, and automatic transcription
with high enough accuracy to support a traditional text
search is difficult. In this work we describe a lexicon-free
system for performing text queries on off-line printed and
handwritten Arabic documents. Our segmentation-based
approach utilizes gHMMs with a bigram letter transition
model, and KPCA/LDA for letter discrimination. The seg-
mentation stage is integrated with inference. We show that
our method is robust to varying letter forms, ligatures, and
overlaps. Additionally, we find that ignoring letters beyond
the adjoining neighbors has little effect on inference and
localization, which leads to a significant performance in-
crease over standard dynamic programming. Finally, we
discuss an extension to perform batch searches of large
word lists for indexing purposes.

1. Introduction

Offline handwriting recognition is a traditional topic in
computer vision, with a revived interest as improved learn-
ing methods become available [6, 12, 3]. However, some
writing systems, such as Arabic, present major challenges
for handwriting recognition. There is a small body of work
[1], but few involving large datasets or vocabularies. Pech-
witz and Maergner [11] introduce a fairly extensive form
database, but the majority of it is used as supervised training
data. We describe a system to search printed and handwrit-
ten Arabic documents using relatively little training data,
whose performance is comparable to modern searches of
carefully handwritten Roman letters.

1.1. Why Arabic is hard

The written Arabic system used today evolved from a
dialect of Aramaic, which had fewer phonemes than Ara-
bic. The original letter forms adopted from the Aramaic

language had to represent 28 different sounds using only
15 characters. Eventually, additional letters were formed
by adding dots above and below existing letters to disam-
biguate the script; several characters thus differ by a single
dot, making discrimination hard. Additionally, Arabic is
a consonantal writing system where vowels are frequently
omitted; the reader must have some understanding of the
language to restore them. In vocalized or sacred texts, dia-
critics - small marks indicating short vowels, are added to
facilitate pronunciation of the word, and can be confused
with dots, posing another barrier to recognition.

Additionally, Arabic letters change form based on their
position in a word. Almost all letters can appear in 4 differ-
ent forms: initial, medial, final, or isolated. The differences
between forms are generally quite dramatic. (Fig. 1 inset)

Writers frequently elongate characters for aesthetic rea-
sons or to justify text. These elongations appear as ex-
tensions of the baseline between characters, or lengthening
of hooks, often creating vertical overlaps with neighboring
characters. Many letter combinations form ligatures, chang-
ing their appearance completely. The dots which are neces-
sary for discrimination in transcription frequently end up
above neighboring letters, an artifact of fast writing. (Fig 1)

2. Preprocessing

The manuscript pages were first converted to gray-scale
and inverted so that the background value was close to 0,
and thresholded to remove background noise. The images
were then roughly cropped to remove margins, etc. Pages
were scanned carefully enough such that a rough cropping
could be achieved using the same rectangular regions for
every image. The cropped images were then rectified to cor-
rect for page skew; details in Section 2.1. After de-skewing,
each page was segmented into a series of lines. During this
stage, overlaps and diacritical marks were removed; details
in Section 2.2.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Figure 1. Difficult features in handwritten Arabic. A) 4 characters which have been written in such a way as to be nearly impossible to
segment (see detail on far left) B) dot association is not clear; they belong to the , but end up underneath the . C) the small stub in front
of the vertical is in fact the letter . D) forms a ligature with , ’ ’. Note also the overlaps caused by the hook of the . E) gives an
example of stylistic elongation of letters. F) two different forms of . They are the exact same word, except written completely differently.
Table Inset: Letters in Arabic have up to 4 different forms, depending on the position in the word. Note that the appearance of a letter can
change quite drastically, and the difference between two completely different letters can be as subtle as a single dot. Far Right: Different
forms of the word , note in the top version it is connected to another word.

