
Searching time series with Hadoop in an electric power
company

Alice BERARD
TELECOM PARISTECH

46, Rue Barrault
75013 PARIS, FRANCE

alice.berard@telecom-paristech.org

Georges HEBRAIL
ELECTRICITE DE FRANCE - R&D Division

1, Av. Du Général de Gaulle
92140 CLAMART, FRANCE
georges.hebrail@edf.fr

ABSTRACT

In this paper, we investigate the possibilities offered by the
Hadoop eco-system for searching time series in an electric power
company (Top-K or range-queries based on a similarity
measure). There has been much work done on speeding up the
search of time series in a large dataset, mainly by designing
efficient indexing techniques preceded by reduction techniques.
In this paper, we do not follow these approaches but focus on
using the brutal force of distributed computations in the Hadoop
environment. We propose an implementation of time series
search functions in Hadoop and describe experiments on a large
database of electric power consumption curves (35M customers
observed during 1 month at a 30’ sampling rate). We also show
that this architecture supports easily the computation of several
distances for the same query with a small response time
overhead: this is very useful in practice when the end-user does
not know very well which distance to use.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time series analysis;
H.4 [Information Systems Applications]: Miscellaneous;
H.2.8 [Database Management]: Database applications – Data
Mining.

General Terms
Algorithms, Performance, Experimentation

Keywords
Time series, Similarity search, Hadoop

1. INTRODUCTION
With the upcoming installation of smart meters, millions of
electric power load curves are bound to be recorded every day.
Time series data will increase at an unprecedented speed in EDF.
In this context, tools to store and process massive time series
databases are needed. In particular, searching for similar patterns
is a core element of many data mining applications.

However, electric power consumption is not the only use case of
time series similarity search in EDF. For example, power plants
monitoring via transient behaviors of physical signals provide
amount of time series in which patterns research aiming at
diagnostic aid is very interesting. Another use case is the grid

frequency in power plants, which must be maintained constant.
In this case, we are interested in finding drops in frequency in a
very large data historian.

To handle these problems, the Hadoop eco-system is both
convenient and efficient since it allows inexpensive storage and
data-intensive distributed applications. This is well suited for
information search. Indeed, Hadoop is based on two key
elements, namely the MapReduce programming model and the
Hadoop Distributed File System (HDFS), which are derived from
Google’s computing infrastructure.

Similarity search through dimensionality reduction and
indexation has been well discussed in the literature. However, it
is not the case for parallelization’s brutal force. In this work we
show that a parallel sequential similarity search is both fast and
flexible. This paper contains the following contributions:

• Firstly, we propose a storage solution and efficient
Hadoop user-defined functions with various parameters
for time series search

• Secondly, we show their efficiency through a series of
experiments with performance results dealing with
single but also multiple queries

• Lastly, in case the end-user does not know very well
which distance to use, we introduce a novel idea which
consists in computing multiple distances and ranking
the results according to some aggregation methods.

The rest of this paper is organized as follows. Section 2 defines
the problem of similarity search in time series. Section 3 surveys
the related work. In Section 4 we describe our general approach
in Hadoop. Section 5 focuses on the multi-distances search.
Section 6 shows the experimental results. Finally we draw
conclusion in Section 7.

2. PROBLEM DEFINITION
Our work in this paper concentrates on univariate time series.
This is the reason why we will not consider our datasets
regarding transient behaviors of physical signals, as what is
chiefly challenging in these datasets is to find various patterns
located in several variables simultaneously.

Thus, we use here two main datasets: electric power load (i.e.
consumption) curves and grid frequency in power plants. The
first one is synthetic and contains daily load curves at a 30’
sampling rate of 35M customers during a month, namely around
a billion 48-dimensional time series. The second one is a sample
subset from one power plant with measurements at a 1’’
sampling rate during a month, namely 2.5M values.

Though these are particular examples, they are rather
representative and can be easily generalized to other univariate
sensor data.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
BigMine'13, August 11-14 2013, Chicago, IL, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2324-6/13/08…$15.00.

We now define time series.

Definition 1: A Time Series S of length |S| = n is a real numbers
sequence: S = S1,S2,… ,Sn. We assume that the sampling rate, that
is to say, the time step between each measurement, is regular and
the same for all the time series we consider in the database.

Definition 2: A Subsequence Si,k of a time series S is a shorter
time series of length k starting from position i.

Definition 3: The Euclidean Distance (ED) between two time
series Q and S where |Q|=|S| is defined as:

����, �� = 	
 ��� −
����
���

When available time series are very long (for instance the
description of electric power consumption of a customer during
one month or one year), we split them into consecutive segments
of size n (for instance each segment describes one day with n=48
in the case of a 30’ sampling rate).

The problem we focus on is the design of fast searching methods
that search and locate sequences that approximately match a
specific query sequence in a time series database.

Before clarifying what a query is, we need to define the dataset
which is searched. We consider basically two ways to search
such data, as illustrated in Figure 1 and 2:

• Whole Matching. The query sequence is compared only
once to each candidate sequence. Therefore the query
sequence “jumps” from one sequence to the next. All
sequences must have the same length, n.

Figure 1: Whole matching (jumping window).

