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Masses and radii of neutron stars are obtained in the presence of strong magnetic fields together
with rotation. Mass-radius relations are calculated using 11 equations of state (EoSs: GM1, TM1-
a, TM1-b, TM2ωρ-a, TM2ωρ-b, NL3-a, NL3-b, NL3ωρ-a, NL3ωρ-b, DDME2-a and DDME2-b)
in relativistic mean field (RMF) theory. Obtained masses are over and around twice the solar
mass (M�) for all EoSs in the presence of strong magnetic fields of 3 × 1018 G at the center.
For NL3ωρ-a and NL3ωρ-b EoSs, masses are more than M = 2.17 M�(observed maximum
mass: 2.14 M�) even without magnetic fields. Rotational effects are found to be insignificant
in any case, at least up to the Kepler frequency. Suitable EoSs are also selected concerning the
constraint on the radius of a neutron star.
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1. Introduction

The possible range of values for mass and radius of a neutron star has been one of the main themes
in the study of neutron stars since their discovery. In 1939, Oppenheimer and Volkoff (and, inde-
pendently, Tolman) applied the Einstein equation to a neutron star and calculated numerically its
mass in a non-interacting, strongly degenerate relativistic gas of neutrons [1,2]. They calculated
its mass to show that stable static neutron stars have a maximum mass Mmax ∼ 0.71 M�; the so-
called the Oppenheimer–Volkoff mass limit. Cameron showed that the inclusion of the nuclear force
can considerably stiffen the equation of state (EoS) [3]. This inclusion can increase the maximum
mass of the Oppenheimer–Volkoff limit to about 2M�. The Brueckner–Bethe–Goldstone (BBG)
theory, formulated in 1954–1965, is a successful application of field-theoretical methods to strongly
interacting many-body systems. Strong repulsive nuclear forces (two-body or three-body) have been
found to be necessary to explain maximum masses of neutron stars within the nucleon’s degrees of
freedom. Recently, some advanced studies use microscopic EOSs based on the Brueckner–Hartree–
Fock (BHF) many-body theory with realistic two- or three-body nucleonic forces [4,5] and also those
EOSs based on lowest order constrained variational (LOCV) many-body theory [6].

Massive neutron stars can be easily described if neutron star matter consists of only nucleons and
some varieties of leptons. However, hyperons should appear naturally in the high-density region of a
neutron star, where its central density is several times higher than the nuclear saturation density. The
appearance of hyperons softens the EoS of neutron star matter, and makes it difficult to explain the
presence of the massive neutron stars with mass twice the solar mass M�. This problem is referred
to as the hyperon puzzle.
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In 2010, the neutron star PSR J1614-2230 forming a binary system with a white dwarf was
discovered, whose observed mass is 1.97 ± 0.04 M� [7]. In 2013, the neutron star PSR J0348+0432
with a mass of 2.01 ± 0.04 M� was observed, and the existence of neutron stars that have masses
twice the solar mass is now established beyond doubt [8]. In a recent observation in 2019, the mass
of the millisecond pulsar (MSP) J0740+6620 was measured to be 2.14+0.10

−0.09 M� [9]. Such very heavy
neutron stars impose a strong condition on EoSs. Furthermore, there exist strong magnetized neutron
stars, called magnetars, which have a magnetic field of about 2×1015 G on the surface [10]. Thus, the
mass of a neutron star should be explained in the presence of strong magnetic fields. In observations,
a millisecond magnetar is considered as a target of the future gravitational wave detections [11,12].
Also, the short gamma-ray burst event GRB051221A is believed to be a millisecond magnetar [13].

In our previous study [14], the mass–radius relation (MR relation) of deformed neutron stars in
the axially symmetric poloidal magnetic field was calculated. The MR relations were obtained by
solving the Hartle equations [15–19], whereas those for spherical stars were obtained by the Tolman–
Oppenheimer–Volkoff (TOV) equations. The anisotropic effects of the poloidal magnetic fields were
found to be non-negligible for a strong magnetic field of more than 3 × 1018 G at the center of a
neutron star. In the present study rotation is also considered in addition to the strong magnetic fields.
In this study rotation makes a neutron star deformed, but unlike the previous study the deformation
is only caused by rotation, not by strong magnetic fields.

Observed radii of neutron stars set a stringent condition on the EoS. The neutron star radius R
now has an upper limit of R = 13.6 km at M = 1.4 M�, which is derived from the observation of
the GW170817 gravitational wave event [20]. In this study, 11 EoSs— GM1 [21], TM1-a, TM1-b,
TM2ωρ-a, TM2ωρ-b, NL3-a, NL3-b, NL3ωρ-a, NL3ωρ-b, DDME2-a and DDME2-b [22]— are
employed, which include hyperons in addition to nucleons as components. The MR relations of the
11 EoSs are each compared with GM1 EoS as a reference. TM1 and TM2 are different concerning the
slope parameter L, where L is closely related to the radius of a neutron star. The NL3 parametrization
is fitted to the ground-state properties of both stable and unstable nuclei. This parametrization predicts
very large, purely nucleonic neutron star maximum masses, but a symmetry energy slope parameter
L is too large. Thus, we also consider the parametrization NL3ωρ with a softer density dependence
of the symmetry energy due to the inclusion of the nonlinear ωρ term.