2.1. Page Rectification

If we project ink pixels onto the y-axis, pages with no
skew will yield row sums of lowest entropy. Any rotation
of the lines will scatter the pixel densities into the gaps, in-
creasing the entropy of the confi guration. Thus, we com-
pute the entropy at various angles using a golden section
search between -5 and 5 degrees; each iteration searches
over the subregion with minimum entropy until the angular
search range is within ε = .01 degrees.

2.2. Diacritics, Overlaps, and Line Segmentation

Diacritical vowel marks proved to be a nuisance in ini-
tial printed experiments because they drastically altered the
appearance of letters in our system. The discussion in Sec-
tion 3.3 and Fig. 6 explain why this occurs. Since Arabic
is a consonantal language, we simplifi ed the printed text by
removing the diacritics; this was done by binarizing the im-
age, then thresholding connected components within some
size and orientation range. Orientation is measured by pixel
height-to-width ratio. This technique was not used in our
handwritten experiments because the document rarely used
diacritics.

The handwritten data has the additional nuisance of
hooks frequently overlapping underneath neighboring let-
ters, several instances of which can be seen in Fig. 2. We
correct this in most cases by ensuring that bounding boxes
of connected components do not overlap. The algorithm is
as follows:

Binarize the image, compute the connected components,
and their bounding boxes. Then scanning from right to left,
check for intersecting bounding boxes, if they overlap, shift
all components after the fi rst bounding box left until the
overlap is removed. Note that the binarized image is only
used to fi nd the bounding box of the components. Shifts are
performed in the original image.

Figure 2. Hooks overlapping neighboring letters can cause dra-
matic changes in appearance when rectifi ed. In many instances,
such overlaps can be removed quite easily by ensuring the bound-
ing boxes of connected components do not overlap.

Example output can be seen in Fig. 2

The line fi nder and overlap removal are conveniently in-
tegrated. To segment the lines, we compute the centroid
of each bounding box as (x, y), where x is the horizontal
geometric center, and y is the average baseline height in
the box. The centroids are projected onto the y-axis and
clustered to associate the bounding boxes into line clusters.
We opted to take this approach because segmentation using
straight lines produced poor results due to wavy writing.
This method produced satisfactory segmentations: out of
the 420 lines segmented for the handwritten experiments,
9 lines exhibited small errors due to excessive descenders
connecting to the line below. The errors typically only in-
volve a single character per line, so they did not have sig-
nifi cant affect on overall search performance.

3. Modeling Ink

Several recent and earlier works choose to model ink at
the word level [8, 2, 7] by directly computing P (W |I), the
likelihood of word W given a segment of ink I . It has been
shown that word spotting techniques can do quite well at
recognizing entire words even when some of the letters are
ambiguous[8]. We modeled words at the letter level, where

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Figure 3. Examples of the data. Left: A page from the manuscript Kitab fi ’l-fi qh (); note the writing in the margins.
Top: Sample handwritten lines; note that it is not possible to fi nd word boundaries with conventional methods. Note also the words written
underneath others. Bottom: Sample printed lines from the Qur’an; diacritics and verse markers can be seen.

the likelihood of a word given a segment of ink is:

P (W |I) = P (l0) · max
α0

{P (l0|I(0,α0)) · P (α0|l0)}·
∏

li∈W

max
αi

{P (li|I(si,si+αi)) · P (αi|li)}·

∏

li∈W

P (li|li−1)

(1)
where the li’s are the letters and α’s are the possible column
widths of the letter, and si is defi ned assi =

∑i−1
j=0 αj .

The closed vocabulary implied by word spotting is in-
convenient for highly inflected languages such as Arabic.
Word frequencies obey the power law: the vast majority
of words have extremely low frequencies, making it diffi -
cult to fi nd examples of them. In contrast, letter frequencies
are far more uniform, making language modeling easier and
more robust (in terms of estimation), training examples are
easier to obtain, and we reduce the number of classes to
discriminate among drastically. Finally, note in Fig. 3 that
whitespace reveals little information about word boundaries
in handwritten Arabic, which would be troublesome to seg-
mentation stages used in works such as [8].

