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Masses and radii of neutron stars are obtained in the presence of strong magnetic fields together
with rotation. Mass-radius relations are calculated using 11 equations of state (EoSs: GM1, TM1-
a,TM1-b, TM2wp-a, TM2wp-b,NL3-a, NL3-b, NL3wp-a, NL3wp-b, DDME2-a and DDME2-b)
in relativistic mean field (RMF) theory. Obtained masses are over and around twice the solar
mass (M) for all EoSs in the presence of strong magnetic fields of 3 x 10'® G at the center.
For NL3wp-a and NL3wp-b EoSs, masses are more than M = 2.17 M (observed maximum
mass: 2.14 M) even without magnetic fields. Rotational effects are found to be insignificant
in any case, at least up to the Kepler frequency. Suitable EoSs are also selected concerning the
constraint on the radius of a neutron star.

Subject Index E32

1. Introduction

The possible range of values for mass and radius of a neutron star has been one of the main themes
in the study of neutron stars since their discovery. In 1939, Oppenheimer and Volkoff (and, inde-
pendently, Tolman) applied the Einstein equation to a neutron star and calculated numerically its
mass in a non-interacting, strongly degenerate relativistic gas of neutrons [1,2]. They calculated
its mass to show that stable static neutron stars have a maximum mass M, ~ 0.71 My; the so-
called the Oppenheimer—Volkoff mass limit. Cameron showed that the inclusion of the nuclear force
can considerably stiffen the equation of state (EoS) [3]. This inclusion can increase the maximum
mass of the Oppenheimer—Volkoff limit to about 2M. The Brueckner—Bethe—Goldstone (BBG)
theory, formulated in 19541965, is a successful application of field-theoretical methods to strongly
interacting many-body systems. Strong repulsive nuclear forces (two-body or three-body) have been
found to be necessary to explain maximum masses of neutron stars within the nucleon’s degrees of
freedom. Recently, some advanced studies use microscopic EOSs based on the Brueckner—Hartree—
Fock (BHF) many-body theory with realistic two- or three-body nucleonic forces [4,5] and also those
EOSs based on lowest order constrained variational (LOCV) many-body theory [6].

Massive neutron stars can be easily described if neutron star matter consists of only nucleons and
some varieties of leptons. However, hyperons should appear naturally in the high-density region of a
neutron star, where its central density is several times higher than the nuclear saturation density. The
appearance of hyperons softens the EoS of neutron star matter, and makes it difficult to explain the
presence of the massive neutron stars with mass twice the solar mass M. This problem is referred
to as the hyperon puzzle.
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In 2010, the neutron star PSR J1614-2230 forming a binary system with a white dwarf was
discovered, whose observed mass is 1.97 = 0.04 M, [7]. In 2013, the neutron star PSR J0348+0432
with a mass of 2.01 £ 0.04 M was observed, and the existence of neutron stars that have masses
twice the solar mass is now established beyond doubt [8]. In a recent observation in 2019, the mass
of the millisecond pulsar (MSP) J0740+6620 was measured to be 2. 14J_r8:(1)8 Mg [9]. Such very heavy
neutron stars impose a strong condition on EoSs. Furthermore, there exist strong magnetized neutron
stars, called magnetars, which have a magnetic field of about 2 x 10" G on the surface [10]. Thus, the
mass of a neutron star should be explained in the presence of strong magnetic fields. In observations,
a millisecond magnetar is considered as a target of the future gravitational wave detections [11,12].
Also, the short gamma-ray burst event GRB051221A is believed to be a millisecond magnetar [13].

In our previous study [14], the mass—radius relation (MR relation) of deformed neutron stars in
the axially symmetric poloidal magnetic field was calculated. The MR relations were obtained by
solving the Hartle equations [15—19], whereas those for spherical stars were obtained by the Tolman—
Oppenheimer—Volkoff (TOV) equations. The anisotropic effects of the poloidal magnetic fields were
found to be non-negligible for a strong magnetic field of more than 3 x 10'® G at the center of a
neutron star. In the present study rotation is also considered in addition to the strong magnetic fields.
In this study rotation makes a neutron star deformed, but unlike the previous study the deformation
is only caused by rotation, not by strong magnetic fields.

Observed radii of neutron stars set a stringent condition on the EoS. The neutron star radius R
now has an upper limit of R = 13.6km at M = 1.4 M, which is derived from the observation of
the GW170817 gravitational wave event [20]. In this study, 11 EoSs— GM1 [21], TM1-a, TM1-b,
TM2wp-a, TM2wp-b, NL3-a, NL3-b, NL3wp-a, NL3wp-b, DDME2-a and DDME2-b [22]— are
employed, which include hyperons in addition to nucleons as components. The MR relations of the
11 EoSs are each compared with GM1 EoS as a reference. TM1 and TM2 are different concerning the
slope parameter L, where L is closely related to the radius of a neutron star. The NL3 parametrization
is fitted to the ground-state properties of both stable and unstable nuclei. This parametrization predicts
very large, purely nucleonic neutron star maximum masses, but a symmetry energy slope parameter
L is too large. Thus, we also consider the parametrization NL3wp with a softer density dependence
of the symmetry energy due to the inclusion of the nonlinear wp term.