This paper is organized as follows. Section 2 provides the formulation of the relativistic mean field
theory and basic properties of obtained EoSs. Section 3 gives the results of our study. Discussions
are given in Sect. 4. Finally, a summary is given in Sect. 5.

2. Formulations
2.1. Equations of state

In this study the neutron star matter is assumed to be static and uniform in the high-density region,
which is described in the relativistic mean field (RMF) theory based on the nonlinear Walecka model.
The Lagrangian is given as [14,21–28]

L =
∑

b

Lb + Lm +
∑

l

Ll + Lem, (1)

where

Lb = ψb
(
iγμ∂

μ − mb + gσbσ + gσ ∗bσ
∗ − gωbγμω

μ

−gφbγμφ
μ − gρbγμτ ·ρμ
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Table 1. Coupling constants of nucleon–meson interactions and strengths of meson self-interactions [22,24].

GM1 [21] TM1 [25] TM2ωρ [30] NL3 [31] NL3ωρ [32] DDME2 [33]

gσN 8.895 10.03 9.998 10.22 10.22 10.54
gωN 10.61 12.61 12.50 12.87 12.87 13.02
gρN 8.195 9.264 11.30 8.948 11.28 7.367
b × 103 2.947 1.508 1.763 1.028 1.028 0
c × 103 −1.070 0.061 −0.790 −0.442 −0.442 0
ξ 0 0.0169 0.0113 0 0 0

ω 0 0 0.03 0 0.03 0

−qbγμAμ − κbσμνFμν
)
ψb, (2)

Lm = 1

2

(
∂μσ∂

μσ − m2
σ σ

2)+ 1

2

(
∂μσ

∗∂μσ ∗ − m2
σ ∗σ ∗2)

+ 1

2
m2
ωωμω

μ − 1

4
μν

μν + 1

2
m2
φφμφ

μ

− 1

4
�μν�

μν + 1

2
m2
ρρμ ·ρμ − 1

4
Pμν ·Pμν

− 1

3
bmn (gσ σ )

3 − 1

4
c (gσ σ )

4

+ 1

4!ξ
(
g2
ωωμω

μ
)2 +
ω

(
g2
ωωμω

μ
) (

g2
ρρμ ·ρμ) , (3)

Ll = ψ l
(
iγμ∂

μ − qlγμAμ − ml
)
ψl , (4)

Lem = −1

4
FμνFμν . (5)

Here b, m, l, and em indicate baryons, mesons, leptons, and photons, respectively. The field strengths
are explicitly given as

Fμν = ∂μAν − ∂νAμ, (6)

μν = ∂μων − ∂νωμ, (7)

�μν = ∂μφν − ∂νφμ, (8)

Pμν = ∂μρν − ∂νρμ − gρρμ × ρν . (9)

Here, τ/2 represents the isospin operator and σμν = i/2
[
γμ, γν

]
, where γμ is the Dirac γ matrix.

Characters in bold font represent isovector fields. The baryon octet {p, n,
,�0,�±,�0,�−}, the
electron (0.511 MeV), the muon (105.7 MeV), and the tauon (1777 MeV) are considered for fermions
[29]. For mesons, the scalar-meson σ , the vector-meson ω, and the vector-isovector-meson ρ with
masses of mσ = 511.198 MeV, mω = 783.0 MeV, and mρ = 770.0 MeV, and hidden-strangeness
mesons σ ∗ and φ, with masses of mσ ∗ = 975 MeV and mφ = 1020 MeV, are introduced. The
coupling constants of nucleons with these mesons, gσN , gωN , and gρN , and some self-interactions
among mesons are determined by fitting the physical quantities at the saturation density [21,23,24].
The obtained values are listed in Table 1.

The parameterizations of 11 EoSs (GM1, TM1-a, TM1-b, TM2ωρ-a, TM2ωρ-b, NL3-a, NL3-
b, NL3ωρ-a, NL3ωρ-b, DDME2-a and DDME2-b) are given as follows. The coupling constants of
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Table 2. Adopted ratios of σ–
 coupling, σ–� coupling and σ–� coupling in EoS parameter sets.

EoS Rσ
 Rσ� Rσ�
TM1-a 0.64 0.56 0.32
TM1-b 0.91 0.56 0.32
TM2ωρ-a 0.64 0.55 0.32
TM2ωρ-b 0.93 0.55 0.32
NL3-a 0.67 0.59 0.33
NL3-b 0.97 0.59 0.33
NL3ωρ-a 0.67 0.59 0.33
NL3ωρ-b 0.97 0.59 0.33
DDME2-a 0.69 0.60 0.34
DDME2-b 0.98 0.60 0.34

Table 3. Baryon masses (mb) in units of MeV, anomalous magnetic moments (κb), and electric charges (qb)
for the baryon octet. κb is defined as κb = μb/μN − sgn(qb)mp/mb where μN is the nuclear magneton [29].

p n 
 �+ �0 �− �0 �−

mb 938.3 939.6 1116 1189 1193 1197 1315 1322
κb 1.79 −1.91 −0.61 1.67 1.61 −0.38 −1.25 0.06
qb +1 0 0 +1 0 −1 0 −1

hyperons with mesons are determined by fitting the properties of hypernuclei in the quark model [22].
In the GM1 parameter set, coupling ratios, Rσh = gσh/gσN = 0.6, Rωh = gωh/gωN = 0.653, and
Rρh = gρh/gρN = 0.6 are adopted. All EoSs except GM1 include σ ∗ and φ mesons. As for the
couplings of hyperons with the vector and the vector–isovector mesons, the following SU(6) values
are adopted in the a-parameter sets (TM1-a, TM2ωρ-a, NL3-a, NL3ωρ-a and DDME2-a):