In our approach, the segmentation stage is completely
integrated with recognition. The line is divided into small,
uniform columns, which are then grouped during inference
to form the correct transcription. Thin letters such as ’ ’
are composed of 2-4 columns, whereas letters like ’ ’ are
composed of 12-17 columns. The only parameters that
need specifi cation are the width of the columns in pixels
(chosen such that most letters span 15 columns), and a sin-
gle σ that governs the column width variance for each let-
ter. Transcription/search performance is fairly insensitive
to these parameters; they serve only to optimize the size of
the search space. We will see that it is also possible to take
advantage of the local independence of the ink to further
reduce the search space.

3.1. HMM Structure

Inference is performed using an HMM, in which each
of the hidden states can transition across multiple columns.
The HMM structure is quite similar to the gHMM used

in Edwards [6]. Each state is labeled as a triplet, (b, e, c),
where b and e are the column indices, and c is hidden char-
acter variable. Each state thus infers a single character at
a given position and width in the line. Paths through this
trellis structure will yield sequences of triplets, which give
possible transcriptions of the line.

The structure of the HMM can be seen in Fig. 4. An ex-
aggerated line of ink is given at the top. Notice that the line
is segmented into equal sized columns of ink. Just below,
we have a condensed version of our HMM. Each circle in
this condensed drawing actually represents |α| · |C| states,
where |α| is the number of possible widths (in columns)
which can be emitted per time step, and |C| is the cardi-
nality of the alphabet. Here, |α| = 3 - in our implementa-
tion |α| is roughly between 8 for letters with little horizontal
variation, to 12 for letters with long hooks for example. The
range of widths here is [1, 3], meaning the states can tran-
sition 1, 2, or 3 states in the future. In our actual model,
the ranges are typically [5, 15] (|α| = 11), meaning it is
possible to move between 5 and 15 columns forward.

In the fi gure, transitions leaving each state are a different
shade of grey, depending on how many columns of ink the
state emits. This can be seen more clearly in the expanded
version at the bottom (C). The fi rst row of states all emit a
single column, the second row two columns, and the third
row three. The hidden variable at any state in the expanded
view is the character, C. Thus, each column of states has
|α| · |C| possible triplets.

3.2. Transitions

The letter transitions correspond to P (li|li−1) in Equa-
tion 1. The transition matrix has a banded structure, as most
transitions have zero probability (cannot go from state (1, 2)
to (4, 5)). The non-zero entries in the matrix are composed
of the bigram probabilities computed between each letter
pair in the alphabet. Simple additive smoothing was used,
since letter bigrams are relatively abundant.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

1 2 3 4 5 6

(1,4,)

(4,5,)

(5,7,)

7

1 2 3 4 5 6 7

A

B

C

Figure 4. A diagram of the HMM structure. Note that transitions
span multiple columns, and each small circle in the expanded view
(bottom) represents |C| possible letters in the alphabet. We can
obtain both the segmentation and the transcription simultaneously
using dynamic programming on this trellis. The bold path gives
the segmentation and transcription.

3.3. Emissions

At every state in the HMM, we compute
P (li|I(si,si+αi)) using a nearest neighbors discrimi-
native model. From previous experiments, it was found
that simple nearest neighbors in the original image space
was not good enough to discriminate between letter
classes reliably. Instead, we project bits of ink into a high
dimensional non-linear space using kernelized principle
components analysis (KPCA) [13], followed by linear
discriminant analysis (LDA) [4] to fi nd a discriminative
subspace. Auxiliary features such as height, width, and
relative baseline offset are thrown in between the KPCA
and LDA stages. The Mahalanobis distance metric is
used to account for non-uniform scatter. Fig. 5 shows the
process of converting ink into a feature vector.