This paper is organized as follows. Section 2 provides the formulation of the relativistic mean field
theory and basic properties of obtained EoSs. Section 3 gives the results of our study. Discussions
are given in Sect. 4. Finally, a summary is given in Sect. 5.

2. Formulations
2.1.  Equations of state

In this study the neutron star matter is assumed to be static and uniform in the high-density region,
which is described in the relativistic mean field (RMF) theory based on the nonlinear Walecka model.
The Lagrangian is given as [14,21-28]

£=Zﬁb+£m+zﬁl+ﬁema (1)
b /

where

Ly =Yy (iyud" — mp + gobo + go*0™* — Zup Y
—ZopYud" — gopyut-p*
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Table 1. Coupling constants of nucleon—meson interactions and strengths of meson self-interactions [22,24].

GMI [21] TMI [25] TM2wp [30] NL3 [31] NL3wp [32] DDME2 [33]

goN 8.895 10.03 9.998 10.22 10.22 10.54
e 10.61 12.61 12.50 12.87 12.87 13.02
goN 8.195 9.264 11.30 8.948 11.28 7.367
b x 103 2.947 1.508 1.763 1.028 1.028 0
cx 10° —1.070 0.061 —0.790 —0.442 —0.442 0
& 0 0.0169 0.0113 0 0 0
A, 0 0 0.03 0 0.03 0
_QbVMAM - Kba;wFMv) Y, (2)
1 1
Ly = 5 (duod* o —mio?) + 3 (duo*d"o™* — miuo™?)
L ) u 1 7Y L M
+ Emwa)ua) — ZQWQ + §m¢¢#¢
1 v L 2 1 J23Y
_ZCD’LLVCD —i—zmppup _ZP 'P/LV
- gbm,, (go0)” — Zc (g50)
1 2 2
+ 58 (€aoue’) + Ao (goou”) (€50, 0"). (3)
Ly =Y (ivud" — qryud* —my) ¥y, (4)
1
[:em = _ZFMDF/J’V' (5)

Here b, m, [, and em indicate baryons, mesons, leptons, and photons, respectively. The field strengths
are explicitly given as

Fuy =04, — 004, (6)
Q= uwy — Aoy, (7)
@y = udy — Py, (8)
Py =0up, —0vp, — &Py X Py 9)

Here, 7/2 represents the isospin operator and o, = i/2 [y, y» |, where y,, is the Dirac y matrix.
Characters in bold font represent isovector fields. The baryon octet {p,n, A, £°, £+, 20, E~}, the
electron (0.511 MeV), the muon (105.7 MeV), and the tauon (1777 MeV) are considered for fermions
[29]. For mesons, the scalar-meson o, the vector-meson w, and the vector-isovector-meson p with
masses of my = 511.198 MeV, m,, = 783.0MeV, and m, = 770.0 MeV, and hidden-strangeness
mesons o* and ¢, with masses of m,+ = 975MeV and my = 1020 MeV, are introduced. The
coupling constants of nucleons with these mesons, gon, gun, and g,n, and some self-interactions
among mesons are determined by fitting the physical quantities at the saturation density [21,23,24].
The obtained values are listed in Table 1.

The parameterizations of 11 EoSs (GM1, TM1-a, TM1-b, TM2wp-a, TM2wp-b, NL3-a, NL3-
b, NL3wp-a, NL3wp-b, DDME2-a and DDME2-b) are given as follows. The coupling constants of
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Table 2. Adopted ratios of c—A coupling, 0—X% coupling and 0—E coupling in EoS parameter sets.

EoS R(yA R(r ) R(r 8

TM1-a 0.64 0.56 0.32
TMI1-b 091 0.56 0.32
TM2wp-a  0.64 0.55 0.32
TM2wp-b 093 0.55 0.32
NL3-a 0.67 0.59 0.33
NL3-b 097 0.59 0.33
NL3wp-a 0.67 0.59 0.33
NL3wp-b 097 059 033
DDME2-a 0.69 0.60 0.34
DDME2-b 098 0.60 0.34

Table 3. Baryon masses (7,) in units of MeV, anomalous magnetic moments (), and electric charges (g;)
for the baryon octet. k;, is defined as k, = w,/ iy — sgnigy) m,/m;, where py is the nuclear magneton [29].

p n A DI 30 - g° &
mp, 9383 9396 1116 1189 1193 1197 1315 1322

ky 179 —191 —061 167 161 —038 —125 0.06
g +1 0 0 +1 0 ~1 0 -1

hyperons with mesons are determined by fitting the properties of hypernuclei in the quark model [22].
In the GM1 parameter set, coupling ratios, Ry, = go1/8on = 0.6, Ry = gun/gon = 0.653, and
Ryon = gpn/gon = 0.6 are adopted. All EoSs except GMI include o* and ¢ mesons. As for the
couplings of hyperons with the vector and the vector—isovector mesons, the following SU(6) values
are adopted in the a-parameter sets (TM1-a, TM2wp-a, NL3-a, NL3wp-a and DDME2-a):