Rω
 = 2

3
, Rω� = 2

3
, Rω� = 1

3
, (10)

Rρ� = 2, Rρ� = 1, (11)

Rφ
 = −
√

2

3
, Rφ� = −

√
2

3
, Rφ� = −2

√
2

3
. (12)

In the b-parameter sets (TM1-b, TM2ωρ-b, NL3-b, NL3ωρ-b and DDME2-b), Rω
 = 1 is adopted,
which corresponds to a symmetry breaking of the SU(6) symmetry. The values of hyperon potentials
in symmetric nuclear matter, U N


 = −30 MeV, U N
� = 0 MeV, and U N

� = −14 MeV [22] are used
to determine the value of Rσh. Thus, ratios of the σ–
 coupling, the σ–� coupling and the σ–�
coupling in EoS parameter sets except GM1 are adopted as in Table 2.

An empirical value of the binding energy in double-
 hypernuclei �B = 0.50 MeV is employed
for adjusting the coupling of
 hyperon with the σ ∗ meson to get Rσ ∗
 = 1 [22]. Due to the absence
of information for the double-� and double-� hypernuclei, the coupling of the � and � hyperons
with the σ ∗ meson are fixed to zero: Rσ ∗� = Rσ ∗� = 0.

Masses and charges of the baryon octet are given in Table 3. The experimental values of the
anomalous magnetic moments (AMMs) defined by κb = μb/μN − sgn(qb)mp/mb for baryons are
also given. Some of their nuclear properties as well as predictions for the neutron star maximum
mass are presented in Table 4.
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Table 4. Nuclear properties at saturation number density [ρ (fm−3)] predicted by 6 kinds of EoSs used in this
study [22,34]: energy per nucleon [B/A (MeV)], incompressibility [K (MeV)], symmetry energy [J (MeV)], its
slope parameter [L (MeV)], and curvature [Ksym (MeV)] at the saturation point of uniform symmetric nuclear
matter [35].

GM1 TM1 TM2ωρ NL3 NL3ωρ DDME2

ρ 0.154 0.146 0.146 0.148 0.148 0.152
B/A −16.3 −16.3 −16.4 −16.30 −16.30 −16.14
K 300.7 281.2 281.7 271.8 271.8 250.9
J 32.5 36.9 32.1 37.4 31.7 32.3
L 94.4 111.2 54.8 118.9 55.5 51.2
Ksym 18.1 33.8 −70.5 101.6 −7.6 −87.1

The RMF EoS is used to describe the denser region, where its number density is greater than
the neutron drip density ρND = 2.51 × 10−4 fm−3. The neutron drip density is predicted by the
HFB-25 Brussels–Montreal nuclear mass model [36]. The neutron drip density might be changed in
the presence of a strong magnetic field, but the MR relation of neutron stars is not so sensitive to the
neutron drip density. In order to describe the lower-density region, the Baym–Pethick–Sutherland
(BPS) EoS is used [37] with the atomic masses given in Ame2012 [38,39] and HFB-24 [40].

2.2. Magnetic fields

In this study, a density-dependent magnetic field strength is adopted [28,41];

B(ρ) = Bs + B0

[
1 − exp

{
−α

(
ρ

ρ0

)γ}]
, (13)

where Bs indicates the strength on the surface and B0 indicates the strength in a much denser
region than that of the saturation number density ρ0 (0.153 fm−3). Here the parameters α = 0.05
and γ = 2 are adopted [28]. In the following, Bs = 1015 G is a fixed constant when using the
magnetic fields. Spherically symmetric magnetic pressure is used for magnetic fields [14]. In this
work, the deformation due to magnetic fields is not considered, which is a difference from our
previous study [14]. Here, magnetic fields are put in the Lagrangian, not in the metric like other
studies [14,42]. There are other studies on the treatment of magnetic fields in different shapes,
such as Refs. [43,44]. The method of how to treat a strong magnetic field in EoS is described in
Appendix A.

2.3. Hartle equations

A theoretical method that uses a perturbative way to calculate additional masses and eccentricities
of axially deformed objects due to rotation was first introduced by J. B. Hartle and others in
Refs. [16–19] in the framework of General Relativity. In the gravitational unit (G = c = 1),
the metric can be written as

ds2 = −eν [1 + 2 {h0 + h2P2(cos θ)}] dt2

+ eλ
[

1 + 2eλ

r
{m0 + m2P2(cos θ)}

]
dr2

+ r2 [1 + 2k2P2(cos θ)]
[
dθ2 + sin2 θ (dφ − ωdt)2

]
, (14)
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where ω(r, θ) represents the local angular velocity of a rotating star, and h0(r), h2(r), m0(r), m2(r),
and k2(r) are the second-order perturbative terms with respect to the angular velocity , where 
is the angular velocity observed far from the neutron star. The second-order Legendre polynomial
is given as P2(cos θ) = 1/2(3 cos2 θ − 1). Up to the second order of , the Hartle equations are
employed, which are explicitly given in Appendix B.

