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ABSTRACT

In this paper, we investigate the possibilitieserdfl by the
Hadoop eco-system for searching time series irleatrie power
company (To@K or range-queries based on a similarity
measure). There has been much work done on speeitige
search of time series in a large dataset, mainlydésigning
efficient indexing techniques preceded by reductechniques.
In this paper, we do not follow these approachdsfhcus on
using the brutal force of distributed computatiomshe Hadoop
environment. We propose an implementation of tineeies
search functions in Hadoop and describe experimamta large
database of electric power consumption curves (8bistomers
observed during 1 month at a 30’ sampling rate). alge show
that this architecture supports easily the compmrtadf several
distances for the same query with a small respanse
overhead: this is very useful in practice when ¢hd-user does
not know very well which distance to use.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: Time series analysis;

H.4 [Information Systems Applicationg: Miscellaneous;
H.2.8 [Database Managemerjt Database applications Bata
Mining.

General Terms
Algorithms, Performance, Experimentation

Keywords

Time series, Similarity search, Hadoop

1. INTRODUCTION

With the upcoming installation of smart meters, limils of
electric power load curves are bound to be recomledy day.
Time series data will increase at an unprecedespedd in EDF.
In this context, tools to store and process massive series
databases are needed. In particular, searchirgjrfilar patterns
is a core element of many data mining applications.

However, electric power consumption is not the ardg case of
time series similarity search in EDF. For examplewer plants
monitoring via transient behaviors of physical signprovide
amount of time series in which patterns researching at
diagnostic aid is very interesting. Another useecesthe grid
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frequency in power plants, which must be maintainedstant.
In this case, we are interested in finding dropféquency in a
very large data historian.

To handle these problems, the Hadoop eco-systerhoth

convenient and efficient since it allows inexpepssiorage and
data-intensive distributed applications. This isllvauited for

information search. Indeed, Hadoop is based on keg

elements, namely the MapReduce programming modeItiae
Hadoop Distributed File System (HDFS), which arewa from

Google’s computing infrastructure.

Similarity search through dimensionality reductioand

indexation has been well discussed in the liteeathiowever, it
is not the case for parallelization’s brutal forte this work we
show that a parallel sequential similarity seactath fast and
flexible. This paper contains the following contriions:

e Firstly, we propose a storage solution and efficien
Hadoop user-defined functions with various paransete
for time series search

e Secondly, we show their efficiency through a seags
experiments with performance results dealing with
single but also multiple queries

e Lastly, in case the end-user does not know very wel
which distance to use, we introduce a novel ide&hvh
consists in computing multiple distances and ramkin
the results according to some aggregation methods.

The rest of this paper is organized as followstiBe@ defines
the problem of similarity search in time seriesct®m 3 surveys
the related work. In Section 4 we describe our gaErepproach
in Hadoop. Section 5 focuses on the multi-distansearch.
Section 6 shows the experimental results. Finally draw
conclusion in Section 7.

2. PROBLEM DEFINITION

Our work in this paper concentrates on univariatee tseries.
This is the reason why we will not consider our adats
regarding transient behaviors of physical signals, what is
chiefly challenging in these datasets is to findiowss patterns
located in several variables simultaneously.

Thus, we use here two main datasets: electric pdoaet (i.e.
consumption) curves and grid frequency in powemntslaThe
first one is synthetic and contains daily load esnat a 30’
sampling rate of 35M customers during a month, hameund
a billion 48-dimensional time series. The second isna sample
subset from one power plant with measurements at”a
sampling rate during a month, namely 2.5M values.

Though these are particular examples, they are erath
representative and can be easily generalized ter athivariate
sensor data.



We now define time series.

Definition 1: A Time Series &f length|S|=n is a real numbers
sequenceS=S,,S,... ,S. We assume that the sampling rate, that
is to say, the time step between each measuremmeagular and
the same for all the time series we consider irddtabase.

Definition 2: A Subsequencgy of a time serieS is a shorter
time series of lengtk starting from position.

Definition 3: The Euclidean DistancgED) between two time
seriesQ andSwhere Q|=|9 is defined as:

n
EDQC) = [y (@5

i=
When available time series are very long (for inséa the
description of electric power consumption of a ouostr during
one month or one year), we split them into conseewegments
of sizen (for instance each segment describes one daynwi8
in the case of 80’ sampling rate).