2 2 1
RC()A — 57 wX 57 Ra)E = §’ (10)
Rys =2, Ryz=1, (11)
V2 V2 242
Rpn = R Rps = R Ryz = - (12)

In the b-parameter sets (TM1-b, TM2wp-b, NL3-b, NL3wp-b and DDME2-b), R,p = 1 is adopted,
which corresponds to a symmetry breaking of the SU(6) symmetry. The values of hyperon potentials
in symmetric nuclear matter, U X = —30MeV, Ug = 0MeV, and UEN = —14MeV [22] are used
to determine the value of R, ;. Thus, ratios of the c—A coupling, the 0—% coupling and the 0—E
coupling in EoS parameter sets except GM1 are adopted as in Table 2.

An empirical value of the binding energy in double-A hypernuclei AB = 0.50 MeV is employed
for adjusting the coupling of A hyperon with the 0 * meson to get Ry« = 1[22]. Due to the absence
of information for the double-X and double-E hypernuclei, the coupling of the ¥ and E hyperons
with the o* meson are fixed to zero: Ry*sy; = Ry+z = 0.

Masses and charges of the baryon octet are given in Table 3. The experimental values of the
anomalous magnetic moments (AMMs) defined by « = up/un — sgnlgp) my,/my, for baryons are
also given. Some of their nuclear properties as well as predictions for the neutron star maximum
mass are presented in Table 4.
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Table 4. Nuclear properties at saturation number density [p (fm=3)] predicted by 6 kinds of EoSs used in this
study [22,34]: energy per nucleon [B/4 (MeV)], incompressibility [K (MeV)], symmetry energy [/ (MeV)], its
slope parameter [L (MeV)], and curvature [K,,,, (MeV)] at the saturation point of uniform symmetric nuclear
matter [35].

GM1 ™1 TM2wp NL3 NL3wp DDME2

0 0.154 0.146 0.146 0.148 0.148 0.152
B/A4 —163 —-16.3 —16.4 -1630 —-1630 —16.14
K 300.7 281.2 281.7 271.8 271.8 250.9
J 325 36.9 32.1 37.4 31.7 323

L 94.4 111.2 54.8 118.9 55.5 51.2
Ky, 1811 33.8 —70.5 101.6 —7.6 —87.1

The RMF EoS is used to describe the denser region, where its number density is greater than
the neutron drip density pnp = 2.51 x 10~* fm~3. The neutron drip density is predicted by the
HFB-25 Brussels—Montreal nuclear mass model [36]. The neutron drip density might be changed in
the presence of a strong magnetic field, but the MR relation of neutron stars is not so sensitive to the
neutron drip density. In order to describe the lower-density region, the Baym—Pethick—Sutherland
(BPS) EoS is used [37] with the atomic masses given in Ame2012 [38,39] and HFB-24 [40].

2.2.  Magnetic fields
In this study, a density-dependent magnetic field strength is adopted [28,41];

14
=] -eofa(2) ] "
00

where B, indicates the strength on the surface and By indicates the strength in a much denser
region than that of the saturation number density po (0.153 fm~3). Here the parameters @ = 0.05
and y = 2 are adopted [28]. In the following, By = 10'° G is a fixed constant when using the
magnetic fields. Spherically symmetric magnetic pressure is used for magnetic fields [14]. In this
work, the deformation due to magnetic fields is not considered, which is a difference from our
previous study [14]. Here, magnetic fields are put in the Lagrangian, not in the metric like other
studies [14,42]. There are other studies on the treatment of magnetic fields in different shapes,
such as Refs. [43,44]. The method of how to treat a strong magnetic field in EoS is described in
Appendix A.

2.3.  Hartle equations

A theoretical method that uses a perturbative way to calculate additional masses and eccentricities
of axially deformed objects due to rotation was first introduced by J. B. Hartle and others in
Refs. [16—-19] in the framework of General Relativity. In the gravitational unit (G = ¢ = 1),
the metric can be written as

ds? = —e" [1 + 2 {hy + hyP2(cos6)}] dt*
A 2¢* 2
+e* |1+ — {my+ myPr(cosO)} | dr
r

+ 12 [1 + 2k P2 (cos 0)] [d6* + sin? 6 (d¢ — wdt)?], (14)
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where w (7, 0) represents the local angular velocity of a rotating star, and sy (r), iz (r), mo(r), ma(r),
and k() are the second-order perturbative terms with respect to the angular velocity 2, where Q2
is the angular velocity observed far from the neutron star. The second-order Legendre polynomial
is given as Py(cos8) = 1/2(3cos?6 — 1). Up to the second order of €2, the Hartle equations are
employed, which are explicitly given in Appendix B.