In the zeroth order of , usual TOV equations are employed:

dp0

dr
= −

(
M0 + 4πp0r3

)
(ε0 + p0)

r (r − 2M0)
, (15)

dM0

dr
= 4πr2ε0, (16)

where energy density ε0 and pressure p0 are calculated by the RMF theory as functions of baryon
density. The radius R of a neutron star is so determined that pressure p0(R) = 0 after solving TOV
equations. Then the total mass is given using an additional mass m0(R) as

M = M0(R)+ m0(R). (17)

3. Results

Figure 1 shows the total mass M (M�) as a function of its radius (km) (MR relation) by solving the
TOV equation without magnetic fields or rotation. The unstable region ([∂M (εc)]/∂εc < 0, where
εc is the energy density at the center) is not shown for each EoS in the figure. It is seen that NL3-a,

Fig. 1. MR relations of 11 EoSs without magnetic fields or rotation. The unstable region in each EoS is not
shown. The yellow solid line and orange solid line indicate pulsars PSR J1614-2230 and PSR J0348+0432,
respectively. The colored lines represent the following: black (solid line); GM1 EoS, green (solid line); TM1-a
EoS, green (dashed line); TM1-b EoS, light blue (solid line); TM2ωρ-a EoS, light blue (dashed line); TM2ωρ-b
EoS, purple (solid line); NL3-a EoS, purple (dashed line); NL3-b EoS, dark blue (solid line); NL3ωρ-a EoS,
dark blue (dashed line); NL3ωρ-b EoS, red (solid line); DDME2-a EoS, red (dashed line); DDME2-b EoS.
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Table 5. Maximum mass (Mmax) in units of M� and radius (km) at M = 1.4 M� (R1.4 M�) for each EoS without
magnetic fields or rotation.

EoS Mmax R1.4 M�
GM1 1.784 13.49
TM1-a 1.540 14.07
TM1-b 1.787 14.10
TM2ωρ-a 1.663 13.24
TM2ωρ-b 1.891 13.23
NL3-a 2.122 14.35
NL3-b 2.336 14.35
NL3ωρ-a 2.175 13.49
NL3ωρ-b 2.372 13.49
DDME2-a 2.161 14.08
DDME2-b 2.360 14.08

NL3-b, NL3ωρ-a, NL3ωρ-b, DDME2-a and DDME2-b EoSs surpass twice the solar mass. For each
EoS, the maximum mass and the radius at M = 1.4 M� are shown in Table 5.

Now, rotation or/and magnetic fields are considered to investigate which EoS is capable of describ-
ing the observed maximum mass and the radius at M = 1.4 M�. First, rotation is considered by
solving the Hartle equations given in Appendix B. Figure 2 shows the MR relations of the rotating
neutron stars. Here, is taken as 6 × 103 Hz ( = 0.02 km−1 in gravitational units), corresponding
to the fastest possible neutron star. This frequency corresponds roughly to the Kepler frequency
K [21,45]:

K ≈ 24
[

M/M�
(R/km)3

]1/2

× 104 s−1. (18)

A slight increase of mass is seen in all cases, as shown in Fig. 2 and in Table 6. NL3-a, NL3-b,
NL3ωρ-a, NL3ωρ-b, DDME2-a and DDME2-b EoSs surpass twice the solar mass. In this rotating
case, the neutron star is axially deformed. The equatorial radius at M = 1.4 M� is denoted as Re

1.4 M� ,
the polar radius at M = 1.4 M� as Rp

1.4 M� [16–19], and the eccentricity e is defined by [18,19]

e =
√(

Re

Rp

)2

− 1. (19)

It is found that rotation has a small effect on mass even with the Kepler frequency (6 × 103 Hz).
Next, magnetic fields −1/4FμνFμν in Eq. (5) are considered for the 11 EoSs by solving TOV

equations in Eqs. (15) and (16). Figure 3 shows MR relations with magnetic fields. The magnetic
field strength at the center is adopted as B0 = 2.5 × 1018 G. As shown in Fig. 3 and Table 7, GM1,
TM1-b and TM2ωρ-b EoSs give masses greater than two solar masses. Moreover, considering the
upper limit of R = 13.6 km at 1.4 M� [20], TM2ωρ-a and TM2ωρ-b EoSs are in the range of the
observation with respect to radii. However, NL3-a, NL3-b, NL3ωρ-a, NL3ωρ-b, DDME2-a and
DDME2-b EoSs are not in the range of the observation with respect to radius, but their masses
surpass twice the two-solar-mass.

For the B0 = 3 × 1018 G case, the results are shown in Fig. 4 and Table 8. All EoSs except TM1-a
give masses greater than two solar masses. However, considering the upper limit of R = 13.6 km at

7/20

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2020/10/103E04/5900675 by guest on 21 August 2022



PTEP 2020, 103E04 C. Watanabe et al.

Fig. 2. Same as Fig. 1, but with rotation (6 × 103 Hz).

Table 6. Maximum mass (Mmax) of a rotating neutron star in units of M�, polar radius (Rp
1.4 M�) and equatorial

radius (Re
1.4 M�) at M = 1.4 M�, and eccentricity (e), respectively, at  = 6 × 103 Hz ( = 0.02 km−1 in

gravitational units).