The problem we focus on is the design of fast $éagcmethods
that search and locate sequences that approximatatgh a
specific query sequence in a time series database.

Before clarifying what a query is, we need to defthe dataset
which is searched. We consider basically two waysearch
such data, as illustrated in Figure 1 and 2:

*  Whole MatchingThe query sequence is compared only
once to each candidate sequence. Therefore thg quer
sequence “jumps” from one sequence to the next. All
sequences must have the same length,
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Figure 1: Whole matching (jumping window).

e Subsequence Matchinglere we have a smaller query
sequence. We look for a subsequence in the large

between two time series with a high mean discrepappear to
be high even if the shapes of the time seriesiamas. It is the
same for two time series with a high variance défifee.

Definition 4: Let Sbe a time serieg, its mean and its standard
deviation. Leti be in {1, ... ,n}. The time series can be

normalized by dividing by the mean.?i(z %) or by

standardizing§; = 354,

3. RELATED WORK

Time series are all the more fundamentally highetisional data
since they are very long. Processing and storirgelsolume of
them is very expensive. Thus, with the aim of dwplvith large
time series databases, many techniques have beposed in
the literature for representing time series withdueed
dimensionality, such aBiscreteFourier Transformation(DFT)
[1][8][23], Single Value DecompositioiSVD) [12][15][20],
Discrete Wavelet TransformatidDWT) [3][22][23], Piecewise
Aggregate Approximation(PAA) [12], Adaptive Piecewise
Constant Approximation(APCA) [13], Symbolic Aggregate
approXimation (SAX) [17][21], etc. In order to measure a
similarity, these representations should be associated with a
distance metric, like classiEuclideanDistance (ED) [1][8] or
elastic measures such@gnamicTimeWarping(DTW) [14].

This dimensionality reduction might be used for twuajor

reasons: firstly, with a view to smooth raw datal ahus, to
change the query criterion (the distance metricoimputed over
transformed time series); secondly, in order toatrea
multidimensional index structure to avoid sequéngigans. In
this case, dimensionality reduction is performeaiider to keep
indexing efficient by storing no more than 8-12 fficents for

each time series. Several index structures have beggested:
R-tree [10], R*-tree [2], TV-tree [16], etc. Notleat an important
property proved by [1] is that, in order to guaesnino false
dismissals, the distance measure in the index spase satisfy
the following condition:

Dindex space (F(A)' F(B)) < Dtrue space (A' B)

sequence that best matches the query sequence and A and B are two time seriesfF(A) and F(B) are their

report its offset. Therefore the query sequendeésfl
along every sequence. In the rest of the papernwhe
considering subsequence matching, we will assume th
query length id.
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Figure 2: Subsequence matching (sliding window).
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We now define a query. Similarity queries can bessified in
two categories:

 Top-K queries The K closest sequences to the query
sequence are returned.

* Range-queriesAll sequences within an epsilon of the
query sequence are returned.

Lastly, we insist on the need for normalization. sAated by the
author of [19], Tn order to make meaningful comparisons
between two time series, both must be normdliZEuis seems
intuitive when we are interested &milarity in terms of shape
but not in absolute values. Indeed, the Euclidedstance

transformations after performing dimensionality uetion. This

is called thdower boundingproperty and allows range-queries to
be performed on the index structure, provided veealid false
alarms afterwards.

However, this approach has some drawbacks. Onrikehand,
we can only deal easily with range-queries singedim of the
index structure is to project the query in the dpace and to
retrieve all time series in a range On the other hand,
subsequence matching queries are quite complesottegs with
an index. Suppose we have a subsequence matchery qfi
length w. Faloutsos et al. [8] suggested storingnimum
boundingrectanglesMBR) containing trails consisting of — w
+ 1 points, one for each possible offset of thdistj window.
Obviously, we would like to use the same indexdadie queries
of length greater tham. [8] suggested methods based on prefix
search, but none of them seems entirely satisfactor

We opted for another approach: similarity searclouph a
parallel sequential scan. To our knowledge, no bae ever
considered this approach in a data mining papdi8h Qiao et
al. dealt with parallel algorithms for range-queriand TopK
search, but only for whole matching, while JaJaakt[11]



developed indexing techniques to efficiently handleerying
multidimensional time series in a parallel impleagion.