In the zeroth order of €2, usual TOV equations are employed:

dpo (Mo + 4mpor?) (0 + po)

_ 15
dr r(r—2My) ’ (15)

dM,

=2 = 4nre, (16)
dr

where energy density g9 and pressure pg are calculated by the RMF theory as functions of baryon
density. The radius R of a neutron star is so determined that pressure po(R) = 0 after solving TOV
equations. Then the total mass is given using an additional mass mg(R) as

M = My(R) + mo(R). (17)

3. Results

Figure 1 shows the total mass M (M) as a function of its radius (km) (MR relation) by solving the
TOV equation without magnetic fields or rotation. The unstable region ([0M (e.)]/de, < 0, where
&c 1s the energy density at the center) is not shown for each EoS in the figure. It is seen that NL3-a,

25 =

2.0

15 F ]1614-2230
J0348+0432
GM1 ——
TMl-a ——
TM1-b — =
TM2wp-a
TM2wp-b —
NL3-a ——
NL3-b — =
0.5 - NL3wp-a ——
NL3wp-b — =
DDME2-a ——
DDMEZ-bI— -

M (M)

1.0

0.0
10 1 12 13 14 15 16

Equatorial radius (km)

Fig.1. MR relations of 11 EoSs without magnetic fields or rotation. The unstable region in each EoS is not
shown. The yellow solid line and orange solid line indicate pulsars PSR J1614-2230 and PSR J0348+0432,
respectively. The colored lines represent the following: black (solid line); GM1 EoS, green (solid line); TM1-a
EoS, green (dashed line); TM1-b EoS, light blue (solid line); TM2wp-a EoS, light blue (dashed line); TM2wp-b
EoS, purple (solid line); NL3-a EoS, purple (dashed line); NL3-b EoS, dark blue (solid line); NL3wp-a EoS,
dark blue (dashed line); NL3wp-b EoS, red (solid line); DDME2-a EoS, red (dashed line); DDME2-b EoS.
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Table 5. Maximum mass (Mp,x) in units of Mg and radius (km) at M = 1.4 Mg, (R 4.,,) for each EoS without
magnetic fields or rotation.

EOS Mmax Rl.4M@
GM1 1.784 13.49
TMI-a 1.540 14.07
TM1-b 1.787 14.10

TM2wp-a  1.663 13.24
TM2wp-b  1.891 13.23
NL3-a 2122 1435
NL3-b 2336 1435
NL3wp-a  2.175 13.49
NL3wp-b  2.372 13.49
DDME2-a 2.161 14.08
DDME2-b 2.360 14.08

NL3-b, NL3wp-a, NL3wp-b, DDME2-a and DDME2-b EoSs surpass twice the solar mass. For each
EoS, the maximum mass and the radius at M = 1.4 M, are shown in Table 5.

Now, rotation or/and magnetic fields are considered to investigate which EoS is capable of describ-
ing the observed maximum mass and the radius at M = 1.4 M. First, rotation is considered by
solving the Hartle equations given in Appendix B. Figure 2 shows the MR relations of the rotating
neutron stars. Here, Q is taken as 6 x 10° Hz (Q = 0.02km™! in gravitational units), corresponding
to the fastest possible neutron star. This frequency corresponds roughly to the Kepler frequency
Qg [21,45]:

1/2
M/Mo ]/ x 10%s7, (18)

a2 [(R/km)3

A slight increase of mass is seen in all cases, as shown in Fig. 2 and in Table 6. NL3-a, NL3-b,
NL3wp-a, NL3wp-b, DDME2-a and DDME2-b EoSs surpass twice the solar mass. In this rotating
case, the neutron star is axially deformed. The equatorial radius at M = 1.4 M, is denoted as RS , My
the polar radius at M = 1.4 Mg as R’f 4Mg [16—19], and the eccentricity e is defined by [18,19]

R\’
o= (sz) Y (19)

It is found that rotation has a small effect on mass even with the Kepler frequency (6 x 10° Hz).

Next, magnetic fields —1/4F*"F,,, in Eq.(5) are considered for the 11 EoSs by solving TOV
equations in Egs. (15) and (16). Figure 3 shows MR relations with magnetic fields. The magnetic
field strength at the center is adopted as By = 2.5 x 10'® G. As shown in Fig. 3 and Table 7, GM1,
TM1-b and TM2wp-b EoSs give masses greater than two solar masses. Moreover, considering the
upper limit of R = 13.6km at 1.4 M [20], TM2wp-a and TM2wp-b EoSs are in the range of the
observation with respect to radii. However, NL3-a, NL3-b, NL3wp-a, NL3wp-b, DDME2-a and
DDME2-b EoSs are not in the range of the observation with respect to radius, but their masses
surpass twice the two-solar-mass.