EoS Mmax Rp
1.4 M� Re

1.4 M� e

GM1 1.851 12.43 14.51 0.60
TM1-a 1.675 12.79 15.39 0.67
TM1-b 1.895 12.79 15.39 0.67
TM2ωρ-a 1.762 12.12 14.10 0.59
TM2ωρ-b 1.964 12.12 14.10 0.59
NL3-a 2.236 13.05 15.10 0.58
NL3-b 2.439 13.05 15.10 0.58
NL3ωρ-a 2.275 12.43 13.78 0.48
NL3ωρ-b 2.446 12.43 13.78 0.48
DDME2-a 2.273 13.06 15.05 0.57
DDME2-b 2.451 13.06 15.05 0.57

1.4 M�, no EoS is in the range of the observation concerning radius. Therefore, the central magnetic
field strength should be smaller than B0 = 3 × 1018 G.

Finally, the MR relations are calculated in the presence of both rotation and magnetic fields. This
case, with both rotation and magnetic fields, is considered here because of the emergency of a
millisecond magnetar in the occasion of a neutron star merger [13]. The MR relations are shown in
Fig. 5. Maximum masses of neutron stars, two kinds of radius and eccentricity with both rotation
[ = 6 × 102 Hz ( = 0.002 km−1 in gravitational units)] and magnetic fields (B0 = 2.5 × 1018 G)
are shown in Table 9.

All 11 EoSs give masses greater than or around twice the solar mass in the presence of both
rotation and magnetic fields. Again NL3-a, NL3-b, NL3ωρ-a, NL3ωρ-b, DDME2-a and DDME2-b
EoSs surpass 2.14 M� and meet the observation with respect to radius (R ≤ 13.6 km in 1.4 M�).
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Fig. 3. Same as Fig. 1, but with magnetic fields (B0 = 2.5 × 1018 G).

Table 7. Same as Table 5, but with magnetic fields (B0 = 2.5 × 1018 G).

EoS Mmax R1.4 M�
GM1 2.050 13.91
TM1-a 1.883 14.45
TM1-b 2.060 14.46
TM2ωρ-a 1.979 13.58
TM2ωρ-b 2.135 13.58
NL3-a 2.313 14.53
NL3-b 2.487 14.53
NL3ωρ-a 2.360 13.70
NL3ωρ-b 2.513 13.70
DDME2-a 2.345 14.50
DDME2-b 2.505 14.50

4. Discussion
4.1. Rotation

Here we discuss how much rotation brings in the additional mass m0. Here, TM2ωρ-b EoS is
chosen for discussion. In Fig. 6, the maximum mass is expressed approximately as M/M� =
1.8932 − 3.619 × 10−3  + 1.123 × 10−3 2 up to the second order of , where the rotational
frequency  is given in units of Hz. If one wants to describe a neutron star with mass of 2 M� only
by rotation, one needs more than 12000 Hz frequency. However, the observed value of the maximum
frequency is about 700 Hz ( ∼ 0.0015 km−1 in gravitational units) so that  = 12000 Hz is
unrealistic.

4.2. Two-solar-mass problem

In Sect. 3, MR relations have been calculated for the 11 EoSs. Calculated maximum masses of NL3-a,
NL3-b, NL3ωρ-a, NL3ωρ-b, DDME2-a and DDME2-b EoSs are over twice the solar mass without
magnetic fields. Masses calculated by GM1, TM1-b and TM2ωρ-b EoSs with strong magnetic fields
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Fig. 4. Same as Fig. 1, but with magnetic fields (B0 = 3 × 1018 G).

Table 8. Same as Table 5, but with magnetic fields (B0 = 3 × 1018 G).

EoS Mmax R1.4 M�
GM1 2.135 14.05
TM1-a 1.993 14.59
TM1-b 2.150 14.59
TM2ωρ-a 2.079 13.72
TM2ωρ-b 2.215 13.72
NL3-a 2.381 14.69
NL3-b 2.541 14.69
NL3ωρ-a 2.424 13.91
NL3ωρ-b 2.562 13.91
DDME2-a 2.410 14.44
DDME2-b 2.557 14.44

(B0 = 2.5 × 1018 G) become over twice the solar mass. In Ref. [46], MR relations were calculated
with magnetic fields of B0 = 3.1 × 1018 G. Using GM1 EoS, they obtained a mass of over twice the
solar mass. Their results are consistent with ours.

4.3. Radius at 1.4 M�
From the observation of the GW170817 gravitational wave event, the upper limit radius is
13.6 km [20] at M = 1.4 M�. Also, another source reports the upper limit radius 13.76 km [47]
at M = 1.4 M�. The lower-limit radius was reported as 10.68+0.15

−0.04 km [48] at M = 1.6 M�. The
upper limit of radius found by NICER observations is 13.02+1.24

−1.06 km [49] at M = 1.44+0.15
−0.14 M�.

The validity of each EoS in this respect is discussed here. The neutron star radii at 1.4 M� are sum-
marized in Table 10, which shows that radii predicted by TM1-a, TM1-b, NL3-a, NL3-b, DDME2-a
and DDME2-b EoSs are over 13.6 km in any case. For the GM1 EoS, the radius becomes smaller
than 13.6 km only in the case of no magnetic fields and no rotation. As for TM2ωρ-a and TM2ωρ-b
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Fig. 5. Same as Fig. 1, but with both rotation ( = 6 × 102 Hz) and magnetic fields (B0 = 2.5 × 1018 G).

