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Abstract

The paper proposes a dynamic framework for demand estimation with data

obtained from eBay auctions when one or more bids of a bidder for similar

products offered in consecutive auctions can be observed and bidding is costly.

As opposed to standard static auction models, where the bidder either wins or

forgoes the product forever, the bidder here values the option to bid again in

the next upcoming auction and adjusts her bid accordingly. It is shown that

standard panel methods lead to consistent estimates for the common demand

parameters, despite of the selection that is introduced by the individual partic-

ipation decision. The bidding costs can be inferred in a second step from the

first order conditions using the individual specific error terms.

1 Introduction

Every day sellers offer millions of items over individual eBay auctions. What once

started off as an e-garage sale by now has become a fully developed market place

for private and professional resale of new and used goods. eBay claims to be the
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most popular shopping address of online buyers worldwide and is highly profitable.

Its stunning success story early on triggered researchers’ interest. The first papers

concentrated on eBays reputation mechanism (e.g. Lucking-Reiley et al. (2000) and

Houser and Wooders (2001)). The rich and readily accessible data, however, seems

ideal for testing other microeconomic theories, first of all auction models (e.g. Roth

and Ockenfels (2002)), and for inferring characteristics of demand (e.g. Bajari and

Hortacsu (2003)).

From eBay’s bidding histories, not only the transaction price is available but also

all non-winning bids can be observed. This allows richer inferences than most other

auction data sets. When observing the market for a specific product over time, it is

for example possible to trace a bidder’s behaviour in this market. This paper offers a

dynamic framework which allows to recover common and individual specific demand

parameters from bids at eBay.

As opposed to previous work the model stresses the market place characteristics

of eBay: not only one but a multitude of objects compete for the attention of a

buyer. When a bidder considers buying a relatively standardized product from eBay,

she presumably takes account of the different opportunities she has. She might be

willing to try in several different auctions before finally obtaining the desired product

if this results in paying a lower price in the end. When building her bidding strategy

the bidder then does not compare the value of winning the object now or forgoing

it forever, as is assumed when a static auction setting is used, but with winning the

object now or in future upcoming auctions.

The literature on sequential auctions considers bidders’ strategies when the ”thin

markets”1 assumption implicit in static auction models is relaxed and a number of

identical objects are offered in a series of consecutive auctions. As opposed to static

auctions, a bidder in these models is not willing to bid her valuation in the early
1”The auction model is a useful description of ”thin markets” characterized by a fundamental

asymmetry of market position. While the standard model of perfect competition posits buyers and

sellers sufficiently numerous that no economic agent has any degree of market power, the bare bones

of the auction model involves competition on only one side of the market.” (Riley and Samuelson

(1981), p. 381)
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auctions but takes account of what other bidders would have to pay in the following

auctions. A bidder’s optimal strategy in a sequential sealed bid second price auction

then consists in shading her valuation exactly by her option value, that is by the

added value that she receives from the possibility to participate in future upcoming

auctions (Weber (2000)). Since there are only a limited number of objects available

this option value decreases over time. While the optimal bid of a non-winning bidder

hence increases the expected prices that are paid in case of winning are the same and

correspond to the highest valuation among the bidders that will not receive a product.

Thus, the law of one price for identical objects holds in expectation.

A bidder’s ”search” for low prices is restricted in these models by the limited

availability of objects, that is there are more bidders then products on offer. Assuming

a fixed number of auctions offering a specific product does not fit the eBay market

very well. When assuming an infinite horizon, instead, the bidder has to be stopped

from bidding forever with a bid close to zero by some other device. As in Bajari

and Hortacsu (2003) I assume that it is costly for a bidder to take part in an eBay

auction. These costs reflect information costs, connection charges, and the time spent

in front of the computer when placing a bid. Bidding costs presumably differ between

bidders. While some people enjoy bargain hunting others find they could spent their

time better elsewhere; while some bidders have access to a fast internet connection or

might even be allowed to use their computer at work for this purpose, others rely on a

slow modem and bear the connection charges themselves. I will show in the following

that when bidding costs are taken into account a bidder still shades her valuation due

to future opportunities. The amount of shading now, however, does not only depend

on the competitors’ valuations but also on the individual bidding costs. Given that

there will always be a new product available, that is the horizon is infinite, this option

value and hence the optimal bid of a bidder stay constant over time.

If the number of bidders was fixed and everybody was only interested in one

object, bidders with high bidding costs would win objects at an earlier stage and

prices would decline. Assuming a fixed pool of bidders is, however, not feasible in

the infinite horizon model, since exit due to winning would at some point result in a

situation where no bidders are left. If ones allows instead for entry, with valuations
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and bidding costs of entrants being the same in expectation, the expected prices paid

by winners do not follow a trend. This result hinges on the assumption that all

competitors belief that the draw of the second highest bid comes in every period from

the same constant distribution function. Modelling a full fledged dynamic game with

entry and exit where each bidder would build in every auction a new expectation

of the highest bid of her competitors based on information from past auctions is

unfortunately rather complicated. Given the huge amount of bidders that interact

in eBay markets for standardized products with an in principle unlimited availability

of products it though seems a valid first approximation to assume that dynamic

strategies of current bidders and new entrants do not impact on the distribution of

second highest bids in a systematic way.

The transaction prices that are observed at eBay show considerable price disper-

sion. This is still true if different product characteristics are taken into account. The

IO literature makes search frictions responsible for why the law of one price often

cannot be observed in reality despite of seemingly identical products. I will show that

in the auction setting it is also the differing costs of bidders that cause (part of the)

price dispersion. The intuition behind this result is that bidders with higher search

cost have a lower option value of bidding in future auctions and therefore shade their

bids less. (The bidding cost of the current period on the other hand is sunk at the

time of bidding, and does not influence the bid.) If bidders bid differently and have a

chance of winning the product if they try long enough, observed prices will differ in

equilibrium.

Why are search models and eBay auctions similar? Optimal search behaviour

follows a stopping (or reservation price) rule: Accept offers that exceed your reser-

vation value and reject all others. The reservation value when searching auctions for

low prices corresponds to a ”reservation bid” that is placed invariantly in every new

auction. If the transaction price, i.e. the second highest bid, is above the bidder’s

reserve bid, he loses and has to try in a new auction, if it is below it the bidder wins

and pays the second highest bid.