For the By = 3 x 10'8 G case, the results are shown in Fig. 4 and Table 8. All EoSs except TM1-a
give masses greater than two solar masses. However, considering the upper limit of R = 13.6 km at
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T T T T T
25 ) .
2.0
= 1.5
= J1614—2230
= J0348 +0432
GM1 —
1.0 TMl-a —
TMlb — =
TM2wp-a ——
TM2wp-b — =
NL3-a =——
0.5+ NL3b — =
NL3wp-8 =——
NL3wp-b — =
DDME2-3 =
DDME2-b — =
0.0 1 1 1 1 1
10 11 12 13 14 1S 16

equatorial radius (km)
Fig.2. Same as Fig. 1, but with rotation (6 x 10> Hz).
Table 6. Maximum mass (M) of a rotating neutron star in units of M, polar radius (R{ , M) and equatorial

radius (RS, ) at M = 1.4 Mo, and eccentricity (e), respectively, at @ = 6 x 10°Hz (2 = 0.02km™! in
gravitational units).

P e
EoS My Rivo Riawy €

GM1 1.851 1243 1451 0.60
TM1-a 1.675 12.79 1539 0.67
TM1-b 1.895 12,79 1539 0.67
TM2wp-a  1.762 12.12 14.10 0.59
TM2wp-b  1.964 12.12 14.10 0.59
NL3-a 2236 13.05 15.10 0.58
NL3-b 2439 13.05 15.10 0.58
NL3wp-a  2.275 1243 13.78 0.48
NL3wp-b 2446 1243 13.78 0.48
DDME2-a 2.273 13.06 15.05 0.57
DDME2-b 2451 13.06 15.05 0.57

1.4 Mg, no EoS is in the range of the observation concerning radius. Therefore, the central magnetic
field strength should be smaller than By = 3 x 10'8 G.

Finally, the MR relations are calculated in the presence of both rotation and magnetic fields. This
case, with both rotation and magnetic fields, is considered here because of the emergency of a
millisecond magnetar in the occasion of a neutron star merger [13]. The MR relations are shown in
Fig. 5. Maximum masses of neutron stars, two kinds of radius and eccentricity with both rotation
[Q=6x102Hz(Q = 0.002km~! in gravitational units)] and magnetic fields (By = 2.5 x 10'% G)
are shown in Table 9.

All 11 EoSs give masses greater than or around twice the solar mass in the presence of both
rotation and magnetic fields. Again NL3-a, NL3-b, NL3wp-a, NL3wp-b, DDME2-a and DDME2-b
EoSs surpass 2.14 M, and meet the observation with respect to radius (R < 13.6km in 1.4 M().
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T T T T T
25 F
2.0
E“ 15
= J1614—2230
= J0348 +0432
GM1 —
1.0 TMl-a —
TMlb — =
TM2wp-a ——
TM2wp-b — =
NL3-a =——
0.5+ NL3b — =
NL3wp-8 =——
NL3wp-b — =
DDME2-3 =
DDME2-b — =
0'0 1 1 1 1 1
10 11 12 13 14 1S 16

equatorial radius (km)
Fig.3. Same as Fig. 1, but with magnetic fields (By = 2.5 x 10"8 G).

Table 7. Same as Table 5, but with magnetic fields (B, = 2.5 x 108 G).

EOS Mmax Rl,4 Mo

GM1 2.050 1391
TMI-a 1.883 1445
TMI-b 2060 14.46
TM2wp-a  1.979 13.58
TM2wp-b  2.135  13.58
NL3-a 2313 14.53
NL3-b 2487 14.53
NL3wp-a  2.360 13.70
NL3wp-b  2.513  13.70
DDME2-a 2345 14.50
DDME2-b  2.505 14.50

4. Discussion

4.1. Rotation

Here we discuss how much rotation brings in the additional mass mg. Here, TM2wp-b EoS is
chosen for discussion. In Fig. 6, the maximum mass is expressed approximately as M /Mg =
1.8932 — 3.619 x 1073 © + 1.123 x 1073 Q2 up to the second order of €2, where the rotational
frequency 2 is given in units of Hz. If one wants to describe a neutron star with mass of 2 Mg only
by rotation, one needs more than 12000 Hz frequency. However, the observed value of the maximum
frequency is about 700 Hz (€ ~ 0.0015km™! in gravitational units) so that @ = 12000 Hz is
unrealistic.

4.2. Two-solar-mass problem

In Sect. 3, MR relations have been calculated for the 11 EoSs. Calculated maximum masses of NL3-a,
NL3-b, NL3wp-a, NL3wp-b, DDME2-a and DDME2-b EoSs are over twice the solar mass without
magnetic fields. Masses calculated by GM1, TM1-b and TM2wp-b EoSs with strong magnetic fields
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T T T T T
25 F
2.0
= 1.5
= J1614—2230
= J0348 +0432
GM1 —
1.0 TMl-a —
TMlb — =
TM2wp-a ——
TM2wp-b — =
NL3-a =——
0.5+ NL3b — =
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Fig.4. Same as Fig. 1, but with magnetic fields (By = 3 x 10'¥ G).

Table 8. Same as Table 5, but with magnetic fields (B, = 3 x 10'¥ G).