Table 9. Same as Table 6, but with both rotation ( = 6 × 102 Hz) and magnetic fields (B0 = 2.5 × 1018 G).

EoS Mmax Rp
1.4 M� Re

1.4 M� e

GM1 2.050 13.89 13.93 0.083
TM1-a 1.884 14.42 14.48 0.095
TM1-b 2.061 14.43 14.50 0.096
TM2ωρ-a 1.980 13.54 13.62 0.11
TM2ωρ-b 2.136 13.54 13.62 0.11
NL3-a 2.314 14.51 14.54 0.064
NL3-b 2.487 14.72 14.76 0.074
NL3ωρ-a 2.360 13.67 13.73 0.094
NL3ωρ-b 2.513 13.67 13.73 0.094
DDME2-a 2.346 14.23 14.31 0.11
DDME2-b 2.506 14.23 14.31 0.11

EoSs, radii become smaller than 13.6 km in the case of no rotation. For NL3ωρ-a and NL3ωρ-b
EoSs, radii are in the range of observation without magnetic fields or rotation.

Considering the observed maximum mass 2.14 M� and the upper limit of the radius 13.6 km,
NL3ωρ-a and NL3ωρ-b EoSs are the most suitable of the 11 EoSs and meet the requirements of
observations. TM2ωρ-b EoS is also found to be nearly in the range of the observation, namely,
M = 2.2 M� and R = 13.7 km, with strong magnetic fields (3 × 1018 G).

4.4. Particle populations of neutron star matter

The relative populations of baryons and leptons for TM2ωρ-b EoS without magnetic fields are shown
as functions of baryon number density in Fig. 7. For baryons, populations of all octet baryons are
shown. For leptons, populations of e−, μ−, and τ− are shown, but the heavy lepton τ− does not
appear in the figure. Figure 8 shows the populations of the baryons and leptons with the magnetic
fields of B0 = 2.5×1018 G. In this case, populations of electrons, muons,�− and�+ are staggering.
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Fig. 6. Frequency  (Hz) versus maximum mass (M�) for TM2ωρ-b EoS.

Table 10. Radius at M = 1.4 (M�) for each EoS. R indicates radius without rotation or magnetic fields, Re
rot

is the equator radius with rotation (6 × 103 Hz), Rmag is the radius with magnetic fields (B0 = 2.5 × 1018 G),
and Re

rot&mag is the equator radius with both rotation ( = 6 × 102 Hz) and magnetic fields (B0 = 2.5 × 1018 G)
for each EoS.

EoS R Re
rot Rmag Re

rot&mag

GM1 13.49 14.51 13.91 13.93
TM1-a 14.07 15.39 14.45 14.48
TM1-b 14.10 15.39 14.46 14.50
TM2ωρ-a 13.24 14.10 13.58 13.62
TM2ωρ-b 13.23 14.10 13.58 13.62
NL3-a 14.35 15.10 14.53 14.54
NL3-b 14.35 15.10 14.53 14.76
NL3ωρ-a 13.49 13.78 13.70 13.73
NL3ωρ-b 13.49 13.78 13.70 13.73
DDME2-a 14.08 15.05 14.50 14.31
DDME2-b 14.08 15.05 14.50 14.31

The population of�+ rises faster than that without magnetic fields. The uncharged particles�0 and

 are not affected by the magnetic field. Again, there is no population of the heavy lepton τ− in the
figure.

5. Summary

In this work the mass–radius relations have been calculated for magnetized and rotating neutron stars
using 11 EoSs, which include hyperons in addition to nucleons as components. For NL3ωρ-a and
NL3ωρ-b EoSs, masses over the observed maximum mass of 2.14 M� are obtained and predicted
radii are in the range of R ≤ 13.6 km at 1.4 M� without rotation or magnetic fields. As for NL3-a,
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Fig. 7. Particle populations as a function of baryon number density without magnetic fields.

Fig. 8. Same as Fig. 7, but with magnetic fields (B0 = 2.5 × 1018 G).

NL3-b, DDME2-a and DDME2-b EoSs, they surpass 2.14 M� without rotation or magnetic fields.
However, radii are not in the range of the observation of R ≤ 13.6 km at 1.4 M�. For the TM1-b and
TM2ωρ-b EoSs, masses more than 2.14 M� are obtained in the strong magnetic field of 3×1018 G at
the center. As for the GM1, TM1-b, TM2ωρ-a and TM2ωρ-b EoSs, masses over 2 M� are obtained
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both with the strong magnetic field of 2.5 × 1018 G and in the rotation of 6 × 102 Hz. From the
observed radius, the central magnetic field strength should be smaller than B0 = 3 × 1018 G.

Considering both the observed maximum mass 2.14 M� and the upper limit of the radius from the
gravitational wave event, two suitable EoSs (NL3ωρ-a and NL3ωρ-b) among the 11 are found to
meet the requirements of observations. TM2ωρ-b EoS is also found to be nearly in the range of the
observation, namely, M = 2.2 M� and R = 13.7 km, with strong magnetic fields (3 × 1018 G) at the
center. This result also suggests that most EoSs need a stiffer matter in the core of a neutron star,
such as quark matter.