• Subsequence Matching. Here we have a smaller query
sequence. We look for a subsequence in the large
sequence that best matches the query sequence and
report its offset. Therefore the query sequence “slides”
along every sequence. In the rest of the paper, when
considering subsequence matching, we will assume the
query length is l.

Figure 2: Subsequence matching (sliding window).

We now define a query. Similarity queries can be classified in
two categories:

• Top-K queries. The K closest sequences to the query
sequence are returned.

• Range-queries. All sequences within an epsilon of the
query sequence are returned.

Lastly, we insist on the need for normalization. As stated by the
author of [19], “in order to make meaningful comparisons
between two time series, both must be normalized”. This seems
intuitive when we are interested in similarity in terms of shape
but not in absolute values. Indeed, the Euclidean distance

between two time series with a high mean discrepancy appear to
be high even if the shapes of the time series are similar. It is the
same for two time series with a high variance difference.

Definition 4: Let S be a time series, µ its mean and σ its standard
deviation. Let i be in {1, … , n}. The time series can be

normalized by dividing by the mean (
�� = ���) or by

standardizing (
�� = �����).

3. RELATED WORK
Time series are all the more fundamentally high dimensional data
since they are very long. Processing and storing large volume of
them is very expensive. Thus, with the aim of dealing with large
time series databases, many techniques have been proposed in
the literature for representing time series with reduced
dimensionality, such as Discrete Fourier Transformation (DFT)
[1][8][23], Single Value Decomposition (SVD) [12][15][20],
Discrete Wavelet Transformation (DWT) [3][22][23], Piecewise
Aggregate Approximation (PAA) [12], Adaptive Piecewise
Constant Approximation (APCA) [13], Symbolic Aggregate
approXimation (SAX) [17][21], etc. In order to measure a
similarity, these representations should be associated with a
distance metric, like classic Euclidean Distance (ED) [1][8] or
elastic measures such as Dynamic Time Warping (DTW) [14].

This dimensionality reduction might be used for two major
reasons: firstly, with a view to smooth raw data and thus, to
change the query criterion (the distance metric is computed over
transformed time series); secondly, in order to create a
multidimensional index structure to avoid sequential scans. In
this case, dimensionality reduction is performed in order to keep
indexing efficient by storing no more than 8-12 coefficients for
each time series. Several index structures have been suggested:
R-tree [10], R*-tree [2], TV-tree [16], etc. Note that an important
property proved by [1] is that, in order to guarantee no false
dismissals, the distance measure in the index space must satisfy
the following condition: ������	������ �!�, �"�� ≤ �$%&�	������!, "�
A and B are two time series, F(A) and F(B) are their
transformations after performing dimensionality reduction. This
is called the lower bounding property and allows range-queries to
be performed on the index structure, provided we discard false
alarms afterwards.

However, this approach has some drawbacks. On the one hand,
we can only deal easily with range-queries since the aim of the
index structure is to project the query in the index space and to
retrieve all time series in a range ε. On the other hand,
subsequence matching queries are quite complex to process with
an index. Suppose we have a subsequence matching query of
length '. Faloutsos et al. [8] suggested storing minimum
bounding rectangles (MBR) containing trails consisting of n −	'
+ 1 points, one for each possible offset of the sliding window.
Obviously, we would like to use the same index to handle queries
of length greater than '. [8] suggested methods based on prefix
search, but none of them seems entirely satisfactory.

We opted for another approach: similarity search through a
parallel sequential scan. To our knowledge, no one has ever
considered this approach in a data mining paper. In [18], Qiao et
al. dealt with parallel algorithms for range-queries and Top-K
search, but only for whole matching, while JaJa et al. [11]

n = 1440

developed indexing techniques to efficiently handle querying
multidimensional time series in a parallel implementation.

4. TIME SERIES SEARCH IN HADOOP
Our goal is to design and implement a Hadoop based solution to
the problem of similarity search in a time series database.

Hadoop is an open-source software framework that supports
data-intensive distributed applications. It is based on two key
elements: the MapReduce programming model and the HDFS
file management system (Hadoop Distributed File System).

We also use Hive, a data warehouse infrastructure built on top of
the Hadoop ecosystem and suitable for analytical treatments and
ad hoc queries with HiveQL, a SQL-based query language. Hive
queries are transparently translated into MapReduce jobs.

Sometimes it might be impossible – or at least difficult – to
express a query in HiveQL, especially as it is a simplified SQL
version and does not allow all kinds of subqueries, multiple
tables in the “where” clause, etc. This problem can be
circumvented thanks to custom mappers and reducers that can be
plugged in Hive. There are two ways to do so: either by
developing streaming mappers and/or reducers scripts or by
developing customized Java functions called user defined
functions (see Figure 3). These functions can work row by row
(User Defined Function, UDF) or they can aggregate several
rows (User Defined Aggregation Function, UDAF). Hive allows
two varieties of UDAFs: simple and generic. Simple UDAFs are
simpler to write but incur performance penalties. Furthermore,
they do not allow Generic UDAFs’ features such as variable-
length argument lists or complex types input and output.

Figure 3: UDF and UDAF overridden methods summary.