4. TIME SERIES SEARCH IN HADOOP

Our goal is to design and implement a Hadoop baekdion to
the problem of similarity search in a time seriasatiase.

Hadoop is an open-source software framework thaipcus
data-intensive distributed applications. It is hsm two key
elements: the MapReduce programming model and thESH
file management system (Hadoop Distributed FiletSy.

We also use Hive, a data warehouse infrastructuifedn top of

the Hadoop ecosystem and suitable for analytiealtinents and
ad hoc queries with HiveQL, a SQL-based query lagguHive

queries are transparently translated into MapReghioe

Sometimes it might be impossible — or at leastidliff — to
express a query in HiveQL, especially as it israpdified SQL
version and does not allow all kinds of subquerigsitiple
tables in the “where” clause, etc. This problem che
circumvented thanks to custom mappers and redtitargan be
plugged in Hive. There are two ways to do so: eithg
developing streaming mappers and/or reducers scopt by
developing customized Java functions called usefinetd
functions (see Figure 3). These functions can work by row
(User Defined Function, UDF) or they can aggregsaegeral
rows (User Defined Aggregation Function, UDAF). Eliallows
two varieties of UDAFs: simple and generic. SImpAFs are
simpler to write but incur performance penaltieartRermore,
they do not allow Generic UDAFs' features such asiable-
length argument lists or complex types input anigpou

public abstract class GenericUDF

UDF,

initialize(objectlnspector[]): Cbjectlnspector
eval uat e(Deferredbject[]): Object

public abstract class Generi cUDAFEval uator

get NewAggregat i onBuf fer(): AggregationBuffer
reset (AggregationBuffer): void
i nit(Mde, Objectlnspector[]): Cbjectlnspector
i terate(AggregationBuffer, Gject[]): void
ner ge( Aggr egati onBuf fer, Cbject): void

term natePartial (AggregationBuffer): Cbject
term nat e(AggregationBuffer): Chject

Figure 3: UDF and UDAF overridden methods summary.

4.1 Time series storage structure in HDFS

In a previous work at EDF R&D, we showed that Hazlcould
be efficiently used to store and manage structutath from
smart meters [5]. Different representation modéls, formats,
and compression methods for the storage were tested

The default parameters were kept (text file formvih default
compression codec: .deflate) since they appearagivio good
performance while preserving a high compressios rat

An array representation model for storing time esenvas also
designed in [5] and is reused here. It takes adgentof a
primitive type defined in Hive that is able to sanultiple values
of a same type. Thus, it has the advantage okwétig an entire
time series by reading a single record. The arrdgfgyth is

flexible and can be adapted to the sampling rage time step):
we might store minutely, hourly, daily, monthlycetime series.

This representation model is well adapted to anglematching
query of length less than or equal to the arragisgth. What
about subsequence matching? If the time seriedichwve want
to “slide” are of length less than or equal to dneay’s length, we
do not encounter any problem. However, suppostinieseries
that we want to “slide” in are so long that theyreveplit into
several segments. How to “slide” in a split timeies? At one

point, we inevitably have to “slide” straddling dmoth a given
segment of time series and its following segmemte Tdea to
circumvent this problem is to have an overlap ofeast twice
the maximum subsequence matching query length. ,Tives
need to have access to a new array of length 2

For example, as shown in Figure 4, by overlapping days in
the database, we are able to deal with any subsegueatching
query of length less than or equal to one day.

2008-06-01 2008-06-02 E ....... 2008-06-29 2008-06-30
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Figure 4: In order to “slide” along the whole lengh of a time series
split up into arrays, we need to overlap at leastto arrays.

We propose two ways to obtain a specific segmemnt i
following one. The first one is to operate a seifj This is very
efficient in terms of file size, but not in termEquery execution
time, especially as partitioning by day would beelass and
partitioning by client ID would be impossible (weave more
than 35M customers). Besides, this storage allowsergeneral
queries since it is possible to add several segnieahind the
first one. Thus we can handle subsequent matchiregies of
any length. The other possibility is to adapt therage by
replicating the following segment at the end offesmw. This is
very efficient in terms of query execution timet ot in terms
of file size since it nearly doubles the data.