In this work we have not considered the effects of the magnetic field on the crust EOS (BPS
EOS). It is certain that the strength of the magnetic field affects electrons in the crust so that the
radii of neutron stars might be substantially changed [50]. It is one of our future tasks to check how
electrons in the circumstance of the strong magnetic fields affect the radius of a neutron star. Also,
hyperon–quark hybrid stars with rotation or/and magnetic fields should be considered in the future.
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Appendix A. Energy levels in a strong magnetic field

Energy levels of a relativistic particle in a strong magnetic field were calculated in various refer-
ences [28,46,51–54]. Here we summarize the formula used in this paper. The energy spectra for
charged baryons (Eb

ν,s), neutral baryons (Eb
s ) and leptons (El

ν) in a strong magnetic field in the
z-direction are derived from the Dirac equation and given by

Eb
ν,s =

√(
kb

z

)2 +
(

mc
b,s

)2 + gωbω
0 + τ3bgρbρ

03, (A.1)

Eb
s =

√(
kb

z

)2 + (
mb,s

)2 + gωbω
0 + τ3bgρbρ

03, (A.2)

El
ν =

√(
kl

z

)2 + (ml)
2, (A.3)

respectively, where ki
z is the wave-number of particle i in the z-direction. Here, for simplicity, only

σ , ω and ρ mesons are treated. σ , ω0 and ρ03 are expectation values of mesons in a vacuum. Here
effective masses are given by

mc
b,s =

√
m∗

b
2 + 2ν|qb|B − sμNκbB, (A.4)

mb,s = m∗
b − sμNκbB, (A.5)

ml =
√

m2
l + 2ν|ql|B, (A.6)

for charged baryons (mc
b,s), neutral baryons (mb,s) and leptons (ml), respectively. Here B indicates

the strength of the magnetic field. qi is the charge of particle i, and s (= +1, −1) indicates its spin.
κb is the anomalous magnetic moment of baryon b. Here the reduced mass is

m∗
b = mb − gσbσ , (A.7)
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where mb is the original baryon mass. The integer ν represents the Landau levels

ν = n + 1

2
− sgn(qb)

s

2
= 0, 1, 2, · · · , νmax, (A.8)

where n implies any integer greater than or equal to zero, and s = +1 for spin-up and s = −1 for
spin-down, respectively. Namely, we should take differently the lowest values of ν, which takes 0
or 1, depending on the signs of charges and the spin third components. The maximum values of the
Landau levels are given by

νmax = (Eb
F + sμNκbB)2 − m∗

b
2

2|qb|B , (A.9)

νmax = (El
F)

2 − m2
l

2|ql|B , (A.10)

for baryons and leptons, respectively. The Fermi wave numbers kb
F ,ν,s, kb

F ,s and kl
F ,ν are related to

the Fermi energy (EF ) by

(Eb
F)

2 =

⎧⎪⎪⎨
⎪⎪⎩
(kb

F ,ν,s)
2 +

(
mc

b,s

)2

(kb
F ,s)

2 + (
mb,s

)2 , (A.11)

for charged baryons and neutral baryons, respectively, and

(El
F)

2 = (kl
F ,ν)

2 + m2
l (A.12)

for leptons. The vector number density is

ρv
b = |qb|B

2π2

∑
s

νmax∑
ν

kb
F ,ν,s, (A.13)

for charged baryons,

ρv
b = 1

2π2

∑
s

[
1

3

(
kb

F ,s

)3 − 1

2
sμNκbB

×
{

mbkb
F ,s +

(
Eb

F

)2
(

arcsin

(
mb

Eb
F

)
− π

2

)}]
, (A.14)

for neutral baryons and

ρv
l = |ql|B

2π2

∑
s

νmax∑
ν

kl
F,ν , (A.15)

for leptons.
Then the total energy density for the matter is

εm =
∑

b

εb +
∑
�

ε� + 1

2
m2
σ σ

2 + U (σ )+ 1

2
m2
ω

(
ω0)2 + 1

2
m2
ρ

(
ρ03)2, (A.16)
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where U (σ ) = 1/3 bmn(gσ σ )2 + 1/4 c(gσ σ )4. Here

εc
b = |qb| B

4π2

∑
s

νmax(s)∑
νmin(s)

[
kb

F ,νsE
b
F + (

m̄c
bνs

)2 ln

∣∣∣∣∣
kb

F ,νs + Eb
F

m̄c
bνs

∣∣∣∣∣
]

, (A.17)

for charged baryons,

εn
b = 1

4π2

∑
s

[
1

2
kb

F ,s

(
Eb

F

)3 − 2

3
sμNκbB

(
Eb

F

)3
(

sin−1

(
m̄bs

Eb
F

)
− π

2

)

−
(

1

3
sμNκbB + 1

4
m̄bs

) (
m̄bsk

b
F ,sE

b
F + (m̄bs)

3 ln

∣∣∣∣∣
kb

F ,s + Eb
F

m̄ bs

∣∣∣∣∣
)]

, (A.18)

for neutral baryons and

ε� = |q�| B

4π2

∑
s

νmax∑
νmin(s)

[
k�F ,νE�F + (m̄�ν)

2 ln

∣∣∣∣∣
k�F ,ν + E�F

m̄�ν

∣∣∣∣∣
]

, (A.19)

for leptons. Then the pressure for the matter is given by

pm =
∑

i

μiρ
v
i − εm, (A.20)

where μi is the chemical potential of particle i. Including self-energy of the magnetic fields, the
energy density ε and the pressure p in the presence of the magnetic fields are

ε = εm + B2

2
, (A.21)

p = pm + B2

2
, (A.22)

respectively, which gives an EoS for a specific relativistic mean field theory.