4.1 Time series storage structure in HDFS
In a previous work at EDF R&D, we showed that Hadoop could
be efficiently used to store and manage structured data from
smart meters [5]. Different representation models, file formats,
and compression methods for the storage were tested.

The default parameters were kept (text file format with default
compression codec: .deflate) since they appeared to give good
performance while preserving a high compression rate.

An array representation model for storing time series was also
designed in [5] and is reused here. It takes advantage of a
primitive type defined in Hive that is able to store multiple values
of a same type. Thus, it has the advantage of retrieving an entire
time series by reading a single record. The array’s length is
flexible and can be adapted to the sampling rate (i.e. time step):
we might store minutely, hourly, daily, monthly, etc. time series.

This representation model is well adapted to any whole matching
query of length less than or equal to the array’s length. What
about subsequence matching? If the time series in which we want
to “slide” are of length less than or equal to the array’s length, we
do not encounter any problem. However, suppose the time series
that we want to “slide” in are so long that they were split into
several segments. How to “slide” in a split time series? At one

point, we inevitably have to “slide” straddling on both a given
segment of time series and its following segment. The idea to
circumvent this problem is to have an overlap of at least twice
the maximum subsequence matching query length. Thus, we
need to have access to a new array of length 2n.

For example, as shown in Figure 4, by overlapping two days in
the database, we are able to deal with any subsequence matching
query of length less than or equal to one day.

Figure 4: In order to “slide” along the whole length of a time series
split up into arrays, we need to overlap at least two arrays.

We propose two ways to obtain a specific segment and its
following one. The first one is to operate a self join. This is very
efficient in terms of file size, but not in terms of query execution
time, especially as partitioning by day would be useless and
partitioning by client ID would be impossible (we have more
than 35M customers). Besides, this storage allows more general
queries since it is possible to add several segments behind the
first one. Thus we can handle subsequent matching queries of
any length. The other possibility is to adapt the storage by
replicating the following segment at the end of each row. This is
very efficient in terms of query execution time, but not in terms
of file size since it nearly doubles the data.

4.2 Generic search functions
Based on this storage structure, we now describe the algorithms
and how we parallelize them. We produce naive algorithms for
Top-K and range-query in case of whole matching search. They
are presented in Table 1 and 2.

 Table 1: Range-query search algorithm
Algorithm RangeQuery(Q,ε)
for i = 1 to N // For each row (record)

 Ci ← (Ci – μ(Ci))/σ(Ci); // Optional: normalize

 Ci ← SomeTransformation(Ci); // Optional: transform

 if D(Ci,Q) < ε
 list_id.add(Ci.id); // Insert the ID of the
 end; // current row in the list
end;

Ding et al. [4] showed that, “as the size of the training set
increases, the accuracy of elastic measures converges with that
of Euclidean distance”. Thus, the computed distance D(Ci,Q)

will be Euclidean on raw, normalized or transformed data.

For Top-K search, we keep up to date a two-dimension table
containing the IDs of the K nearest neighbors and their distances.
If a row with a distance less than the best-so-far maximum
distance is found, then the best-so-far distance is replaced as well
as the corresponding ID.

 Table 2: Top-K search algorithm
Algorithm TopK(Q,K)
for i = 1 to N // For each row

 Ci ← (Ci – μ(Ci))/σ(Ci); // Optional: normalize

 Ci ← SomeTransformation(Ci); // Optional: transform
 if D(Ci,Q) < max(tab_dist)
 tab_id.update(Ci.id); // Update the Top-K tab by
 tab_dist.update(D(Ci,Q)); // replacing the previous
 end; // max by D(Ci,Q)
end;

UDAF

public abstract class GenericUDAFEvaluator

getNewAggregationBuffer(): AggregationBuffer
reset(AggregationBuffer): void
init(Mode, ObjectInspector[]): ObjectInspector
iterate(AggregationBuffer, Object[]): void
merge(AggregationBuffer, Object): void
terminatePartial(AggregationBuffer): Object
terminate(AggregationBuffer): Object

… sorties …

… entrées …

… entrées …

… entrées …

output

input
input

input

… sorties …

public abstract class GenericUDF
… entrées … UDF

initialize(ObjectInspector[]): ObjectInspector
evaluate(DeferredObject[]): Object

input output

n1

2008-06-01 2008-06-02 2008-06-29 2008-06-30…….

n1
n1

n1
n1

n1
n1

n1

Note that computing the mean and variance for the normalization
step requires a loop iterating n times over the values of the
current array. This is the same for computing the Euclidean
Distance between the query and the current array. As it is a sum
of positive terms, we can early abandon the calculation as soon
as it is higher than ε (for range-queries) or than the best-so-far
maximum distance (for Top-K queries), see [19].

These algorithms are easily adaptable to subsequence matching
by adding another loop immediately after the loop over the rows.
Indeed, this new loop must examine each subsequence and must
normalize each subsequence, as stated in [19]. If the current array
is at the beginning or in the middle of a time series, then this new
loop iterates n times (half the size of the replicated array). Else if
the current array is the end (i.e. last segment) of a time series,
then data is not replicated and the loop iterates n – l + 1 times.