Estimating search models has a long history in the labor market literature (e.g.

van den Berg and Ridder (1998)). Recent contributions in IO are Sorensen (2001)
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and Hong and Shum (2003). The search costs that are needed to justify the observed

price dispersion are often very high. The advantage of the data from eBay is that

the ”reserve bid” is observed in every auction, even when a bidder is not winning

and that very detailed information on the covariates is available. This allows to

distinguish price dispersion caused by search frictions from that induced by product

differentiation. The costs that are estimated here are lower then in both Sorensen

(2001) and Hong and Shum (2003).

The next section explicates the rules of the eBay game. Section 3 introduces the

model. The data is described in section 4. Section 5 discusses identification and

presents the estimation strategy. The results are provided in Section 6. Section 7

concludes.

2 The Rules of the eBay Game: Facts and Simpli-

fications

A growing empirical literature uses auction data for demand estimation.2 Besides

being a rich source for observing strategic interaction between individuals, the advan-

tage of auction data as compared to other micro data is that the rules of the game

are explicitly stated and common knowledge to all participants at the outset of the

game. Additionally many of the auctions for which data is available, e.g. procure-

ment auctions, have been explicitly designed by economists and therefore come close

to what is taught in theory. Models for a structural empirical analysis are therefore

readily available. Most of this does not hold true for data from eBay. eBay’s rules

are much less clear cut and many details are left to the discretion of the competing

parties. The combination of rules that is used or could potentially be used does not

fit any of the textbook examples. A few clarifications and simplifications are therefore

in order before starting to develop the model.

Different auction models make different assumptions on the valuations of bidders.

Pure private (PV) and common values (CV) as well as more general affiliated values

2Good overviews are provided in Laffont and Vuong (1996) and Athey and Haile (2002)
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have been considered in the theoretical literature. While the general affiliated values

model, which includes the two other models as special cases, would be most desirable

it does not lend itself easily for empirical analysis. In general the parameters of

this model are not identified (see Laffont and Vuong (1996)). Whether authors of

empirical papers decide for PVs or CVs normally depends on the characteristics of

the goods. The products that I am interested in are off-the-shelf products that are

frequently sold outside eBay and that are presumably mainly acquired for personal

usage.3 The PV assumption therefore seems to be more applicable and is taken as a

good approximation to the true bidding model.4

Assumption 1 Bidders’ valuations for the products are private.

When a bidder decides for buying a product at eBay and runs a search at eBays

homepage she will find a number of auctions that offer more or less equivalent prod-

ucts. And new auctions open every instant featuring again the same product. Bidding

in an auction before the earlier ones ended is weakly dominated since bidders can

always wait.5 The auctions can therefore be ordered by their ending dates into a se-

quence. There are different possibilities how a bidder decides in which of the auctions

listed in the search results she will participate. I will assume that she first considers

the auction that closes next. When deciding about entry and her bidding strategy she

will think of all other following auctions as offering approximately the same average

product. This is a very strong assumption. First of all, it does not allow a bidder to

jump directly to auctions in the search list that attract her attention most. Secondly,

bidders act presumably more forward looking and have a number of auctions in their
3Bajari and Hortacsu (2003) quantify the winners curse in the market for coins at eBay. While

the winner’s curse may also be present in my sample, I assume that it only plays a subordinate role.
4There are also tests that try to distinguish from the data which of the models fit the data better.

These tests are winner’s curse tests, that measure the influence of the number of bidders on the

bid of a bidder. The problem with these tests is that competition from future auctions introduces

a common component into the PV setting in finite horizon sequential auctions (see below). If this

holds also true for the case when an infinite number of products are available, the tests would not

distinguish between private and common values.
5By bidding in the later auction before the other one closed the bidder precludes herself the option

to participate in the auction that closes first. The next paragraph shows that the bidder cannot gain

by bidding early in an auction.
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choice set when starting to bid in one of them. However, the assumption is necessary

to keep the model tractable.

Assumption 2 Auctions can be sorted by their ending dates into an infinite se-

quence. Bidders evaluate one auction in the sequence after the other. Meanwhile

characteristics of products in future auctions are assumed to be average.

What about eBay’s bidding rules? eBay allows a bidder to either bid incremen-

tally as in an English auction or to submit her maximum willingness to pay to a proxy

bidding software at eBay that will then bid for her. Secondly, the rules do not specify

when a bidder has to enter an auction. Bidder’s are free to abstain from bidding for

a while or to only enter in the last seconds of the auction. Thus a bidder never knows

how many other bidders are currently competing for the product. Finally, there is a

so called ”hard close”, that is an auction ends at a fixed pre-defined point in time and

not when bidding activity ceases. The literature on eBay so far does not provide any

evidence how early bidding could benefit a bidder. There are however reasons why

a bidder might be reluctant to reveal any private information before the end of an

auction. Roth and Ockenfels (2002) show that ”sniping”, that is bidding in the very

last second, is a dominant strategy for a bidder, when he faces other bidders, that bid

incrementally. The argument is that by bidding late, bidders avoid price wars. The

advantage of this strategy, however, disappears when the competitors decide to tell

their maximum willingness to pay to eBays proxy bidding service. Bajari and Hor-

tacsu (2003) look at a common value setting. Bidding early can not be advantageous

since it reveals valuable information on the signal that a bidder received. Wang (2003)

shows that a common value component is introduced into the private value setting

when there is a series of auctions featuring the same product. As was pointed out

before, sequential auctions lead to bid shading. The amount of shading depends on

expectations about future competitors’ bids. Different bidders’ expectations though

contain a common component. Most data on eBay shows a pronounced increase in

bidding activity towards the end of an auction. Following the literature and the data

I assume that it is not optimal for a bidder to bid early in an auction and therefore

the bidding rules are approximated by a sealed bid Vickery auction. The choice set
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of a bidder comprises an infinite series of such Vickery auctions.

Assumption 3 The bidding rules in each auction can be approximated by a Vickery

auction.