4.2 Generic search functions

Based on this storage structure, we now describalgdporithms
and how we parallelize them. We produce naive #lyos for
TopK and range-query in case of whole matching sedrchy
are presented in Table 1 and 2.

Table 1: Range-query search algorithm

Algorithm RangeQuery(Q,€)

for i =1 toN // For each row (record)
Ci « (Ci - p(ci))/o(Ci); // Optional: normalize
Ci « SomeTransformation(Ci); // Optional: transform
if D(Ci,Q) < €
list_id.add(Ci.id); // Insert the ID of the
end; // current row in the list
end;

Ding et al. [4] showed that,a$ the size of the training set
increases, the accuracy of elastic measures coegength that
of Euclidean distan¢e Thus, the computed distan@&cCi,Q)
will be Euclidean on raw, normalized or transfornaeda.

For TopK search, we keep up to date a two-dimension table

containing the IDs of thK nearest neighbors and their distances.
If a row with a distance less than tlhest-so-farmaximum
distance is found, then thest-so-fardistance is replaced as well
as the corresponding ID.

Table 2: TopK search algorithm

Algorithm TopK(Q,K)

for i =1 toN // For each row
Ci « (Ci - p(ci))/o(Ci); // Optional: normalize
Ci « SomeTransformation(Ci); // Optional: transform
if D(Ci,Q) < max(tab_dist)
tab_id.update(Ci.id); // Update the Top-K tab by
tab_dist.update(D(Ci,Q)); // replacing the previous
end; // max by D(Ci,Q)
end;




Note that computing the mean and variance for threnalization
step requires a loop iterating times over the values of the
current array. This is the same for computing thelilean
Distance between the query and the current arrayit 5 a sum
of positive terms, we caearly abandorthe calculation as soon
as it is higher tham (for range-queries) or than tlest-so-far
maximum distance (for Tog-queries), see [19].

These algorithms are easily adaptable to subsequmatching
by adding another loop immediately after the looprahe rows.
Indeed, this new loop must examine each subsequerntenust
normalize each subsequence, as stated in [19)e I€drrent array
is at the beginning or in the middle of a time egrithen this new
loop iterates times (half the size of the replicated array) ekfs
the current array is the end (i.e. last segmen@ tifne series,
then data is not replicated and the loop iterate$ + 1 times.

We now want to parallelize these algorithms in Hzzl@and
Hive. The basic idea is that data are split in kdoceplicated
three times in HDFS. The previously described naig®rithm
is executed on each block, and a local table (Komr range-
query) is returned. Then, these local tables argedetwo by
two, until obtaining the final table.

For the implementation, we use Generic UDAFs sitloey
outperform any other kind of customization in Hiwrstly, we
have to define an aggregation structure and tdalizié it. For
TopK search, it is a two-dimension table storing ID=d an
distances, whereas for range-query, it is a ligh wnly IDs. Note
that when dealing with subsequence matching, a field
storing the position is added to the aggregatidrenT we iterate
over rows and keep the aggregation up to date.r Afterging
partial aggregations, we get a final aggregatiod @turn it in
Hive. The function is plugged in Hive as shown taple 3.

Table 3: Hive code for executing UD(A)Fs

CREATE TEMPORARY FUNCTION TopK as 'com.UDAF.TopK";
SELECT TopK(id, values)

FROM table

WHERE ...;

One of the most useful aspects of using Hive ig thase
functions can be combined with relational algebpaojections,
selections, joins, etc.

4.3 Grouping several queries

We started from whole matching and showed thatrilgos,
Generic UDAFs, and aggregation structures were adspted to
subsequence matching. Likewise, it is possible &arch
simultaneous several queries by keeping up to dagémilar
aggregation structure with an additional dimensiororder to
refer to the various queries. Moreover, we aré¢ allle to use the
early abandoning: while at least for one querydheent sum is
less than the correspondimgst-so-farmaximum distance, we
stay on the row and keep doing the calculationdading next
terms of the array. Thus, for each row, we drop oy®ne the
gueries as soon as they do not need further tériss:easonable
to expect that it will be very cost-effective simm@ly one pass on
the data is necessary to answer to multiple queries
simultaneously.