We now want to parallelize these algorithms in Hadoop and
Hive. The basic idea is that data are split in blocks replicated
three times in HDFS. The previously described naive algorithm
is executed on each block, and a local table (Top-K or range-
query) is returned. Then, these local tables are merged two by
two, until obtaining the final table.

For the implementation, we use Generic UDAFs since they
outperform any other kind of customization in Hive. Firstly, we
have to define an aggregation structure and to initialize it. For
Top-K search, it is a two-dimension table storing IDs and
distances, whereas for range-query, it is a list with only IDs. Note
that when dealing with subsequence matching, a new field
storing the position is added to the aggregation. Then, we iterate
over rows and keep the aggregation up to date. After merging
partial aggregations, we get a final aggregation and return it in
Hive. The function is plugged in Hive as shown by Table 3.

 Table 3: Hive code for executing UD(A)Fs
CREATE TEMPORARY FUNCTION TopK as 'com.UDAF.TopK';
SELECT TopK(id, values)

FROM table
WHERE …;

One of the most useful aspects of using Hive is that these
functions can be combined with relational algebra: projections,
selections, joins, etc.

4.3 Grouping several queries
We started from whole matching and showed that algorithms,
Generic UDAFs, and aggregation structures were also adapted to
subsequence matching. Likewise, it is possible to search
simultaneous several queries by keeping up to date a similar
aggregation structure with an additional dimension in order to
refer to the various queries. Moreover, we are still able to use the
early abandoning: while at least for one query the current sum is
less than the corresponding best-so-far maximum distance, we
stay on the row and keep doing the calculation by reading next
terms of the array. Thus, for each row, we drop one by one the
queries as soon as they do not need further terms. It is reasonable
to expect that it will be very cost-effective since only one pass on
the data is necessary to answer to multiple queries
simultaneously.

5. MULTI-DISTANCE SEARCH
In practice, end-users might want to look for particular patterns
without knowing precisely which distance would be the best to
minimize. The solution we propose is to compute several
distances simultaneously for the same query, for example
Euclidean Distance or DTW [14] on various representations

(normalized and/or transformed data). This is done by keeping up
to date one table for each considered distance.

Once again, this is easily implementable in Hive through Generic
UDAFs functions using a similar aggregation structure with an
additional dimension in order to refer to the tables corresponding
to the various distances.

Assuming that distances are Euclidean, early abandoning is still
usable: while at least for one distance the current sum is less than
the corresponding best-so-far maximum distance, we stay on the
row and keep doing the calculation by reading next terms of the
array. Thus, for each row, we drop one by one the distances as
soon as they do not need further terms.

Our approach might be used in order to distinguish between the
various distances and to favor one of them, according to some
experts’ knowledge. But the solution we designed is to run a
Top-K query for each distance and obtain a combined final
ranking (an inter-ranking) based on the ranks given by all the
Top-K of the various distances. This is a rank aggregation
problem, a research field of social choice theory dating back to
the 18th century which regains interest in the context of machine
learning, data and Web mining.

5.1 Rank aggregation problem
The problem is the following:

Problem 1: Given D distances and D Top-K candidates for each
distance, the problem is to obtain a combined final ranking of U
distinct time series, in reasonable execution time and as
consensual as possible.

We first define U, the set of results. Let CD be the set of all time
series appearing in the D Top-K (i.e. in the intersection).
Similarly, let CD-1 be a set of all the time series appearing in D-1
Top-K. Thus, we can recursively define D sets of time series, C1,
C2, … , CD. As among all the chosen distances, each one
optimizes a particular criterion, it is highly unlikely that the D
Top-K contain exactly the same time series ordered differently.
However, should this case happens, we would define U = CD and
have only full lists: the D Top-K would be (�, (�, … , (*
permutations of the set U.

In general, we will have only partial lists, which are not
permutations yet. Then, we set U = CD or U = CD ∪	CD-1 for
example and we come down to full lists like this:

• For each distance, we take (in the corresponding Top-
K) the relative ranks of the time series in CD as well as
the relative ranks of the time series in CD-1 which are
present in this particular Top-K.

• For the time series in CD-1 which are not present in this
particular Top-K, we suggest two solutions: either to
add them at the end of the ranking, or to compute their
distances and to place them in the ranking according to
it.

We now have D permutations (or rankings) (�, (�, … , (* of |U|
time series (or candidates) ,�, ,�, … , ,|.|. The problem now is to
obtain a new permutation / as consensual as possible.

5.2 Optimal rank aggregation
We want to “minimize the total disagreement between the several
input rankings and their aggregation” [7] by pleasing a majority
of individual preferences. Thus, we aim at satisfying the extended
Condorcet criterion: if the Condorcet winner exists (a candidate
that wins the most duels by pairwise simple majority voting),
then it should be ranked first. If it does not exist, then a set of

candidates preferred by the majority over another set should be
ranked higher. Formally, we aim at achieving optimality of the
function below:

0�/� =
1234�/, (��
*
���

 by finding /∗ = argmin
1234�/, (��
*
���

where 1234�/, (� is the Kendall tau distance and counts the
number of pairwise disagreements between two permutations: <�/, (� = 	 |	=	2, >	 ∈ U	 ∶ 	/�2� < /�>�	but	(�2� > (�>�	G	|
The permutation /∗ obtained by optimizing Kendall tau distance
is called Kemeny optimal aggregation and satisfies the extended
Condorcet criterion. However, [7] showed that computing the
optimum is NP-Hard, even for D = 4.