Finally, assumptions have to be made on how bidders enter and exit the market and

how this behaviour influences the distribution of valuations and costs of participants

in an auction. The data shows that only very few bidders continue bidding after

winning an auction (see also section 4). I will therefore assume that bidders are only

interested in one product and exit after winning. It is further assumed that every

winner is replaced by a new entrant who draws his valuation and cost randomly from

always the same common distribution functions. Lastly I assume that bidders view

their competitors’ bids in each new auction as representing a random draw from a

constant distribution function. This is probably the most critical assumption of all.

It is justified by the huge amount of bidders that interact at eBay and the multitude

of products on offer. Both make it unlikely to bid against the same competitor twice

if there is some random component to a bidders’ entry decision and therefore limit the

scope for strategic behaviour. The data confirms that bidders rarely interact twice

with the same person.

The fact that bidders in the data do not interact with each other more then once

could also be the outcome of bidders’ dynamic strategies. To see why go back to the

original sequential auction model by Weber (2000). The first auction there provides a

complete ranking of valuations, that is every bidder knows who else is in the market.

If there are two auctions and bidding is costly, only the second highest bidder in the

first auction will find it profitable to enter the second auction. All the others know

that they have no chance of winning and are therefore reluctant to incur the bidding

costs. The winner in the second auction then pays a price of zero. Since everybody

foresees that, bidders will not find it optimal to follow the before mentioned strategies.

von der Fehr (1994) shows that in a two-objects-many-bidders model there is room

for predation. While the bids in the first auction still provide a complete ranking of

bidders’ valuations, bids are higher then in Weber (2000). Bidder’s might even bid

more then their valuation for obtaining the chance of being the only bidder in the
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highly profitable second auction. The optimality of the predatory strategy hinges on

the assumption, that there is a limited number of objects available, that is not every

bidder will receive one. The proof does not necessarily carry over to the case where an

infinite number of objects are on offer. To see why note that predation is costly, since

it includes the danger of winning the object for a price higher then ones valuation.

Incurring these costs might not be optimal if bidders could obtain the object at a

later instant when the high value bidders exited. Instead of trying to predate entry

into future auctions, bidders might also just decide to stay out of some of the auctions

but to reveal truthfully when entering (strategic non-participation). If bidders know

that they have no chance of winning since there are many high value bidders in the

market they might want to stay out until they belief that the high value bidders left

the market.6

At this stage it seems impossible to model the full fledged dynamic game with entry

and exit where the distribution of the participants’ valuations is derived endogenously.

It will therefore be assumed that bidders’ fully dynamic strategies would not influence

the optimality of their bidding strategies given entry, that is predation does not exist

or is negligible, and that bidders’ entry behaviour does not change the distribution

of bids in future auctions in a systematic way which could be foreseeable by the

competitors. In section 5 I shortly come back to the possibility of strategic non-

participation and discuss which problems it causes in the identification.

Assumption 4 Bidders belief that the draw of the highest bid of her competitors

comes in every new auction from the same constant distribution function. The mean

of this distribution differs with product characteristics.

Given these assumptions it is now possible to model the eBay market. Besides

some notation it is necessary to make more precise assumptions on the bidders’ valu-

ations. The next section deals with these issues and presents bidders’ optimal strate-

gies.
6Caillaud and Mezzetti (2003) and Bremzen (2003) consider two-period models where bidders

engage in strategic non-participation since they are reluctant to convey information to the seller

respectively to a new entrant.
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3 The Model

Consider a mass of homogenous products, that are auctioned off in an infinite sequence

of Vickery auctions, one in each period t. There exists a continuum of potential

bidders, n of which participate in a specific auction. Each bidder is interested in one

product only. vit is the valuation of bidder i for the product, bit her bid. From the

bidder’s perspective, the highest bid among the competitors in each new auction, bh
t ,

represents a random draw from a known distribution function fh
t with cdf Fh

t and

support [v, v]. This distributions are allowed to change with the characteristics of the

product in the current auction but do not change with any information on competitors

acquired in past auctions or from information on products in future auctions. The

indicator function is used to denote that a bidder’s bid wins since it is higher than

that of all other bidders (1bit≥bh
t
≡ 1it,win = 1−1it,lose). The bidder may participate

in as many auctions as she wishes. Participation however is costly. The cost ci

can be thought of as the time spent in front of the computer, connection charges,

etc. Different bidders have different cost. Costs are drawn once upon entry from a

common distribution function h(c) with cdf H(c).

Lets first look at a simple example where a bidder’s valuation is independently

drawn from a common distribution function and stays constant over time. This

characterizes a situation with fully homogenous products. Given the other bidders’

optimal strategies a bidder chooses a bid that maximizes her expected intertemporal

utility. The corresponding Bellman equation is:

Vi(vi) = max
{

max
bi>0

E
(
1i,win(vi − bh)− ci + Vi(v′i)

)
, Vi(vi)

}
(1)

s.t. v′i = 1i,losevi.

A bidder who wins pays the price determined by the bid of the second highest bidder

in the auction. Her valuation then drops to zero. With a valuation of zero she has no

interest in winning another object and her option value Vi(0) is zero. Since the single

state variable vi only changes once upon winning the option value in case of losing

stays constant. (1) then simplifies to

Vi = max
{

max
bi>0

E
(
1i,win(vi − bh)− ci + 1i,loseVi

)
, Vi

}
.
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A losing bidder has the option to participate in the next upcoming auction. Since

the option value depends on the bidder’s cost, it is different for different bidders. In

any case, whether losing or winning the bidder pays the bidding costs.

The optimal bid directly follows from the first order condition (FOC).7 Since it

is only optimal for a bidder to participate if her value is above zero (1Vi≥0), the full

bidding strategy is described by:8

b∗i = δ∗i (vi − Vi) with δ∗i = 1Vi≥0, (2)

where a bid of 0 indicates that a bidder does not participate and is therefore not

paying the bidding costs. Since the environment does not change over time a bidder

decides only once whether to participate or not. If participation is optimal in the first

round it will be so in all following ones until the bidder wins and her valuation drops

to zeros. The optimal bid given participation is constant over time.