5. MULTI-DISTANCE SEARCH

In practice, end-users might want to look for martér patterns
without knowing precisely which distance would Ihe tbest to
minimize. The solution we propose is to compute esav
distances simultaneously for the same query, foangpte
Euclidean Distance or DTW [14] on various repreagohs

(normalized and/or transformed data). This is dop&eeping up
to date one table for each considered distance.

Once again, this is easily implementable in Hivetigh Generic
UDAFs functions using a similar aggregation struetwith an

additional dimension in order to refer to the talderresponding
to the various distances.

Assuming that distances are Euclidean, early ab@ngdas still
usable: while at least for one distance the cursant is less than
the correspondingest-so-famaximum distance, we stay on the
row and keep doing the calculation by reading nexns of the
array. Thus, for each row, we drop one by one ihtadces as
soon as they do not need further terms.

Our approach might be used in order to distingbistween the
various distances and to favor one of them, acogrdd some
experts’ knowledge. But the solution we designedoisun a
TopK query for each distance and obtain a combined fina
ranking (aninter-ranking based on the ranks given by all the
TopK of the various distances. This is a rank aggregati
problem, a research field of social choice theaating) back to
the 18" century which regains interest in the context aichine
learning, data and Web mining.

5.1 Rank aggregation problem

The problem is the following:

Problem 1: Given D distances an® TopK candidates for each
distance, the problem is to obtain a combined finaking of U
distinct time series, in reasonable execution tianed as
consensuahs possible.

We first define U, the set of results. Let Be the set of all time
series appearing in th® TopK (i.e. in the intersection).
Similarly, let G.; be a set of all the time series appearin®-h
TopK. Thus, we can recursively defilesets of time series,C

C, ... , G. As among all the chosen distances, each one
optimizes a particular criterion, it is highly ukdly that theD
Top-K contain exactly the same time series ordered rdifty.
However, should this case happens, we would défireCy and
have only full lists: the D TopK would be 14,7y, ...
permutations of the set U.

In general, we will have onlypartial lists, which are not
permutations yet. Then, we set U 5 6r U = G U Cp, for
example and we come downftdl lists like this:

»Tp

« For each distance, we take (in the corresponding To
K) the relative ranks of the time series ip & well as
the relative ranks of the time series ip.{Gvhich are
present in this particular Tag-

«  For the time series ingG which are not present in this
particular TopK, we suggest two solutions: either to
add them at the end of the ranking, or to comphué t
distances and to place them in the ranking accgrin
it.
We now haveD permutations (or rankings), 7y, ..., 7p Of |U|
time series (or candidates), c,, ..., ¢jy;. The problem now is to
obtain a new permutatianas consensual as possible.

5.2 Optimal rank aggregation

We want to fninimize the total disagreement between the several
input rankings and their aggregatidfi] by pleasing a majority

of individual preferences. Thus, we aim at satigfytheextended
Condorcet criterion if the Condorcet winner exists (a candidate
that wins the most duels by pairwise simple majovibting),
then it should be ranked first. If it does not éxteen a set of



candidates preferred by the majority over anotle¢rshould be
ranked higher. Formally, we aim at achieving optityeof the
function below:

D D
(o) = Z dist(c,7;) by finding ¢* = argminz dist(a, 7))
i=1 i=1
where dist(o,7) is the Kendall tau distanceand counts the
number of pairwise disagreements between two pations:

K(o,t) = |{i,j €U : o) <a() butz(@) >t()}|

The permutatiow™* obtained by optimizing{endall tau distance
is calledKemeny optimal aggregaticand satisfies the extended
Condorcet criterion. However, [7] showed that cotmy the
optimum is NP-Hard, even f@ = 4.

Another popular distance measure between two petioos is
the Spearman footrule distanaghich sums over all candidates
in U the absolute difference between the ranksaifcording to
the two permutations:

U]

F(o,0) = Y 1o() = ()|
i=1

5.3 Heuristic approaches

We now enumerate rank aggregation methods that ao n

optimize any criteria, but are still effectivepractice.