Another popular distance measure between two permutations is
the Spearman footrule distance which sums over all candidates i
in U the absolute difference between the ranks of i according to
the two permutations:

 �/, (� =
|/�2� − (�2�||.|
���

5.3 Heuristic approaches
We now enumerate rank aggregation methods that do not
optimize any criteria, but are still effective in practice.

5.3.1 Footrule optimal aggregation
The following relation shows that the Kendall tau distance can
be approximated via the Spearman footrule distance: ∀	/, (<�/, (� ≤ �/, (� ≤ 2<�/, (�
Thus, by computing a footrule optimal aggregation, we will have
a lower bound (by a factor of two) on the optimal Kendall tau
distance.

[7] investigated footrule optimal aggregation and showed that “it
can be computed in polynomial time, specifically, the time to find
a minimum cost perfect matching in a bipartite graph”.

Let (C, R, W) be this graph where � = J,�, … , ,|.|K is the set of
candidates and L = =1,… , |U|G is the set of available ranks. The
weighs are the following:

∀	, ∈ �, ∀	N ∈ L, O�,, N� = ∑ |(��,� − N|*��� .

Thus, for a certain matching, the sum of weighs is ∑ O�,, N��|.|��� ,
which is exactly function 0 with 1234�/, (� = �/, (�.
5.3.2 Positional methods
Borda’s method was devised by Borda in 1770 but it is an old
voting system already used by the Romans. It consists in giving
each candidate a certain vector of length D containing its rank in
each of these D input rankings. Each rank gives a number of
points (in general equal to the rank). Then, these |U| vectors are
sorted according to their L1 or L2 norms, their means, their
medians, etc.

5.3.3 Markov chain methods
The idea is to represent the |U| candidates as vertices in a graph
with transition probabilities depending in some particular way on
the relative rankings of the candidates. From this state-transition
matrix, we get a stationary distribution and thus, an inter-ranking.

Dwork et al. [7] suggested four ways to define the transition
probabilities.

6. EXPERIMENTS
As mentioned earlier, two different datasets were used to conduct
experiments with the following different goals:

• On the synthetic electric power load curves dataset, we
tested the scalability and measured execution time for
Top-K search, both for whole and subsequence
matching.

• In the grid frequency in power plants dataset, we
looked for substantial drops in frequency, ideally a
50mHz fall happening in 10 seconds or less, being
stable before and after the fall. The end-user, who is an
expert, visually knows whether time series resulting
from the Top-K search match or not. This pattern was
defined by the end-user who was not able to define
precisely which distance to use. For example, it could
be the Euclidean Distance on the whole original
pattern, on the drop only, on the derivative of the
original pattern, etc. In this experiment, we tested
different distances and showed the improvement
provided by inter-ranking.

6.1 Hadoop infrastructure
As in [5], the cluster we used in our experiments is composed of
2 racks and a total of 20 nodes with 2 kinds of commodity
servers (7 are 1U and 13 are 2U). The 1U servers have 4x1 TB
disks while the 2U servers have 8x1 TB disks. Most of the
servers have 2 CPUs AMD Opteron(tm) with 8 cores each (2
have 2 x 12 cores). In total, the cluster is composed of 132 TB of
storage and 336 cores. The Hadoop distribution installed is the
open source CDH3u3 from Cloudera.

6.2 Datasets

6.2.1 Electric power load curves
This first dataset was generated in the context of the proof of
concept (POC) carried out by the R&D Division, see [5]. We
tested our algorithms on a subset of this dataset: 35,027,502
customers with raw electricity consumption measurements (in
Wh) every 30 minutes during one month. This is equivalent to
around 3.3 TB of uncompressed data (≈110 GB per day).

For our experiment, we chose as basic length of arrays n = 48
and we created two tables: one for daily whole matching queries
(of length 48), and one for subsequence matching queries (of
length up to 48).

The table used for daily whole matching queries has three
columns shown in Table 4.

Table 4: Table structure for whole matching. id_client
and day form the primary key of the table.
ID_CLIENT

(int)
DAY

(string)
VALUES

(array<int>)

136630 2008-06-07 [625, 473, 483, 202, 396, 241, …]

The table used for subsequence matching queries concatenates to
each row the values of the next day, thus introducing redundancy
as suggested in Section 4.1. This approach is illustrated in Table
5 for the second dataset.

Recall that we used a text file format with a deflate compression.
With this configuration, the final volume of the whole matching
table is around 96 GB (replicated three times in HDFS). It is a
considerable saving in terms of storage disk space compared to
the original 3.3 TB of uncompressed data. The final volume of
the compressed subsequence matching table is around 185 GB.