Substituting the bid back into the Bellman equation gives:

ci = Fh(b∗i )(b
∗
i − E[bh|b∗i > bh]). (3)

An optimal policy thus is one that equalizes the cost of bidding with the expected

gain from one more trial. The bidder’s decision rule here appears as myopic as that

of the decision maker in an optimal stopping problem which is at the basis of search

models, known for example from the labor market literature (Albrecht and Axell

(1984), Burdett and Mortensen (1998)) or the IO literature where a seller faces un-

certain demand (Diamond (1971), Rob (1985)). There the decision maker decides

on a reservation value which serves as a cutoff value for accepting a price or a wage

offer. This reservation value is found by equating the cost form one further search

with the expected gain from this search. As long as the environment is constant, that

is the state variables do not change over time, there is no added value in deciding

sequentially. This holds true for both the auction and the standard search setting.

In both cases the state variable only changes once, namely when the decision maker
7For a more detailed derivation see the proof of proposition 1.
8It is assumed that if entry is profitable today, the bidder prefers to enter today instead of waiting

for tomorrow.

11



succeeds. The distribution of other bidders’ bids and the wage or price offer curve

stay constant.

The model described so far assumed an infinite sequence of identical products. At

eBay there are hardly any two products that are exactly the same. It is therefore

necessary to allow for more general valuations, that take account of product hetero-

geneity. I assume that bidder i’s valuation for a product on offer is made up out of

the weighted sum of its k=1,...,K product characteristics xtk, with weights common

to all bidders, and an individual specific component εit:

vit = v(xt, εit; γ) = γ0 + γ1
′xt + εit

with γ = (γ0, γ1) = (γ0, γ11, γ12, . . . , γ1K). The weights are known to all participants

and stay the same over time. ε′s, on the other hand, are drawn in every period anew

and independently from a common distribution function g(0, ι2). The individual

realization is observed by the bidder just before she decides to enter a new auction.

The Bellman equation for bidder i now is:

Vi(vit) = max
{

max
bit>0

E
(
1it,win(vit − bh

t )− ci + 1it,loseVi(vi,t+1)
)
, Vi(v)

}
.

xt is realized before the bidder bids, bh
t and xt+1 afterwards. The bidder’s expectation

of xt+1 is x, her expectation of her future valuation is denoted by v = v(x, 0; γ), which

is the same for all bidders. Let Vi(vit) ≡ Vit and Vi(v) ≡ Vi. The bidder’s problem

then writes as:

Vit = max
{

max
bit>0

(
1it,win

(
vit − bh

t )
)− ci + 1it,loseVi

)
, Vi

}
(4)

As before the bidder’s optimal strategy is derived from the FOC and the partici-

pation constraint:

Proposition 1 Under assumptions 1-4 the equilibrium strategy of a risk neutral bid-

der i with valuation vit = γ0 + γ1
′xt + εit and cost ci is given by

b∗it = vit − Vi

and

δ∗it =





1 if (bit − Et[bh
t |b∗it > bh

t ])Fh
t (b∗it) ≥ ci

0 otherwise
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A bidder’s optimal bidding policy given entry equates:

ci = Fh(b∗i )(b
∗
i − E[bh|b∗i > bh]) (5)

with b∗i = γ0 + γ1
′x− Vi.

Proof. See appendix. ¤
Note that a bidder still shades her valuation by her option value. Due to different

draws of ε this bid now, however, changes over time. Additionally, she now might

participate in some of the auctions, where her draw of ε is high and stay out of

others. From equation (5) it can be seen that the analogy to the search setting is still

given. The difference to before is that the ”reservation bid” now depends on product

characteristics and the specific realization of the shock.

How does the optimal bid change with the bidding costs? First look at a simple

example in which the highest bid among the competitors, given average product

characteristics, is distributed uniformly on [0, b]. From equation (5) it follows that

in this case Vi = v −
√

2cib. The bidder’s value hence decreases with the bidding

costs. The optimal bid, b∗it = vit − Vi = γ1
′(xt − x) + εit +

√
2cib, on the other

hand increases with c. The corresponding results for an arbitrary distribution are

summarized in proposition 2:

Proposition 2 A bidder’s value decreases with her bidding costs: ∂Vi

∂ci
= − 1

F h(b∗i )
.

The optimal bid increases with c.

Proof. This follows by applying the implicit function theorem to equation 5. ¤
The higher the bidding cost of a bidder, the less attractive it is for her to bid

in many auctions before winning and hence the lower her option value Vi. To avoid

participation in several auctions the bidder will therefore bid more aggressively in the

first place.

4 The Data

The dataset was assembled from eBay.de during April to November 2002. During

these eight month 1212 auctions of a Personal Digital Assistant (PDA), the Compaq
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Ipaq H3850 (Ipaq3850), could be tracked. The product was chosen for several rea-

sons. First of all it is a relatively homogeneous product and frequently sold at eBay.

Secondly, substitution towards competing products was limited since the Ipaq3850

was at that period at the top end of the PDA market the product that offered the

largest number of new features for the smallest price and was rated best among its

competitors by leading German consumer magazines (e.g. Connect). Additionally,

consumer electronics tend to be heavily branded products that cater to different tar-

get groups. To find out whether substitution was actually limited, additional data on

a potentially close competitor was collected. The closest competitor with respect to

product characteristics and price at the beginning of the period was the Casio Cas-

siopeia E-200G. The percentage of Ipaq3850 bidders that also tried in Casio auctions

during April to May was less then 5%.

Substitution however did happen towards used Ipaq3850’s and those that came

with additional accessory or had smaller defects. The dataset therefore includes in-

formation on all auctions that where open in the category PDAs and Organizers and

included the words ”Compaq” and ”3850” or ”Ipaq” and ”3850” in its title. An ad-

vantage of the dataset is the detailed information on product characteristics, that was

manually retrieved from the descriptions of the sellers. Table 1 lists the variables and

provides detailed descriptions. A product’s quality is assessed by different variables

that where build from the sellers description and which include information on the

age and the condition of the product as stated by the seller. This category also in-

cludes dummies for non German operating systems and different kinds of defects, such

as scratches and missing standard accessory. Next, there is a number of additional

accessories that are frequently bundled with the Ipaq3850. The most typical extras

are covers, memory cards, charge and synchronization cables and expansion packs

(jackets), plastic casings that enhance the functionality of Ipaqs by for example pro-

viding slots for additional memory cards. Most common among the expensive extras

are navigation systems and microdrives. Finally, the seller’s quality might have an

influence on the valuation, a buyer ascribes to the product. This is captured by the

seller’s eBay reputation and the variable PROFI, that takes the value 1 if the seller

gives reference to an own shop outside eBay.