Vertical bounds of the ink are fi rst computed by fi nd-
ing the fi rst and last zeros of the second derivative of the
row sums. The cropped ink is then resized into a 20 × 20
grayscale image. Horizontal and vertical pixel differentials
are computed. The resulting positive and negative pixels are
separated into two channels and normalized so their values
range between [0, 255]. The original image is then aug-
mented with these fi ltered copies. Next, the input vector
is transformed into feature space via KPCA using a gaus-
sian kernel. After projection into feature space, auxiliary
features such as bounding box height and width, and rel-
ative baseline height are appended. Baseline is computed
similarly to [14], except regression fi tted to a 4th degree
polynomial to account for waviness in the scribe’s writing.
Finally, LDA is used to project the resulting vector to a more

KPCA

Aux Features:

Character Height/Width

Vertical Baseline Offset

LDA

Inkline Input

Output

(Discriminant Space)

Figure 5. Given a column of ink, we compute the vertical bounds
via row sum derivatives and rectify the resulting region to a 20×20

square. Directional fi lters are then applied to create the feature
vector in image space. After projecting the vector to a lower di-
mensional space, extra features computed from previous stages are
added in. LDA is then used to further project the vector down to
the most discriminative subspace.

Figure 6. Left: The presence or absence of dots can change the ap-
pearance of the ink quite drastically after rectifi cation. This helps
when discriminating between characters with dots and those with-
out, but can also be a drawback when the dots are missing or writ-
ten in the wrong place. Right: As mentioned earlier, removing
overlaps is quite important as they can have large effects on recti-
fi cation.

discriminative subspace.
The KPCA/LDA module is trained using manually ex-

tracted templates. Each letter class is estimated as a gaus-
sian in discriminant space. Training the discriminant model
is just a matter of building the kernel and linear discriminant
transformations, and estimating the gaussian by computing
the class means and variances after the templates have been
projected. Since most classes have fewer than 10 training
examples, it is not feasible to estimate the variance of each
class - thus a single estimate is used for all classes.

New ink is converted into discriminant space using the
previously computed transformations. We compute the un-
normalized score di as the Maholonobis distance plus the
log of the prior:

di(x) = −
1

2
(x − μi)

tΣ−1(x − μi) + lnP (li) (2)

4. Transcription

Transcription is performed using the viterbi algorithm.
While producing a high quality transcription is not a main
goal of this work, this simple method produces a good

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Figure 7. DP structure for searching. Many of these edges can be
removed if we perform a beam search with one-character looka-
head.

enough approximate transcription so that we can localize
search results properly. This is discussed in Section 5.

We implemented a few optimizations: for each time step
t, we prune all states that are not within some threshold of
the maximum likelihood state at t. Additionally, every time
we propagate partial probabilities forward, we will loop
over all |α| · |C| outgoing edges. We can prune the number
of outgoing edges by limiting the range of widths for each
letter as discussed earlier. The range of widths for each let-
ter is determined from the training examples by taking all
column widths within 1 stdev. of the mean.

5. Search

Search involves examining all confi gurations of the word
at all positions t. The number of confi gurations is exponen-
tial with the length of the word, but we can use dynamic pro-
gramming to reduce the complexity to O(|α| · |W |3) states,
where |W | is the number of characters in the search term.
Fig. 7 gives an illustration of how search is performed for
the word. There are a few things to note about this fi gure:

The ’fbg’ token represents the sequence generated by the
transcription model up to time t. If the path chosen goes
through the states

a

,
b
,

c
, the token ’bbg’ represents the

sequence given by the transcription model from time t+a+
b + c to the end of the line.

The 3 columns have different subscripts which denote
the different set of width ranges. |α| is not necessarily the
same for each letter, since some letters have more horizontal
variance than others. The letter ’ ’, for example, is a single
vertical stroke, and thus has little variation.

The most likely position of the word in the line will be
given by the path that maximizes sum of the partials at ’fbg’,
’bbg’, and the partial from the traversal through the interme-
diary states.

We should note that ’fbg’ and ’bbg’ are only used to lo-
calize the search term; the score used for ranking the lines
will be determined purely from the local emission and bi-
gram transitions through the intermediary states.