EOS Mmax R1.4 Mo
GM1 2.135 14.05
TM1-a 1.993 14.59

TM1-b 2.150  14.59
TM2wp-a  2.079 13.72
TM2wp-b 2215 13.72
NL3-a 2381 14.69
NL3-b 2.541  14.69
NL3wp-a 2424 1391
NL3wp-b  2.562 1391
DDME2-a 2410 14.44
DDME2-b 2557 14.44

(By = 2.5 x 10'® G) become over twice the solar mass. In Ref. [46], MR relations were calculated
with magnetic fields of By = 3.1 x 10'® G. Using GM1 EoS, they obtained a mass of over twice the
solar mass. Their results are consistent with ours.

4.3. Radius at 1.4 M

From the observation of the GW170817 gravitational wave event, the upper limit radius is
13.6km [20] at M = 1.4 M. Also, another source reports the upper limit radius 13.76 km [47]
at M = 1.4 Mg. The lower-limit radius was reported as 10.68f8:(1)ikm [48] at M = 1.6 M. The
upper limit of radius found by NICER observations is 13.02ﬂ:3‘6‘ km [49] at M = 1_44418:{?‘ Mo.
The validity of each EoS in this respect is discussed here. The neutron star radii at 1.4 M, are sum-
marized in Table 10, which shows that radii predicted by TM1-a, TM1-b, NL3-a, NL3-b, DDME2-a
and DDME2-b EoSs are over 13.6 km in any case. For the GM1 EoS, the radius becomes smaller
than 13.6 km only in the case of no magnetic fields and no rotation. As for TM2wp-a and TM2wp-b
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Fig.5. Same as Fig. 1, but with both rotation (2 = 6 x 10?> Hz) and magnetic fields (By = 2.5 x 108 G).

Table 9. Same as Table 6, but with both rotation (2 = 6 x 10> Hz) and magnetic fields (B, = 2.5 x 108 G).

P e
EoS Mo Rigpy Rigmy, €

GM1 2.050 13.89 13.93 0.083
TM1-a 1.884 1442 14.48 0.095
TM1-b 2.061 1443 1450 0.096
TM2wp-a 1980 13.54 13.62 0.11
TM2wp-b  2.136 13.54 13.62 0.11
NL3-a 2314 1451 1454 0.064
NL3-b 2487 1472 1476 0.074
NL3wp-a 2360 13.67 13.73 0.094
NL3wp-b  2.513 13.67 13.73 0.094
DDME2-a 2346 1423 1431 0.11
DDME2-b 2.506 14.23 1431 0.11

EoSs, radii become smaller than 13.6km in the case of no rotation. For NL3wp-a and NL3wp-b
EoSs, radii are in the range of observation without magnetic fields or rotation.

Considering the observed maximum mass 2.14 My and the upper limit of the radius 13.6 km,
NL3wp-a and NL3wp-b EoSs are the most suitable of the 11 EoSs and meet the requirements of
observations. TM2wp-b EoS is also found to be nearly in the range of the observation, namely,
M =22 Mg and R = 13.7 km, with strong magnetic fields (3 x 10'3 G).

4.4. Particle populations of neutron star matter

The relative populations of baryons and leptons for TM2wp-b EoS without magnetic fields are shown
as functions of baryon number density in Fig. 7. For baryons, populations of all octet baryons are
shown. For leptons, populations of e™, ™, and T~ are shown, but the heavy lepton ¢~ does not
appear in the figure. Figure 8 shows the populations of the baryons and leptons with the magnetic
fields of By = 2.5 x 10'® G. In this case, populations of electrons, muons, ¥~ and X+ are staggering.
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Fig. 6. Frequency 2 (Hz) versus maximum mass (M) for TM2wp-b EoS.

Table 10. Radius at M = 1.4 (M,,) for each EoS. R indicates radius without rotation or magnetic fields, R

rot

is the equator radius with rotation (6 x 10° Hz), Ry, is the radius with magnetic fields (B, = 2.5 x 10'* G),
and R is the equator radius with both rotation (Q = 6 x 102 Hz) and magnetic fields (By = 2.5 x 10'¥ G)

rot&mag

for each EoS.

EoS R R, Rug R

GM1 1349 1451 1391 1393
TM1-a 14.07 1539 1445 14.48
TM1-b 14.10 1539 1446 14.50
TM2wp-a  13.24 14.10 13.58 13.62
TM2wp-b  13.23 14.10 13.58 13.62
NL3-a 1435 15.10 14.53 1454
NL3-b 1435 15.10 14.53 14.76
NL3wp-a 1349 13.78 13.70 13.73
NL3wp-b  13.49 13.78 13.70 13.73
DDME2-a 14.08 15.05 14.50 14.31
DDME2-b 14.08 15.05 14.50 14.31

e
rot&mag

The population of E7 rises faster than that without magnetic fields. The uncharged particles £° and
A are not affected by the magnetic field. Again, there is no population of the heavy lepton 7~ in the
figure.

5. Summary

In this work the mass—radius relations have been calculated for magnetized and rotating neutron stars
using 11 EoSs, which include hyperons in addition to nucleons as components. For NL3wp-a and
NL3wp-b EoSs, masses over the observed maximum mass of 2.14 M, are obtained and predicted
radii are in the range of R < 13.6km at 1.4 M, without rotation or magnetic fields. As for NL3-a,
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Fig.7. Particle populations as a function of baryon number density without magnetic fields.
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Fig. 8. Same as Fig. 7, but with magnetic fields (By = 2.5 x 10'® G).