14



In addition to the information on the auctions, all bids that were placed in each

auction, together with the pseudonyms of the bidders and the bidding time are avail-

able. In matching the auction and bidder sample the number of auctions decreases to

856, since no bid data is available for auctions, that are not sold (15%) and auctions

that have the feature private (bidders’ pseudonyms are not revealed; 14.4%). A total

of 7630 bids was placed in the remaining auctions. Since it is assumed that it is not

optimal for a bidder to reveal any information on her true willingness to pay before

the last minutes of an auction, I consider the early bids as not informative and delete

them from the panel. By restricting the bids to those that are submitted in the last

10% of the time, the number of bids is reduced to 3202 observations. The 10% mark

is found by striking a balance between the informativeness of the bids and the number

of remaining observations per bidder. Figure 3 and 4 display the bid distribution in

the full and the restricted sample. The full distribution displays a second peak at very

low prices. This is due to a number of bids between 1e and 20e . Bidders will hardly

believe that they will win with these bids. One explanation why bidders engage in

these bids is that it is an easy way to track an auction.9 By excluding early bids the

two peakedness of the distribution disappears.

Table 3 reports summary statistics of the remaining 788 auctions. Every day

around 5 Ipaq3850 auctions closed. 20% of these auctions offered new products, 33%

were bundled with additional accessories, 3.5% came with a non-German operating

system, and 4% had some other kind of defect such as scratches or missing standard

accessory. Winners paid on average 469.93e for their products (Std: 78.34e , min:

280e , max: 872 Euro) plus an additional 7.2e for shipping and handling. Figure

1 displays the evolution of prices over time. There is a pronounced decrease in the

average transaction price during the sample period. This is probably due to the high

tech characteristic of the product. After correcting for this, applying a simple linear
9As opposed to eBay.com at eBay.de auctions that are closed cannot be searched for anymore.

Alternative ways for obtaining information on the price at which an auction closed are to use eBays

tracking service (”observe auctions”), to remember the ID of an auction and construct the URL

afterwards manually, or to just participate, since participants receive an email with all the necessary

information at the end of the auction.
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time trend, the average standard deviation reduces to 52.83e . Figure 2 compares

transactions prices at eBay for standard products as sold in the shop, that is new

products without any extras, with the corresponding prices from guenstiger.de, a

German price comparison machine. From the graphic it appears as if the guenstiger.de

prices built an upper bound to the prices at eBay.10

To find out whether and which of the variables have explanatory power for the

transaction prices a simple OLS regression is run. The results are displayed in table

5. While most of the coefficients have the expected signs many of them do not

prove to be significant. This holds first of all true for many of the cheaper extras

such as covers, books, or protective slides. For some other more expensive extras

there weren’t enough observations to allow for efficient estimation of the parameters.

The seller characteristics are also insignificant.11 The results motivate one to restrict

attention to a few of the more influential variables. The results for this ”parsimonious”

specification are listed in column (2). The change in the R2 due to this selection is

small.

The 788 auctions are won buy 744 different bidders. Only around 6 % of the

winners thus buy more than 1 item. Bidders that buy more than one item are in

the following regarded as different bidders, that is for the purpose of the regression

they receive a new identity. Table 3 reports summary statistics of the bids for the

full and the restricted sample. The bids that were placed in the last 10% of the time

stem from 1869 different bidders. On average a bidder was active on the market for

7 days (average time between first and the last bid placed in any observed auction

within the sample period). The modus is with 2.4 hours much lower. During this

time a bidder tried on average in 1.7 different auctions. Table 4 shows the number of

trials of a bidder in more detail. 53.37% of the bidders received the object when first
10Since I have only a few price observations from the beginning and the end of the period, I can

not exclude that heavy price drops as they can be observed in the guenstiger.de data towards the

end of the sample period are not an exception but the rule.
11When plotting the data it appears that the (insignificant) positive effect is mainly due to a few

outliers with a very high reputation. The reason why the effects here are insignificant as opposed to

previous work might also stem from measurement error. The reputation variables do not capture the

seller’s feedback at the time of selling the object but at some later date, when the data was collected.

16



showing up in the data. That means, however, also, that nearly half of the bidders

tried twice or more often. Out of those that tried more often (repeat bidders), 60%

tried more then twice, 40% more then three times. Simultaneous bidding in two or

more auctions as well as switching back to auctions, that had an earlier closing date,

once a bidder is outbid in one auction is rarely observed (< 4% of the bids).

The data thus shows that repeat bidding plays an important role in this market.

This, however, does not mean that it also has an impact on the market outcome. To

provide a first answer to this question the transaction price in each auction is regressed

on the product and auction characteristics and an indicator for the bidding strategy

followed by the winner in that auction. The indicator takes the values 1-9 according

to the number of previous trials of a bidder. Regression (2) in Table 5 provides the

results. The parameter estimate for the indicator is significantly negative, stating

that bidders that try more often pay lower prices.

5 Identification and Estimation Strategy

Proposition 1 builds the basis for estimation:

bit = δitb
+
it = δit(γ0 + xit

+′γ1 + ε+it − Vi(v)+) = γ0 + x′itγ1 + εit − Vi(v)

with δit = 1[ci−(bit−Et[bh
t |bit>bh

t ])F h
t (bit)≤0]

where a + denotes the corresponding latent variable.

The optimal bid of an entrant is a strictly increasing function of the valuation

of a bidder for the product characteristics. The bid distribution therefore identifies

these valuations.12 In order to exploit the panel structure of the data a one-way

error component model with V 0
i = Vi − V as the fixed individual specific error part

is specified:

bit = (γ0 − V ) + x′itγ1 − V 0
i + εit

12It is not possible to identify the constant parameter γ0 separately from the part of V that is

constant over all individuals (V ).
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Proposition 3 The γ1s can consistently be estimated by OLS from the within trans-

formed model:

bit − bi. = (xit − xi.)′γ1 + eit − ei. (6)

with eit = εit − E[εit|δit = 1, δi. = 1].