We can in fact do better than DP by utilizing a beam
search. It is important to realize that a completely greedy
search with no look-ahead will fail. Ligatures and abnor-
mal letter forms causing non-optimal letter boundaries at
any point will cause all subsequent letters to localize incor-
rectly. By taking maximum likelihood bigrams, however,
we can always fi nd the optimal letter boundaries. The left
boundary is assumed to be optimally determined by con-
struction. Consider now the bigram formed by the current
character and the one directly following. If we have a strong
model for at least one of the characters, then the boundary
can be established reliably. If both are poor, then even if
we search exhaustively we would not be able to fi nd a bet-
ter boundary between these two letters. Note that the fi rst
and last boundaries are formed by pairing the forward par-
tial at the end of ’fbg’ and the fi rst character, and the back-
ward partial at the beginning of ’bbg’ with the last character.
Since we have to look at all combinations of widths for each
bigram, we come up with the complexity of O(|α| · |W |2).

We build a trie structure to represent the words, and keep
the current score and position at each node. At terminal
nodes, we also keep the current best score and word confi g-
uration. Traversing the trie at each time step will search all
words simultaneously. Using this extension we were able
to search word lists with tens of thousands of words, which
can be used to support indexing or possibly transcription by
search.

6. Results

While ideally we would like to have high performance
transcription, in our view it is not always as useful as a high
performance search, especially if we are dealing with large
quantities of low-value documents. We show in the follow-
ing results that even with relatively low quality transcrip-
tions, we can still achieve very good search results using
little training data.

6.1. Printed Arabic

The fi rst dataset we tried as a printed copy of the Qur’an
that was generated using computer fonts. This dataset has
little to no variation between different instances of letters,
so it was a reasonable starting point before trying handwrit-
ten datasets. We used simple template matching to fi nd the
verse markers in the data so we could align the images with
an electronic copy of the Qur’an. We ran the thresholding
mechanism described in Section 2.2 to remove diacritics to
reduce the number of appearances for each letter.

To train our emission model, we took a few verses and
segmented them by hand using a custom GUI tool designed
for this purpose. There are 100 different types of letters
that we had to search for, several of which are quite in-
frequent. In addition to the hand segmented examples, we

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Figure 8. Printed Arabic Search Results on the 250 most com-
mon words. The results for ranking of 350 lines are given. The
search words are sorted along the y-axis by the number of times
they actually occur in the test corpus. The lines are sorted by their
search score along the x axis. A black pixel indicates the given
search term actually appears in the given line, white otherwise. An
ideal search would result in an image where all the black pixels are
packed to the left.

cut out templates from an image of the Arabic alphabet to
cover the letters which we did not easily fi nd in the text.
The fonts used in the text and the alphabet image are not
the same, but our hope is that they are close enough that
they serve as a good enough approximation. This also adds
some more variance to our samples. It seems especially rea-
sonable since the letters which we could not fi nd occur so
infrequently that they would rarely affect our search results.

Letter classes with less than 6 examples were augmented
with a set of artifi cially jittered copies. Jittered examples
were created by performing small rotations and shifts, and
adding gaussian noise to the copies of the original exam-
ples. The size of the fi nal kernel matrix was1423 × 1434.

The bigram probabilities were computed from a text with
around 400, 000 characters. The model was then adjusted
to retain zero probability transitions between impossible bi-
grams, and to accommodate transitions to a special token
which denoted character elongations. Essentially, the tran-
sition to this special token had a probability of 1 for medial
and fi nal characters and 0 for everything else, so we relied
completely on image cues to transition to this state. The cor-
responding unicode characters which represent these elon-
gations in the ground truth were deleted before evaluating
transcription performance.

We arbitrarily chose 350 verses from the Qur’an to
perform our experiments on. All diacritic symbols were
deleted from the ground truth. The Unicode standard does
not encode the form of the characters (ie, medial, isolated,
etc), thus a fi nite state machine was used to reconstruct this
information in the ground truth.