6.2.2 Grid frequency in power plants
This dataset is made up of real electric power network frequency
measurements taken at one power plant every second during one
month. This makes 29 × 24 × 60 × 60 = 2,505,600 values and
around 145 MB of uncompressed data. Note that it is only a
sample: we expect to process historical data of several years. In
this dataset, we were trying to find drops in frequency, defined as
follows: a fall greater than or equal to 50 mHz, happening in 10’’
or less, stable during 30’’ before and 60’’ after the fall. This is a
subsequence matching problem because the drop may start at any
position. Since the length of the query is 100, we used the
previously described storage structure and created arrays of 240
values with an overlapping of 120 values. Thus, we can handle
any subsequence matching query of maximal length 120 (namely
2 minutes). The table we used contained 2,505,600 / 120 =
20,880 rows. It is illustrated in Table 5.

Table 5: Table structure used for the grid frequency
dataset. id_minute is the primary key of the table

We also used a text file format with a deflate compression, for a
total volume of 3.98 MB. Obviously, the challenge for this
dataset is not response time but the fact that experts are not able
to define the right distance to use.

Note that raw data is stored and the algorithm normalizes each
examined subsequence (by shifting but not scaling since we are
interested in the absolute value of the drop).

6.3 Results on scalability

6.3.1 Simple query Top-K search
In this section, we measured the time taken by a Top-K search on
our electric power consumption dataset. We first show how
important is the distribution of the data in HDFS blocks. Indeed,
the number of blocks is equal to the number of Mappers which
depends on the number of nodes in the cluster, but also on the
complexity of tasks.

We created several versions of the table mentioned earlier, with
various block sizes and thus, various numbers of blocks. Then,
we measured the time taken for a Top-K search (arbitrarily K = 5
since we noticed almost no influence of K on the execution time)
and averaged it on 100 queries (drawn randomly in the dataset).

We did the same for the subsequence matching table. We recall
that we mentioned two ways to handle subsequence matching
queries: by a self join or a replicated storage. The self join takes
around 50’ to be executed: this confirmed what we intuited in
Section 4.1. Consequently, we concentrate on the replicated table
solution in the following. The results are shown in Figure 5.

Figure 5: left) Time taken by a Top-5 whole matching search in
terms of the number of HDFS blocks. right) idem for a Top-5
subsequence matching search.

Hadoop indicates that a good level of parallelism is between 10
and 100 Mappers per node. Our cluster containing 20 nodes, it
makes between 200 and 2000 Mappers. This result is validated
by our experimental results since our 1000 optimal blocks are
located between these bounds. Using this new data distribution,
we obtained final query execution times shown in Table 6. These
response times do not allow interactive search but appear to be
satisfactory for the applications we consider.

Table 6: Time taken (in minutes, averaged on 100 queries
drawn randomly in the table) by Top-5 queries on two 1000-block
tables, one for whole matching and one for subsequence matching.

Whole
Matching

Subsequence Matching
l = 5 l = 20 l = 45

Min 3.00 5.62 5.87 6.33

Mean 3.20 5.85 6.52 7.82

Max 3.32 6.15 7.08 8.88

Figure 6: left) Time taken (in minutes) by a whole matching Top-5 search in terms of the number of simultaneous queries. right) Time taken (in
minutes) by subsequence matching queries (of length 5, 20, and 45) Top-5 search in terms of the number of simultaneous queries.

ID_MINUTE
(int)

DAY
(string)

TIME
(string)

VALUES
(array<double>)

0 01/01/2012 00:00

1 01/01/2012 00:02

20879 29/01/2012 23:58

1201 121 240

1201 121 240

1201

Volume of blocks (MB)

Number of blocks i.e. of Mappers

E
x

e
c

u
ti

o
n

ti
m

e
 (

in
 m

in
u

te
)

1000 2000 3000 4000 5000

6.
2

6.
4

6.
6

6.
8

7.
0

7.
2

7.
4

7.
6

380 190 127 95 76 63 54 48 42 38

TOP-K

SUBSEQUENCE MATCHING (l = 20)

1000 2000 3000 4000 5000

3.
5

4.
0

4.
5

196 98 65 49 39 33 28 24 22 20 18
Volume of blocks (MB)

Number of blocks i.e. of Mappers

E
xe

c
u

ti
o

n
ti

m
e

(i
n

 m
in

u
te

)

TOP-K

WHOLE MATCHING

0 200 400 600 800 1000

0
20

40
60

80
10

0
12

0

Nombre de requêtes simultanées

T
em

ps
 d

'e
xé

cu
tio

n
(m

in
ut

es
)

0 50 100 150 200

0
5

10
15

20

0 50 100 150 200

0
10

0
20

0
30

0
40

0

L = 5 L = 20 L = 45

6.3.2 Multiple queries Top-K search
We implemented slightly modified functions allowing up to 1000
simultaneous queries with early-abandon. Clearly, we kept the
previously described optimal tables with 1000 blocks. As we
expected, our approach is very efficient, as shown by Figure 6,
and enables us to process 100 queries in less than 10 minutes.

6.4 Results on multi-distance search
We report here experiments related to the technique described in
Section 5, applied to the grid electric power frequency dataset.
We are looking for a very precise pattern.

We implemented the following four distance measures:

• d1: Weighted Euclidean Distance on the whole
pattern (illustrated below). We assign higher weighs to
the drop in order to balance the trade-off between the
absolute value of the drop and the stability before and
after.