Proof : Formal proof [TO BE COMPLETED]. Sketch of proof: The selection intro-

duced by the entry decision of bidders does not affect the consistency of the estima-

tors in this model. The first term, that might cause problems is δitVi(v)+ = Vi(v).

However, since δit = 1 for all entrants this term clearly falls out in the within trans-

formation. When differencing equation 6 and building expectations one obtains:

E[bit − bi.] = (xit − xi.)′γ1 + E[εit − εi.|δit = 1, δi. = 1]

The second term falls out when either E[εit|δit = 1, δi. = 1] = 0 or E[εi1|δit = 1, δi. =

1] = E[εi.|δit = 1, δi. = 1] (see Kyriazidou (1997)). The latter is the case here. The

intuition is, that the cutoff value for an individual above which she decides to enter

an auction is independent of the product characteristics, i.e. the time varying part

in the selection equation. The expected return (and the winning probability) only

depend on the realization of uit = εit − V 0
i . ¤

So far it is assumed that all bids are observable. The problem with using data

from second price auctions is that the true bid of the winner is not observable, but

only a lower bound to it. Usually this lower bound, which is the transaction price and

equals the bid of the second highest bidder, is the only observation one has. In order to

identify the correct distribution underlying the data generation process, the empirical

auctions literature exploits the fact that the observed bids constitute draws from the

distribution of the second highest order statistic. Knowledge of the distribution of

an order statistic however allows to infer the underlying parent distribution. This

approach requires the number of interested bidders n as an input. Since entry into

an eBay auction is assumed to be costly not all bidders will enter, and therefore this

number is not available. A nice identification result is due to Song (2004). She shows

that a parent distribution is (nonparametrically) identified from two order statistics
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without needing to know n.13

The problem with this approach is that it ignores the dependency that exists

between different bids of the same bidder. The likelihood contribution of an auction

in Song (2004) is given by the conditional distribution of the second and the third order

statistic conditional on the third order statistic. The full likelihood is the product

of the auction specific likelihoods and therefore does not take account of individual

specific effects. This generates an inefficiency. At this stage it seems impossible to

jointly take care of individual specific effects and the dependency between the order

statistics in one auction. The problem is that the likelihood requires computation of

an integral whose dimension is the number of bidders in the panel. An alternative

correction for the winning bid is, however, possible. In the data description it could

be seen that the prices from guenstiger.de build an upper bound to the prices at

eBay. If one assumes that a bidder always prefers to buy at guenstiger.de when

the prices are equal, the guenstiger.de prices can be used as an upper bound to the

unobserved winning bids. By this imputation method it is possible to find bounds

for the parameter values. While the specification that uses transaction prices for the

unobserved winning bids builds a lower bound, the one that uses the guenstiger.de

prices builds an upper bound.

Another reason why one might be reluctant to exploit information from the or-

dering of the bids is due to another kind of selection that has been shortly addressed

before. If a bidder’s strategy was only guided by the behaviour described in section

3, she would stay out of those auctions in which her draw of ε is low. Therefore the

bidders with the k highest draws of uit would enter. The order of the entrants would

not be affected by this kind of selection, that is the econometrician would be sure

which order statistics he observes. If bidders on the other hand stay out of some

of the auctions because they know from past auctions that they have no chance of

winning, given that there are other bidders with presumably very high search costs

currently in the market, the observed ordering does not necessarily reflect the true
13This result is easily extended to allow for the inclusion of more order statistics, since any condi-

tional distribution of k order statistics conditional on the lowest of the k order statistics is independent

of n. Including more observations should increase the efficiency of the estimates.
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ordering. To see why, take the example of three bidders, that compete in an auction

in t. While one of them wins and exits, the other two face the decision whether to

participate in the next auction in t+1. Let bidder 2 be the bidder with the second

highest bid, bidder 3 the one with the third highest bid. Assume that bidder 3 stays

out because he thinks his chances of winning are too low to justify the costs, given

that bidder 2 is in the market. Bidder 2 enters and bids against the two new entrants

(bidder 4 and 5).14 Assume bidder 5 has the highest draw of u and wins. If the bid of

bidder 4 is above that of 2 the observed ordering is equal to the true ordering. If it is

lower, it might however be that bidder 3, who stayed out of the auction has a higher

draw of uit. The econometrician then would observe the 2nd and 4th highest draws.

The data shows that bidders do not participate in every auction in a row. Addition-

ally their decision to enter is influenced by the position of their bid in the last lost

auction. The more others had higher bids the longer they wait before re-entering a

new auction. Estimating from the wrong order statistics increases the variance of the

estimated parent distribution and biases its mean.

Given parameter estimates for product characteristics, the search costs can be

estimated in a second step from equation (5) using the estimates obtained in the first

step to construct the average expected bid. The average product characteristics are

obtained from their sample means. By weighting the average characteristics with the

before estimated coefficients and subtracting the bidder specific mean an estimate of

the expected optimal bid is obtained for each bidder. Note, that with this method

the costs of the participants and not those in the full population of interested bidders

are estimated. [TO BE COMPLETED]

6 Results

Table 6 reports the results from the different panel specifications. Column (1) lists

the parameter estimates when the winning bid is approximated by the transaction
14It does not matter whether these two are fully new bidders or some that decided to re-enter after

abstaining from bidding for a while. The important point is, that they do not know who is in the

market and therefore base their entry decision on expected values.
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price. This represents a lower bound to the true bid. The specification in column (2)

uses the corresponding guenstiger.de prices instead. these represent an upper bound

to the true bids.

In both specifications the parameters have the expected signs. Additionally the

relative importance of the different characteristics is in line with what would be ex-

pected. While the parameters of the second specification are higher, as expected, it

cannot be said that they are statistically different from those in the 1st specification.

[TO BE COMPLETED]

Figure 5 shows the distribution of bidding costs for specification (1). The mean

costs are 11.84e . The 25 50 and 75% quantiles are: 3.79, 8.46 and 16.76e . [TO BE

COMPLETED]

7 Conclusion

The paper presented a dynamic framework for the eBay market place, similar to a

search model. It was shown that standard panel methods can be used to consistently

estimate demand from bidding data.

A number of issues remains for future research. First of all, the seller side is so far

not modelled explicitly. Further, the theoretical model assumed that in every instant

a new auction opens and bidders do not care whether the time difference between

the auctions is smaller or bigger. Including parameters for the degree of competition

from other auctions into the theoretical model would be desirable.