The initial results for printed Arabic were quite strong.
Transcription accuracy was 88.1%, which was surprising
given the simplicity of our language model. Studies on cur-
rent Arabic OCR [10] has shown that leading commercial
products achieve a performance of about 87−90% for most
printed documents. Unfortunately, we didn’t have access to
such systems to make a true comparison.

There are a few things which could be done to improve
this score. As mentioned in Section 2.2, the removal of dia-
critics make discrimination easier. The diacritical form of
was removed during this preprocessing, however they were
represented using the standard in the downloaded text. The
notation difference accounts for up to 2% of edit errors.

The biggest failure during transcription was the inability
to deal with the compulsory ligature ’ ’. These ligatures
account for nearly 3.4% of the characters, and since in this
initial experiment we had no templates for them, we were
pretty much guaranteed to make mistakes on them. In our
handwritten experiments, we built models for common lig-
atures as well because they were even more pervasive.

Fig. 8 shows search results for the 250 most common
words in the 350 lines used to test transcription and search.
Precision and recall plots can be found in Fig. 9 for selected
words. In this experiment we had no model for ligatures,
even obligatory ones like ’ ’, which affects results for both
search and transcription (see Fig. 9 for more detail). An-
other factor which affected our search was that, unlike in
transcription, we did not implement anything to take stylis-
tic elogations into consideration. In Fig. 10, we give the top
4 results returned, along with the last 4 true positives, which
reveals that this phenomenon caused the low rankings.

6.2. Handwritten Arabic

We were not able to fi nd handwritten copies of the
Qu’ran that were not either written so carefully as to look
printed, or written in an overly decorative style. Instead, we
chose 20 pages from Kitab fi ’l-fi qh(),
a 12th century document on Islamic Jurisprudence, found
at Jafet [9]. It should be noted that our document, as typ-
ical of ancient manuscripts, was still fairly carefully writ-
ten. However, as one can see in fi gures 1 and 3, the data is
certainly not without irregularities or variation. Templates
were extracted from various regions of the 420 segmented
lines to train the emission model. In all, 878 letter samples
were used for training. The 420 transcribed lines contain
21,776 characters. Jittered templates were not used in this
experiment because the method we used in the printed ex-
periments seemed to be too mechanical to model the varia-
tion in the hand of a scribe. A more sophisticated jittering
model may be worth investigating, however, because from
the previous experiment it proved to be a cheap method of
extending the training set.

As mentioned earlier, the previous experiment made it

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

Figure 9. : Precision Recall for selected Arabic words (printed). On the left are the search results for selected Arabic words (see Fig.
8 for explanation). On the right are the corresponding precision recall curves. The last search term,’ ’, is a ligature for which we had no
template in this experiment. Using standard templates it appears as ’ ’, which explains why we will not be able to fi nd it in the actual
document. However, since it occurs in nearly every other line, recall is not zero, which is somewhat misleading. For the other cases though,
we obtain quite good results.

Figure 10. Search results for the Arabic word, ’ ’. On the left are the top four lines returned. On the right we have the last four true
positives. Their corresponding rankings can be seen in the upper left corner. The low ranking examples were caused by noise and stylistic
elongation to justify the text.

readily apparent that we would need models for ligatures
in addition to the stand alone letters. We made models for
85 of the 100 Arabic letter forms, and added models for 12
common ligatures. It turned out that ligatures were also easy
to discriminate due to their complex appearances, further
increasing their importance. The same data as before was
used to train the language model, except converted so that
ligature transitions could be modeled.

Transcription performance was quite low at only 24.7%.
Since our language model has zero probability transitions
for impossible bigrams, the mistakes in discrimination
tended to snowball: many times the transition back to the
correct sequence was impossible. A stronger language
model is likely needed; however just giving the impossible
transitions some non-zero likelihood may have improved
the transcription rate signifi cantly.