5.3.1 Footrule optimal aggregation
The following relation shows that théendall taudistancecan
be approximated via th&pearman footrule distance

Vo, K(o,7) < F(0,7) <2K(0,7)

Thus, by computing footrule optimal aggregatianwe will have
a lower bound (by a factor of two) on the optirkandall tau
distance

[7] investigatedootrule optimal aggregatioand showed thait*
can be computed in polynomial time, specificaly, time to find
a minimum cost perfect matching in a bipartite drap

Let (C, R, W be this graph wheré = {c,, ..., ¢y} is the set of
candidates an®& = {1, ..., |U|} is the set of available ranks. The
weighs are the following:

YceECVreR, Wir)=3",lt;(c)—rl

Thus, for a certain matching, the sum of weighgljg1 Wi(c,1.),
which is exactly functio with dist(o,7) = F (0, 7).

5.3.2 Positional methods

Borda’s method was devised by Borda in 1770 big &n old
voting system already used by the Romans. It ctsisgiving
each candidate a certain vector of lenthontaining its rank in

each of thes® input rankings. Each rank gives a number of

points (in general equal to the rank). Then, tHelerectors are
sorted according to theit; or L, norms, their means, their
medians, etc.

5.3.3 Markov chain methods

The idea is to represent the |U| candidates age®iin a graph
with transition probabilities depending in sometjgaitar way on
the relative rankings of the candidates. From shkége-transition
matrix, we get a stationary distribution and tharsjnter-ranking.

Dwork et al. [7] suggested four ways to define thensition
probabilities.

6. EXPERIMENTS

As mentioned earlier, two different datasets weseduo conduct
experiments with the following different goals:

«  On the synthetic electric power load curves dataset
tested the scalability and measured execution fone
TopK search, both for whole and subsequence
matching.

* In the grid frequency in power plants dataset, we
looked for substantial drops in frequency, idealy
50mHz fall happening in 10 seconds or less, being
stable before and after the fall. The end-user, istam
expert, visually knows whether time series resgltin
from the TopK search match or not. This pattern was
defined by the end-user who was not able to define
precisely which distance to use. For example, itlc¢o
be the Euclidean Distance on the whole original
pattern, on the drop only, on the derivative of the
original pattern, etc. In this experiment, we tdste
different distances and showed the improvement
provided by inter-ranking.

6.1 Hadoop infrastructure

As in [5], the cluster we used in our experimestsomposed of
2 racks and a total of 20 nodes with 2 kinds of wmdity

servers (7 are 1U and 13 are 2U). The 1U servers Agl TB

disks while the 2U servers have 8x1 TB disks. Moftthe

servers have 2 CPUs AMD Opteron(tm) with 8 coreshe@

have 2 x 12 cores). In total, the cluster is corepasf 132 TB of
storage and 336 cores. The Hadoop distributioraliest is the
open source CDH3u3 from Cloudera.

6.2 Datasets

6.2.1 Electric power load curves

This first dataset was generated in the contexthefproof of
concept (POC) carried out by the R&D Division, $6¢ We
tested our algorithms on a subset of this data3®027,502
customers with raw electricity consumption meas@m@s (in
Wh) every 30 minutes during one month. This is egjeint to
around 3.3 TB of uncompressed datal0 GB per day).

For our experiment, we chose as basic length alyam = 48
and we created two tables: one for daily whole hiate queries
(of length 48), and one for subsequence matchirgrieg (of
length up to 48).

The table used for daily whole matching queries baze
columns shown in Table 4.

Table 4: Table structure for whole matching.id_client
and day form the primary key of the table.
ID_CLIENT DAY
(int) (string)

VALUES
(array<int>)

136630| 2008-06-07| [ 625, 473, 483, 202, 396, 241, ...

The table used for subsequence matching querieatamates to
each row the values of the next day, thus intradyecgdundancy
as suggested in Section 4.1. This approach igriitezl in Table
5 for the second dataset.

Recall that we used a text file format with a defleompression.
With this configuration, the final volume of the alb matching
table is around 96 GB (replicated three times inASP It is a
considerable saving in terms of storage disk sgacepared to
the original 3.3 TB of uncompressed data. The firdume of
the compressed subsequence matching table is at@nGB.