Appendix B. Hartle equations

In this paper Hartle equations are employed to calculate the additional mass m0 and the equatorial and
polar radii for a rotating neutron star [16–19]. The Hartle equations are coupled ordinary differential
equations for the metric parameters h0(r), h2(r), m0(r), m2(r), and k2(r) with respect to r, which
refers to the distance from the center of a neutron star:

1

r3

d

dr

(
r4j

d�

dr

)
+ 4

dj

dr
� = 0, (B.1)

− d

dr
δP0 + 1

3

d

dr

(
r2e−2ν0� 2) =

m0e4λ0

(
1

r2 + 8πp0

)
− 1

12
e2λ0r3j2

(
d�

dr

)2

+ 4πre2λ0 (ε0 + p0) δP0, (B.2)

dm0

dr
= 4πr2 (ε0 + p0)

dε

dp
δP0 + 1

12
r4j2

(
d�

dr

)2
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− 1

3
r3� 2 dj2

dr
, (B.3)

dv2

dr
= −2

dν0

dr
h2

+
(

1

r
+ dν0

dr

)[
1

6
r4j2

(
d�

dr

)2

− 1

3
r3� 2 dj2

dr

]
, (B.4)

dh2

dr
= − 2v2

r(r − 2M )dν0
/

dr

+
{

−2
dν0

dr
+ r

2(r − 2M )dν0
/

dr

[
8π (ε0 + p0)− 4M

r3

]}
h2

+ 1

6

[
r

dν0

dr
− 1

2(r − 2M )dν0
/

dr

]
r3j2

(
d�

dr

)2

− 2

3

[
r

dν0

dr
+ 1

2(r − 2M )dν0
/

dr

]
r2� 2 dj2

dr
. (B.5)

Here, one has the following relations:

e2λ0 = r

r − 2M
, (B.6)

M = M (r) = 4π
∫ r

0
ε0r2dr. (B.7)

From Ref. [19], one has

2
dν0

dr
+ 1

r
= re2λ0

(
1

r2 + 8πp0

)
, (B.8)

dp0

dr
= −(ε0 + p0)

dν0

dr
, (B.9)

� = − ω, (B.10)

j = e−(λ0+ν0), (B.11)

v2 = h2 + k2. (B.12)

By differentiating Eq. (B.7), one has

dM

dr
= 4πε0r2. (B.13)

Equation (B.8) is transformed as

dν0

dr
=
(
4πp0r3 + M

)
r (r − 2M )

. (B.14)

By differentiating Eq. (B.11), one has

dj

dr
= −j

(
dλ0

dr
+ dν0

dr

)
. (B.15)
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By differentiating r4j(d�/dr), one has

d

dr

(
r4j

d�

dr

)
=
(

4r3j
d�

dr
+ r4 dj

dr

d�

dr
+ r4j

d

dr

d�

dr

)
. (B.16)

Here, assuming

d�

dr
= g, (B.17)

Eq. (B.16) is written as

d

dr
g = − 1

r4j

(
4

dj

dr
� r3 + 4r3jg + r4 dj

dr
g

)

= − 4

rj

dj

dr
� − 4

r
g − 1

j

dj

dr
g. (B.18)

Eq. (B.2) is transformed as

d

dr
δP0 = 1

3

d

dr

(
r2e−2ν0� 2)− m0e4λ0

(
1

r2 + 8πp0

)

+ 1

12
e2λ0r3j2

(
d�

dr

)2

− 4πre2λ0 (ε0 + p0) δP0,

and therefore one has

d

dr
δP0 = 2

3
rj2e2λ0� 2 + 2

3
r2j

dj

dr
e2λ0� 2

− 1

3
r2j2 2M

(r − 2M )2
� 2 + 2

3
r2j2e2λ0�

d�

dr

− m0e4λ0

(
1

r2 + 8πp0

)

+ 1

12
e2λ0r3j2

(
d�

dr

)2

− 4πre2λ0 (ε0 + p0) δP0. (B.19)

From Eq.(B.3), one has

dm0

dr
= 4πr2 (ε0 + p0)

dε

dp
δP0

+ 1

12
r4j2

(
d�

dr

)2

− 2

3
jr3� 2 dj

dr
. (B.20)

From Eq. (B.4), one has

dv2

dr
= −2

dν0

dr
h2

+
(

1

r
+ dν0

dr

)[
1

6
r4j2

(
d�

dr

)2

− 2

3
r3� 2j

dj

dr

]
. (B.21)
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From the above equations, 9 nonlinear equations are obtained (Eqs. B.5, B.9, B.13, B.15, B.17, B.18,
B.19, B.20, and B.21) with respect to 9 variables (M , p0, j, g,� , δP0, m0, v2, and h2). The equations
are solved from r = 0. The initial value of the central density is given as εc where εc = ε(r = 0). In
addition, the pressure of the center pc = p(εc) is determined from the equation of state. The initial
value of other variables are 0 except for j and � . Here the initial value of j is taken as 1.
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