Fortunately, in search the term itself imposes the cor-
rect letter ordering, so performance is much better. We
built a word list containing all words in the manual tran-
scription; with a total of 2133 unique words. Only words
with 4 or more occurrences are reported here for brevity.
A summary of our search results can be found in Fig. 11.
Fig. 12 shows some of the words we searched for. Us-
ing the trie extension we described earlier, we were able to

search a wordlist composed of the 20k most frequent words
from modern news texts. This shotgun approach allowed us
to build a reasonable index of the document without actu-
ally knowing its contents; an online demo can be found at
http://handwriting.qwef.org.

6.3. Discussion

Our method compares well to modern searches of care-
fully handwritten roman letters; this is most likely because
we have a carefully engineered discriminative character
model. Future work will include determining which groups
of stacked characters need individual templates; which vari-
ant letters need individual templates; automated searches
for useful character template training information (after
[5]); methods to transcribe a document using search against
large external word list; and studies on larger datasets.

References

[1] A. Amin. Off line arabic character recognition - a survey. In
ICDAR, pages 596–599, Washington, DC, USA, 1997.

[2] A. Amin. Structural description to recognising arabic char-
acters using decision tree learning techniques. 2002.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
r
e
c
i
s
i
o
n

50 Most Frequent Words

Figure 11. Left: Search results for handwritten Arabic words with 4 or more occurrences (see Fig. 8 for explanation). This represents 360

words. Center: Precision recall curves for the 50 most frequent words in the document. The thick red line represents the average curve.
Right: The thin line represents our average precision recall for words with 4 or more occurrences. Compare this to the average precision
recall curves given in Edwards [5] (marked with x’s and o’s) which have been manually overlaid. Our performance on handwritten Arabic
is quite comparable to their performance on handwritten Latin.

[3] C. Burges, J. Ben, J. Denker, Y. LeCun, and C. Nohl. Off-
line recognition of handwritten postal words using neural
networks. In IJPRAI, volume 7, page 689, 1993.

[4] R. O. Duda and P. E. Hart. Pattern Classifi cation and Scene
Analysis. Wiley, New York, 1972.

[5] J. Edwards and D. Forsyth. Searching for character models.
2005.

[6] J. Edwards, Y. W. Teh, D. Forsyth, R. Bock, M. Maire,
and G. Vesom. Making latin manuscripts searchable using
ghmm’s. NIPS, 2005.

[7] T. K. Ho, J. J. Hull, and S. N. Srihari. A word shape anal-
ysis approach to lexicon based word recognition. In Pattern
Recognition Letters, volume 13, pages 821–826, 1992.

[8] R. Manmatha, T. M. Rath, and V. Lavrenko. Holistic word
recognition for handwritten historical documents, Apr. 29
2004.

[9] A. A. Manuscripts. Kitab fi ’l-fi qh.American University of
Beirut,
http://ddc.aub.edu.lb/projects/jafet/.

[10] G. A. Marton, O. Bulbul, and T. Kanungo. Performance eval-
uation of two arabic OCR products, Dec. 08 1998.

[11] M. Pechwitz and V. Maergner. HMM based approach
for handwritten arabic word recognition using the ifn/enit-
database, Aug. 13 2003.

[12] R. Plamondon and S. N. Srihari. On-line and off-line hand-
writing recognition: A comprehensive survey. TPAMI, 2000.

[13] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear com-
ponent analysis as a kernel eigenvalue problem. Technical
Report 44, Dec. 1996.

[14] A. W. Senior and A. J. Robinson. An off-line cursive hand-
writing recognition system. TPAMI, 1998.

a)

b)

c)
Figure 12. Results returned for three handwritten words. a)
The fi rst 5 lines returned for ’ ’. Note that is barely visible.
b) the fi rst 4 lines for ’ ’. Notice in the last line even though
the ’ ’ has a different form and is split apart from the overlap
removal process, the strong models for the other letters provide
a strong enough cue to retrieve the words. c) ’ ’. Note the
connected in 1, and the elongated spacing in 3.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06)
0-7695-2597-0/06 $20.00 © 2006 IEEE