6.2.2 Grid frequency in power plants

This dataset is made up of real electric power agkvirequency
measurements taken at one power plant every sehmith one

month. This makeg9 x 24 x 60 x 60 = 2,505,600 values and
around 145 MB of uncompressed data. Note that nly a

sample: we expect to process historical data ofre¢wears. In
this dataset, we were trying to find drops in freqey, defined as
follows: a fall greater than or equal to 50 mHzppening in 10”

or less, stable during 30" before and 60 aftee fall. This is a
subsequence matching problem because the droptaragisany
position. Since the length of the query is 100, uwged the
previously described storage structure and createys of 240
values with an overlapping of 120 values. Thus,cap handle
any subsequence matching query of maximal lengéh(d@mely

2 minutes). The table we used contained 2,505,6020 =

20,880 rows. It is illustrated in Table 5.

Table 5: Table structure used for the grid frequeng
dataset.id_minute is the primary key of the table

ID_MINUTE DAY TIME VALUES
(int) (string) (string) (array<double>)
0 01/01/2012 00:00 [T 120[121 > 240]
1 01/01/2012 00:02 | [T o 120121 > 240]
20879 29/01/2012 23:58 1 o 120

We also used a text file format with a deflate coespion, for a
total volume of 3.98 MB. Obviously, the challenger fthis
dataset is not response time but the fact thatrexpee not able
to define the right distance to use.

Note that raw data is stored and the algorithm @atim®s each
examined subsequence (by shifting but not scalingeswe are
interested in the absolute value of the drop).

6.3 Results on scalability
6.3.1 Simple query Top-K search

In this section, we measured the time taken by@K gearch on
our electric power consumption dataset. We firsbwshhow
important is the distribution of the data in HDFIBdks. Indeed,
the number of blocks is equal to the number of Mappvhich
depends on the number of nodes in the clusteralsot on the
complexity of tasks.

We created several versions of the table menti@zelier, with
various block sizes and thus, various numbers o¢ks. Then,
we measured the time taken for a TWgearch (arbitrarilk = 5
since we noticed almost no influencekobn the execution time)
and averaged it on 100 queries (drawn randamtiie dataset).

We did the same for the subsequence matching téfderecall
that we mentioned two ways to handle subsequendehing
queries: by a self join or a replicated storagee $élf join takes
around 50’ to be executed: this confirmed what weiied in
Section 4.1. Consequently, we concentrate on {hlecated table
solution in the following. The results are showrFigure 5.

Volume ofblocks (MB) Volume ofblocks (MB)
380 190 127 95 76 63 54 48 42 38 19 8 65 49 % 33 28 24 22 20 18
. . . P A P

TOP-K °
_| WHOLE MATCHING
¢

L
TOP-K
SUBSEQUENCE MATCHING (/=20)

T T T
2000 3000 4000 5000
Number ofblocksie.of Mappers

Top-5 whole matching search in
blocks.right) idem for a Top-5

1000 2000 3000 4000 5000 1000
Number ofblocks ie. of Mappers

Figure 5: left) Time taken by a
terms of the number of HDFS
subsequence matching search.

Hadoop indicates that a good level of parallelisnbétween 10
and 100 Mappers per node. Our cluster containing@fes, it
makes between 200 and 2000 Mappers. This resuhlidated
by our experimental results since our 1000 optibviacks are
located between these bounds. Using this new dstdbdtion,
we obtained final query execution times shown iblg&. These
response times do not allow interactive searchappear to be
satisfactory for the applications we consider.

Table 6: Time taken (in minutes, averaged on 100 @uies

drawn randomly in the table) by Top-5 queries on tv 1000-block
tables, one for whole matching and one for subsegoee matching.

Whole Subsequence Matching
Matching =5 =20 | =45
Min 3.00 5.62 5.87 6.33
Mean 3.20 5.85 6.52 7.82
Max 3.32 6.15 7.08 8.88
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Figure 6: left) Time taken (in minutes) by a whole matching Top-Search in terms of the number of simultaneous quégs.right) Time taken (in
minutes) by subsequence matching queries (of lengsh 20, and 45) Top-5 search in terms of the numbef simultaneous queries.



6.3.2 Multiple queries Top-K search

We implemented slightly modified functions allowing to 1000
simultaneous queries with early-abandon. Clearly, kept the
previously described optimal tables with 1000 bkcRs we
expected, our approach is very efficient, as showrigure 6,
and enables us to process 100 queries in lessl themnutes.