NL3-b, DDME2-a and DDME2-b EoSs, they surpass 2.14 M without rotation or magnetic fields.
However, radii are not in the range of the observation of R < 13.6 km at 1.4 M. For the TM1-b and
TM2wp-b EoSs, masses more than 2.14 M, are obtained in the strong magnetic field of 3 x 10'8 G at
the center. As for the GM1, TM1-b, TM2wp-a and TM2wp-b EoSs, masses over 2 M, are obtained
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both with the strong magnetic field of 2.5 x 10'8 G and in the rotation of 6 x 10? Hz. From the
observed radius, the central magnetic field strength should be smaller than By = 3 x 103 G.

Considering both the observed maximum mass 2.14 M, and the upper limit of the radius from the
gravitational wave event, two suitable EoSs (NL3wp-a and NL3wp-b) among the 11 are found to
meet the requirements of observations. TM2wp-b EoS is also found to be nearly in the range of the
observation, namely, M = 2.2 M, and R = 13.7 km, with strong magnetic fields (3 x 10'® G) at the
center. This result also suggests that most EoSs need a stiffer matter in the core of a neutron star,
such as quark matter.

In this work we have not considered the effects of the magnetic field on the crust EOS (BPS
EOS). It is certain that the strength of the magnetic field affects electrons in the crust so that the
radii of neutron stars might be substantially changed [50]. It is one of our future tasks to check how
electrons in the circumstance of the strong magnetic fields affect the radius of a neutron star. Also,
hyperon—quark hybrid stars with rotation or/and magnetic fields should be considered in the future.
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Appendix A. Energy levels in a strong magnetic field

Energy levels of a relativistic particle in a strong magnetic field were calculated in various refer-
ences [28,46,51-54]. Here we summarize the formula used in this paper. The energy spectra for
charged baryons (Ef,s), neutral baryons (Ef) and leptons (Ef,) in a strong magnetic field in the
z-direction are derived from the Dirac equation and given by

s \2
E), = \/ (k)" + (mf,,s> + gup” + T3pgpp0 ™, (A.1)

El = (kf)2 + (mb,s)z + gop@” + T3p2p0", (A.2)
EL = (k) + ()2, (A3)

respectively, where k! is the wave-number of particle 7 in the z-direction. Here, for simplicity, only
o, w and p mesons are treated. o, w® and p? are expectation values of mesons in a vacuum. Here
effective masses are given by

— 2

My, o =/ my,~ + 2v|qp|B — spnkpB, (A.4)

Mps = my, — SUNKpB, (A.S)

;= \/m? + 2vlq|B, (A.6)

for charged baryons (777}, ), neutral baryons () and leptons (1), respectively. Here B indicates
the strength of the magnetic field. g; is the charge of particle i, and s (= +1, —1) indicates its spin.
Kkp 1s the anomalous magnetic moment of baryon b. Here the reduced mass is

my, = mp — gop0, (A7)

14/20

220z 1snbny |z uo jsenb Aq G290065/703€01/01/0Z0Z/8101Me/de)d/woo dno-olwspeoe//:sdly wol) pspeojumoq



PTEP 2020, 103E04 C. Watanabe et al.

where my, is the original baryon mass. The integer v represents the Landau levels

1 s
Vv =n+§ _Sgn(Qb)E =051329"' > Vmax» (AS)

where n implies any integer greater than or equal to zero, and s = +1 for spin-up and s = —1 for
spin-down, respectively. Namely, we should take differently the lowest values of v, which takes 0
or 1, depending on the signs of charges and the spin third components. The maximum values of the
Landau levels are given by

(E{:’ + sunkpB)? — mzz

_ , A9

Vmax 2|Qb|B ( )
(Ep)* — m]

= — A.10

Vmax 2|CIZ|B ( )

for baryons and leptons, respectively. The Fermi wave numbers kll,l,v’ o kl{i’s and k}’v are related to
the Fermi energy (EF) by

2
b 2
b2 (kas) <mb s>
(Ep)” = , (A.11)

— \2
(k]l;,s)2 + (mb,s)
for charged baryons and neutral baryons, respectively, and
(Ep)? = (kf,)? + 7 (A.12)

for leptons. The vector number density is

L -
=" ZZkF”, (A.13)

for charged baryons,

x {mbkgs + (Ef;)z <arcsin (%) - %) ” (A.14)
F

118 5~
o= MZZkM (A.15)

for neutral baryons and

for leptons.
Then the total energy density for the matter is

1 1 1
Em=) e+ Y £+ Em§o2 +U (@) + =m(°)’ + 2mi( p%), (A.16)
L
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where U(o) = 1/3 bm,(g,0)* + 1/4c(g,0)*. Here