• d2: Weighted Euclidean Distance on the derivative
pattern (illustrated below). The derivative, computed
as the difference between a value and its following one,
ensures the stability before and after the fall.

• d3: Euclidean Distance on the drop only (illustrated
below). This distance guarantees to return only the time
series with a substantial linear drop of 50mHz in 10
seconds. However, it does not ensure stability.

• d4: Variance of the two stability zones (illustrated
below). This is not a distance but rather a
quantification of how the examined subsequence
matches a model: for each subsequence, we compute W�..YZ[[[[[[(the mean of the first 30 values) and W\�..�ZZ[[[[[[[[[(the
mean of the last 60 values). If the difference is higher
than a certain threshold (ideally 50), then the measure
is defined and it is the sum of the variances of the two
stability zones.

We now determine the best K (recall that we execute a Top-K
search for each distance) in order to have a set of candidates U
for the inter-ranking. We tried various values of K between 1 and
1000 but there does not exist a K beyond which all distances
would return the same time series.

For our experiment, we used K = 30 and U = C4 ∪	C3. This
choice led us to inter-rank 12 time series A, B, … , L.

We obtained four permutations from which we tested the
previously described rank aggregation methods. The results are
shown in Figure 7.

Figure 7: Borda’s method (L1-norm of the D-dimensional vector of
the ranks) induces equally placed time series. All possible
permutations are listed.

The optimal function was computed for each method. It appears
that Borda’s method exhibits the best permutation, although it is
very simple.

Finally, we can visualize graphical results (see Figures 8 and 9).
Experts claimed that it clearly appears that this technique
outperforms the classic one using only one distance measure.

Figure 8: The first four final time series obtained using inter-ranking
technique.

Figure 9: The first four final time series obtained using only one
distance, here it is d2 (on the derivative pattern).

7. CONCLUSION AND FURTHER WORK
In this paper, we proposed an approach for similarity search in a
very large time series database, typically containing more than a
billion 48-dimensional time series. We used the brutal force of
Hadoop and Hive along with its adaptability and flexibility
potential to parallelize this search.

On the 336 cores cluster set up in EDF R&D, the result of the
Top-K search is obtained in a few minutes. But this is only a
glimpse on all the advantages showed by Hadoop’s brutal force.
In our case for example, its data processing power allows to
answer multiple queries in only one pass without reducing much
the execution time. We can also carry out normalizations and/or
complex transformations on the time series, in order to smooth
them or to compute another kind of distance. We evaluated

-20

30

0 10 20 30 40 50 60 70 80 90 100

-10

-5

0

0 10 20 30 40 50 60 70 80 90 100

-20

30

0 10 20 30 40 50 60 70 80 90 100

-35

-25

-15

-5

5

15

25

35

0 10 20 30 40 50 60 70 80 90 100

Method Final ranking (or permutation) / 0�/� =
<�/, (2�
�
2=1

Borda – 1 A B C D E F G H I J K L 83

Borda – 2 A B C D E G F H I J K L 85

Borda – 3 A B C E D F G H I J K L 87

Borda – 4 A B C E D G F H I J K L 89

MC1 A B G C D E F I H J K L 99

MC2 A B G I D C E H F J K L 125

MC3 A B C G D E F H I J K L 93

MC4 A B C D E F G H I J K L 83

Footrule optimal

aggregation
A D E G C H F I B K J L 131

0 20 40 60 80 100

-4
0

-2
0

0
2

0
4

0
60

0 20 40 60 80 100

-4
0

-2
0

0
2

0
4

0
60

0 20 40 60 80 100

-4
0

-2
0

0
2

0
4

0
6

0

0 20 40 60 80 100

-4
0

-2
0

0
2

0
40

6
0

fr
é

q
ue

n
ce

 (
m

H
z)

1st 2nd 3rd 4th

0 20 40 60 80 100

-4
0

-2
0

0
2

0
4

0
6

0

0 20 40 60 80 100

-4
0

-2
0

0
20

4
0

6
0

0 20 40 60 80 100

-4
0

-2
0

0
20

4
0

60

fré
qu

en
ce

 (m
H

z)

0 20 40 60 80 100 120

-4
0

-2
0

0
2
0

4
0

60

1st 2nd 3rd 4th

performance on synthetic time series representing smart metering
data.

However, as the distance depends a lot on the data contents, it is
frequent that the end-user does not know precisely which
distance to use. Similarly to multiple queries, we suggested to
solve this problem by computing several distances, and thus to
build several rankings, one for each considered distance. Then,
based on these rankings, we get a final one using heuristics on
rank aggregation methods. We implemented this approach with
four distances on grid frequency data. We tested various rank
aggregation methods.

In future work we intend to improve our ranking approach by
using relevance feedback: for each result returned by our
algorithms, an expert accesses its relevance. If queries, results,
and relevance are recorded, the system can improve by itself.
This would be another way to approve or to dismiss a particular
distance.