Secondly, when deriving the theoretic model it was assumed that the distribution

of second highest bids is exogenously given. Relaxing this assumption could lead to

more sophisticated dynamic strategies, which include predation and strategic non-

participation.

Finally, the error terms obtained from the panel estimation display autocorrela-

tion. This lets to assume that there is some more complicated story behind the data

generation process. While here it was assumed, that bidders exactly know the distri-

bution of second highest bids, Sailer (2004) allows for the possibility of learning about

a parameter of the distribution.
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8 Appendix

Proof of Proposition 1:

Participation Constraint: A bidder enters an auction when the expected return

form participating is higher then the return from waiting to the next auction:

E[1∗it,win

(
vit − bh

t )
)− ci + 1∗it,loseVi] ≥ Vi

Rearranging and taking expectations gives:

(b∗it − Et[bh
t |b∗it > bh

t ])Fh
t (b∗it) ≥ ci.

Optimal Bid: The decision problem of an entering bidder, given other bidders’

optimal strategies follows from equation (4):

Vit = max
bit>0

E
[
1it,win

(
vit − bh

t

)− ci + 1it,loseVi

]

Rearranging and taking expectations gives:

Vit = max
bit>0




bit∫

v

(
vit − Vi − bh

t

)
dFh

t − ci + Vi




The FOC is derived by applying Leibniz’s rule.

∂Vit

∂bit
= (vit − Vi − bit)fh

t (bit) = 0

⇔ bit = vit − Vi.

Optimality Condition: Substituting the optimal bid b∗it = vit − Vi back into the

Bellman equation gives:

ci = Fh
t (b∗it)(b

∗
it − Et[bh

t |b∗it > bh
t ])− Vit + Vi.

Since Vit − Vi is equal to Fh
t (b∗it)(b

∗
it −Et[bh

t |b∗it > bh
t ])− Fh(b∗i )(b

0∗
i −E[bh|b∗i > bh]),

(8) can also be expressed as a function of the expected optimal bid in the future, b∗i ,

which is constant over time:

ci = Fh(b∗i )(b
∗
i − E[bh|b∗i > bh]).

¤
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Figure 1: Distribution of Transaction Prices over Time
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Figure 2: Distribution of Transaction Prices for New Products*
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Figure 3: Frequency Distribution of Bids: All Bids
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Figure 4: Frequency Distribution of Bids Submitted in the last 10% of an Auction.∗
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Figure 5: Distribution of Bidding Costs
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Table 1: Variables Used in Regression

Category Variable Description

Product Quality

OVP 1 if in original packing (unopened) .

AGE/AGE NS
Age in days as stated by the seller/1 if the

age is not mentioned in the description.

COND NEW/

COND USED

Condition is said to be new/used (as op-

posed to average condition)

OS ENGL/OS FRENCH 1 if english/french operating system.

DEFECT1-4

1 if product comes without bill (1), lacks

standard accessory (2), has scratches on

the display (3) or other defects (4).

Additional Accessories

EXTRAS
1 if the product comes with any additional

extra.

JACKET1-5

1 if with PC Card Jacket (1), CF Card

Jacket (2), Dual Slot Jacket (3), Bluetooth

Jacket (4), GSM/GPRS Jacket (5).

HARDDISK
1 if with external memory in form of

Toshiba 1GB harddisk.

NAVIGATION
0, 1, or 2 depending on the scope of the

included navigation system.

MEMORY
Amount in MB of external memory in form

of CF, SD, or MMC card(s).

CAREPAQ
0, 1, 2, or 3 depending on the scope of the

additional producer warranty.

Other extras: Dummies for book, cover, earplugs, keyboard, modem,

protective slides, software, synchronization and charge cable.

Seller Characteristics
PROFI

1 if the seller gave a link to an own shop

outside eBay.

REP POS REL
Percentage of positive eBay feedback

scores.

Other TREND Linear time trend

SHIPPING/

SHIPPING NS

Shipping costs as stated by the seller/ 1 if

shipping costs are not specified.



Table 2: Summary Statistics of Auctions

Full sample Restricted sample

No. of auctions 1212 788

No. of unsuccessful auctions 182

No. of private auctions 174

No. of auctions with last bidding activ-
ity earlier then 10% before end of auc-
tion

68

Mean transaction price 476.9e 469.93e

Min-max 280e - 999e 280e - 872e

Standard dev. 79.07e 78.34e

Average shipping costs 7.2e 7.2e

Used products 59.08% 79.32%

Products with add. accessories 25.91% 32.49%

Products with defects 9.49% 4.06%

Products with foreign operating system 3.22% 3.43%

Auctions sold by professional sellers
(PROFI=1) 10.73% 1.27%

Average no. of parallel auctions 42 37

Average distance between auctions 4.5 hours 4.8 hours

Average number of bidders per auction 6.86 9



Table 3: Summary Statistics of Bidders

Full sample Restricted sample

Number of bids 7630 3202

Number of individual bidders 3829 1869

Av. number of auctions a bidder

participated in
2 1.7

Rel. importance of ”switching

back”*.
9.72 % 3.1 %

Rel. importance of ”simultane-

ous bidding”.**
10.13 % (12.6 %) 3.6 % (4.9 % )

Time a bidder is observed in the

sample:

Mean 5.65 days 7.15 days
Quantiles (25 50 75) 0min 5.6min 1.89 days 0min 2.44hrs 3.98 days

Bids:

Mean/max-min/std. dev 334.35e /1e -827e /155.39e 437.9e /203e - 872e /78.73e

Av. std. dev. per bidder 52.21e 27.13e

* Percentage of bids, that were placed by a bidder in an auction t after she was

outbid in auction t+1. **Percentage of bids, that were placed by a bidder while she

had still a standing bid in another auction.