max (5) b b
96| B <" kg s+ EF
82 = 472 Z Z kF stF mbvs) In + ’ (A‘17)
n,
S Vmin(s) vs
for charged baryons,
1 1 32 3. mp, T
n_ Zib (Eb) _ - B(Eb) ~1 S
& = 12 Z [ > s\EF 3SuvkpB(ER ) | sin £b >
1 1 3| KR+ EP
- gSMNKbB + 2 Mbs mbskF Eb 4 (7mpg)® In ]l (A.18)
S
for neutral baryons and
¢
_ gl B 2 ke, + Ep
=5 Z Z ke Ef + (gy)* In | —— (A.19)
S Vmin($)
for leptons. Then the pressure for the matter is given by
Pm=Y_ Wib} — &m, (A.20)
i

where u; is the chemical potential of particle i. Including self-energy of the magnetic fields, the
energy density & and the pressure p in the presence of the magnetic fields are

32

e zem—l—?, (A.21)
BZ

p=pnt (A.22)

respectively, which gives an EoS for a specific relativistic mean field theory.

Appendix B. Hartle equations

In this paper Hartle equations are employed to calculate the additional mass mg and the equatorial and
polar radii for a rotating neutron star [16—19]. The Hartle equations are coupled ordinary differential
equations for the metric parameters ko (r), ha(r), mo(r), ma(r), and ky(r) with respect to », which
refers to the distance from the center of a neutron star:

Ld (97 L 49 o, (B.1)
—— |7 w = .
3 dr J dr dr
d 1d
_ 25 -2 (2 ,"2v0 2\
P+ 3 (e )
moe*™ [ = + 87po e 4o
2 2 dr
+ 47re®™ (g9 + po) 8Py, (B.2)

dm

1 dw \?
dro =471 (g0 + po) —8P0 + —r4]2( )

12 dr

16/20

220z 1snbny |z uo jsenb Aq G290065/703€01/01/0Z0Z/8101Me/de)d/woo dno-olwspeoe//:sdly wol) pspeojumoq



PTEP 2020, 103E04

C. Watanabe et al.

5 ,df?
3 dr’
dvy dvg
— =-2—"
dr ar 2
1 dw) |1 d 1 dj?
(Lo Lap(dm L ad |
r dr 6 di 3 dr
dhy 2vy
dr r(r—2M)dv0/dr
iy LI : (87 (c0 + po) —
dr 2(r —2M)dv /dr | 0T PO r3
1[ d 1 ] dw >
Lo v rsjz(_Gf)
6| dr  2(r—2M)dvy/dr dr
2 [ ] 2
-3 l’@ + : rzwzdL.
3| dr o 2(r—2M)dv/dr dr
Here, one has the following relations:
62)»0 — r ,
r—2M

M=M= 4n/ sordr.
0
From Ref. [19], one has

dvy 1 1
250 4 = = o (_2 + 8np0),
r

dr r
dpo dvg
o — (&0 +P0)W,
w=Q—w,
j= e—()»o-i-vo)’
vy = hy + k.
By differentiating Eq. (B.7), one has
7 4 5
— =4mepre.
dr 0

Equation (B.8) is transformed as
dvg _ (4mpor® + M)
dr — r(r—=2M)
By differentiating Eq. (B.11), one has

./ .d)»0+dv0
a7\ ar dr )’
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By differentiating 7*j(de /dr), one has

d [ 4.do . 43,dw+ 4djdw+ 4.d do (B.16)
a\"Var )T\ e T e T ar ) '
Here, assuming
do _ (B.17)
dr -5 '
Eq. (B.16) is written as
d L d 5 3 44
o= (42 437 il
dr r4j< ar " et ar
4 dj 4 1dj
=———w—--g—-—g. B.18
rjdrw rg jdrg ( )
Eq. (B.2) is transformed as
d Ld 5 2 2 a1
ESPO =37 (rFe "M w?*) — moe** =) + 87po
1 2X0,3:2 dw \*
LT
— 4rre™ (g9 + po) 8Po,
and therefore one has
d 2 2 ,.dj
ESPO = grjze”“)w2 + grzjd—JremOw2

From Eq.(B.3), one has

1,, 2M

2 dw
2 2.2 2\

—_—— W _|_ —7 e Ow'_
(r — 2M)? 3 / dr

1
— moe4)u0 <_2 + 87Tp0)
r

1 210,32 dw \*
TR\

— 4mre®™ (g9 + po) 8Py. (B.19)

1 do\? 2 dj
+—r4j2<—w> —Ejr3w2—J. (B.20)

SO oA -2 Y. B.21
+<r+dr>|:6rj(dr> 3rwjdr ( )
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From the above equations, 9 nonlinear equations are obtained (Egs. B.5, B.9, B.13, B.15, B.17, B.18,
B.19, B.20, and B.21) with respect to 9 variables (M, po, j, g, @, § Py, mo, v2, and h»). The equations
are solved from » = (. The initial value of the central density is given as ¢, where ¢, = ¢(r = 0). In
addition, the pressure of the center p. = p(e,) is determined from the equation of state. The initial
value of other variables are 0 except for j and @ . Here the initial value ofj is taken as 1.
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