We also plan to search multivariate time series. How to define a
multivariate query? This raises several problems, such as the
number of queries (should we have a query for each variable or
not), the length of the queries (should all the queries be the same
length; if not, what would be the limit), the time’s position
(should a query require the same offset for each variable, or
should we allow some offset), the weight of each variable
(should some variables be more important than others), etc.

Finally, we project to implement and test indexation techniques
in Hadoop, for example R-trees. This has been well discussed in
the literature, though not it a parallelized environment, and
consists in indexing the first few coefficients of a particular
transformation (for example PAA, DFT, DWT, etc).

8. REFERENCES
[1] Agrawal, R., Faloutsos, C. and Swami, A. 1993. Efficient

Similarity Search in Sequence Databases. In Proc. of 4th
Conf. on Foundations of Data Organization and
Algorithms

[2] Beckmann, N., Kriegel, H.P., Schneider, R. and Seeger, B.
1990. The R*-tree, an Efficient and Robust Access Method
for Points and Rectangles. In Proc. ACM SIGMOD Intl.
Conf. on Management of Data, pp. 322-331

[3] Chan, K.P. and Fu, A.W.C. 1999. Efficient Time Series
Matching by Wavelets. In Proc. of 15th IEEE Intl. Conf. on
Data Engineering

[4] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and
Keogh, E. 2008. Querying and Mining of Time Series
Data: Experimental Comparison of Representations and
Distance Measures. In PVLDB 1, 2, pp. 1542-52

[5] D. P. dos Santos, L., Picard, M.-L., G. da Silva, A.,
Worms, D., Jacquin, B. and Bernard, C. 2012. Massive
Smart Meter Data Storage and Processing on top of
Hadoop. In VLDB

[6] Dutta, H., Kamil, A., Pooleery, M., Sethumadhavan, S. and
Demme, J. 2011. Distributed Storage of Large Scale
Multidimensional Electroencephalogram Data using
Hadoop and HBase. In Grid and Cloud Database
Management, Springer, Heidelberg

[7] Dwork, C., Kumar, R., Naor, M. and Sivakumar, D. 2001.
Rank Aggregation Methods for the Web. In Proc. of the
10th Intl. World Wide Web Conf., New York, pp. 613-622

[8] Faloutsos, C., Ranganathan, M. and Manolopoulos, Y.
1994. Fast Subsequence Matching in Time-Series
Databases. In Proc. ACM SIGMOD Conf., Minneapolis

[9] Goldin, D.Q., Millstein, T.D. and Kutlu, A. 2004. Bounded
similarity querying for time-series data. In Information and
Computation, 194(2), pp. 203-241

[10] Guttman, A. 1984. R-trees, a Dynamic Index Structure for
Spatial Searching. In Proc. ACM SIGMOD Intl. Conf. on
Management of Data, pp. 47-57

[11] JaJa, J., Kim, J. and Qin, W. 2004. Efficient Serial and
Parallel Algorithms for Querying Large Scale
Multidimensional Time Series Data.
http://www.umiacs.umd.edu/publications/efficient-serial-
and-parallel-algorithms-querying-large-scale-
multidimensional-time

[12] Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S.
2001. Dimensionality Reduction for Fast Similarity Search
in Large Time Series Databases. In Knowl. Inf. Syst., 3(3)

[13] Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S.
2001. Locally Adaptive Dimensionality Reduction for
Indexing Large Time Series Databases. In SIGMOD Conf.

[14] Keogh, E. and Ratanamahatana, C.A. 2002. Exact Indexing
of Dynamic Time Warping. In VLDB

[15] Korn, F., Jagadish, H.V. and Faloutsos, C. 1997.
Efficiently Supporting Ad Hoc Queries in Large Datasets
of Time Sequences. In SIGMOD Conf.

[16] Lin, K.I., Jagadish, H.V. and Faloutsos, C. 1993. The TV-
tree, An Index Structure for High-Dimensional Data. In
VLDB

[17] Lin, J., Keogh, E., Wei, L. and Lonardi, S. 2007.
Experiencing SAX: a novel symbolic representation of
time series. In Data Min. Knowl. Discov., 15(2)

[18] Qiao, J., Ye, Y. and Zhang, C. 2006. Parallelization of
Similarity Search in Large Time Series Databases. In Proc.
IMSCCS

[19] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G.,
Westover, B., Zhu, Q., Zakaria, J. and Keogh, E. 2012.
Searching and Mining Trillions of Time Series
Subsequences under Dynamic Time Warping. In VLDB

[20] Ravi Kanth, K.V., Agrawal, D. and Singh, A. 1998.
Dimensionality Reduction for Similarity Searching in
Dynamic Databases. In Proc. ACM SIGMOD Conf., pp.
166-176

[21] Shieh, J. and Keogh, E. 2008. iSAX: Indexing and Mining
Terabyte Sized Time Series. In KDD, pp. 623-631

[22] Stollnitz, E.J., DeRose, T.D. and Salesin, D.H. 1995.
Wavelets for Computer Graphics, a Primer. In IEEE
Comput. Graph. Appl., 15(3), pp. 76-84

[23] Wu, Y.L., Agrawal, D. and El Abbadi, A. 2000. A
Comparison of DFT and DWT Based Similarity Search in
Time-Series Databases. In CIKM