Table 4: Frequency of Trials

Full Sample Restricted Sample

# of trial Freq. Percent Cum. Freq. Percent Cum.

1 2,505 65.44 65.44 966 53.37 53.37

2 603 15.75 81.19 318 17.57 70.94

3 285 7.45 88.64 196 10.83 81.77

4 152 3.97 92.61 110 6.08 87.85

5 92 2.4 95.01 66 3.65 91.49

6 49 1.28 96.29 38 2.1 93.59

7 36 0.94 97.23 28 1.55 95.14

8 19 0.5 97.73 13 0.72 95.86

9 15 0.39 98.12 12 0.66 96.52

10 12 0.31 98.43 10 0.55 97.07

11 9 0.24 98.67 8 0.44 97.51

12 6 0.16 98.82 6 0.33 97.85

13 7 0.18 99.01 7 0.39 98.23

14 3 0.08 99.09 2 0.11 98.34

15 9 0.24 99.32 8 0.44 98.78

>16 26 0.74 100.00 23 1.25 100.00

Total 3,828 100.00 1,810 100.00



Table 5: OLS Estimates*
(1) (2) (3)

TREND -.869 -.871 -.866
(.021)∗∗∗ (.021)∗∗∗ (.021)∗∗∗

#TRIAL -3.116
(.643)∗∗∗

OVP 4.229
(2.986)

AGE -.088 -.083 -.076
(.024)∗∗∗ (.022)∗∗∗ (.021)∗∗∗

AGE NS -23.946 -24.621 -22.758
(3.514)∗∗∗ (3.435)∗∗∗ (3.414)∗∗∗

COND NEW 10.838 12.649 13.33
(3.721)∗∗∗ (3.245)∗∗∗ (3.276)∗∗∗

COND USED -11.206 -12.413 -12.288
(3.647)∗∗∗ (3.527)∗∗∗ (3.514)∗∗∗

OS ENGL -15.892 -19.31 -15.202
(9.646)∗ (9.31)∗∗ (8.96)∗

OS FRENCH -81.218 -78.768 -81.293
(24.916)∗∗∗ (20.276)∗∗∗ (19.863)∗∗∗

DEFECT1 -19.115 -17.579 -18.878
(6.037)∗∗∗ (6.158)∗∗∗ (6.07)∗∗∗

DEFECT2 -41.72 -47.549 -48.661
(12.115)∗∗∗ (12.606)∗∗∗ (12.509)∗∗∗

DEFECT3 -12.575
(8.219)

DEFECT4 -46.348 -52.917 -46.439
(11.761)∗∗∗ (11.286)∗∗∗ (21.057)∗∗

SHIPPING -1.604 -1.193 -1.263
(.574)∗∗∗ (.63)∗ (.635)∗∗

SHIPPING NS -9.357 -9.776 -11.105
(4.935)∗ (5.294)∗ (5.253)∗∗

EXTRAS 2.181 8.158 8.031
(4.491) (3.391)∗∗ (3.369)∗∗

JACKET1 50.486 50.312 51.346
(18.484)∗∗∗ (17.543)∗∗∗ (19.516)∗∗∗

JACKET2 .261
(9.788)

JACKET3 97.133 90.227 91.755
(26.099)∗∗∗ (27.387)∗∗∗ (29.791)∗∗∗

JACKET4 14.192
(13.79)

JACKET5 158.819 178.129 177.899
(33.052)∗∗∗ (21.457)∗∗∗ (20.909)∗∗∗

MEMORY ALL .499 .478 .484
(.082)∗∗∗ (.075)∗∗∗ (.074)∗∗∗

HARDDISK 93.242 93.444 96.566
(11.744)∗∗∗ (10.406)∗∗∗ (13.46)∗∗∗

NAVIGATION NS 141.599 144.2 141.239
(20.853)∗∗∗ (19.482)∗∗∗ (19.666)∗∗∗

CAREPAQ 16.515 20.102 19.973
(4.729)∗∗∗ (8.217)∗∗ (7.952)∗∗

MODEM 38.001
(56.563)

KEYBOARD 23.531
(14.904)

EARPLUGS 3.549
(11.696)

PROTECT .383
(.86)

COVER 1.352
(1.72)

BOOK -11.706
(14.439)

SOFTWARE 8.152
(5.19)

CABLE ETAL -8.9
(9.45)

REP POS REL 8.957
(23.487)

URL 23.294
(16.159)

OBS 745 787 787
R2 .811 .798 .8
adj R2 .801 .793 .795

* White heteroscedasticity robust estimation.
Standard errors in parenthesis (marked confidence levels: 90, 95, 99).



Table 6: Panel Estimates

(1) (2)

TREND -.499 -.274
(.067)∗∗∗ (.091)∗∗∗

AGE -.065 -.069
(.013)∗∗∗ (.018)∗∗∗

AGE NS -14.188 -13.459
(2.857)∗∗∗ (3.849)∗∗∗

COND NEW 15.154 15.394
(2.364)∗∗∗ (3.186)∗∗∗

COND USED -5.188 -5.922
(2.185)∗∗ (2.945)∗∗

OS ENGL -15.106 -5.113
(5.096)∗∗∗ (6.867)

OS FRENCH -84.502 -71.142
(13.159)∗∗∗ (17.73)∗∗∗

DEFECT1 -13.557 -20.389
(6.25)∗∗ (8.421)∗∗

DEFECT2 -31.524 -33.587
(7.293)∗∗∗ (9.827)∗∗∗

DEFECT4 -22.739 -37.668
(14.285) (19.248)∗

SHIPPING -.505 -.568
(.468) (.631)

SHIPPING NS -4.808 -7.711
(3.657) (4.928)

EXTRAS 5.179 4.291
(2.117)∗∗ (2.852)

JACKET1 38.881 50.005
(7.042)∗∗∗ (9.488)∗∗∗

JACKET3 114.604 81.097
(17.287)∗∗∗ (23.292)∗∗∗

JACKET5 127.888 130.943
(12.952)∗∗∗ (17.452)∗∗∗

MEMORY .255 .24
(.027)∗∗∗ (.036)∗∗∗

HARDDISK 97.203 105.875
(7.324)∗∗∗ (9.869)∗∗∗

NAVIGATION 163.582 138.283
(16.264)∗∗∗ (21.914)∗∗∗

CAREPAQ 13.975 17.568
(3.675)∗∗∗ (4.951)∗∗∗

CONSTANT 444.106 457.369
(4.134)∗∗∗ (5.57)∗∗∗

OBS 3202 3202
R2 .6694 .4865
σV 0 50.304 61.162
σε 28.854 38.878