6.4 Results on multi-distance search

We report here experiments related to the technitpseribed in
Section 5, applied to the grid electric power freney dataset.
We are looking for a very precise pattern.

We implemented the following four distance measures

¢ d;: Weighted Euclidean Distance on the whole

pattern (illustrated below). We assign higher weighs to

the drop in order to balance the trade-off betwisen
absolute value of the drop and the stability befamd

after.
20 j
B e o S o AR RS S S S s s b S e s S &S RS il
0 10 20 30 40 50 60 70 80 90 100

¢ d,; Weighted Euclidean Distance on the derivative

pattern (illustrated below). The derivative, computed

as the difference between a value and its following,

ensures the stability before and after the fall.
0 10 20 30 40 50 60 70 80 90

100

¢ ds Euclidean Distance on the drop only(illustrated
below). This distance guarantees to return onltithe

series with a substantial linear drop of 50mHz th 1

seconds. However, it does not ensure stability.

e d4 Variance of the two stability zones(illustrated
below). This is not a distance but rather

a

quantification of how the examined subsequence
matches a model: for each subsequence, we compute
X1 30 (the mean of the first 30 values) angd 1o, (the
mean of the last 60 values). If the differenceighér
than a certain threshold (ideally 50), then the suea
is defined and it is the sum of the variances efttho
stability zones.

90

We now determine the bekt (recall that we execute a Tdp-

search for each distance) in order to have a seawdidates U

for the inter-ranking. We tried various valueskobetween 1 and

1000 but there does not existkabeyond which all distances
would return the same time series.

For our experiment, we usefl = 30 and U = QU C,. This
choice led us to inter-rank 12 time series A, B, L.

100

We obtained four permutations from which we testbe
previously described rank aggregation methods. rEksalts are
shown in Figure 7.

D
Method @(0) =) K(o,1;)
%

Final ranking (or permutation) o

Borda-1 83

Borda -2 85
Borda -3 87
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MC1 99
mC2 125
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Figure 7: Borda's method (;-norm of the D-dimensional vector of
the ranks) induces equally placed time series. Allpossible
permutations are listed.

The optimal function was computed for each methibdppears
that Borda's method exhibits the best permutatadtough it is
very simple.

Finally, we can visualize graphical results (segufés 8 and 9).
Experts claimed that it clearly appears that théshnique
outperforms the classic one using only one distameasure.
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Figure 8: The first four final time serieé obtainedusihg i'htér—rzanking
technique.
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Figure 9: The first four final time series obtained using only one
distance, here it isd, (on the derivative pattern).

7. CONCLUSION AND FURTHER WORK

In this paper, we proposed an approach for sintylaearch in a
very large time series database, typically contgimhore than a
billion 48-dimensional time series. We used thetddriorce of
Hadoop and Hive along with its adaptability andxifbdity
potential to parallelize this search.

On the 336 cores cluster set up in EDF R&D, theltesf the
TopK search is obtained in a few minutes. But this ity @
glimpse on all the advantages showed by Hadoopitabforce.
In our case for example, its data processing paallews to
answer multiple queries in only one pass withodtioing much
the execution time. We can also carry out normatima and/or
complex transformations on the time series, in otdesmooth
them or to compute another kind of distance. Weluatad



performance on synthetic time series representimaytsmetering
data.

However, as the distance depends a lot on thecdatnts, it is
frequent that the end-user does not know precisehych

distance to use. Similarly to multiple queries, siggested to
solve this problem by computing several distanaes] thus to
build several rankings, one for each considerethii®. Then,
based on these rankings, we get a final one usugidtics on
rank aggregation methods. We implemented this agbravith

four distances on grid frequency data. We testaibwa rank
aggregation methods.

In future work we intend to improve our ranking amgch by
using relevance feedback: for each result returbgdour
algorithms, an expert accesses its relevance. dfieg; results,
and relevance are recorded, the system can imprgvieself.
This would be another way to approve or to disraigmrticular
distance.

We also plan to search multivariate time seriesw o define a
multivariate query? This raises several problemghsas the
number of queries (should we have a query for eackable or
not), the length of the queries (should all thergasebe the same
length; if not, what would be the limit), the tinseposition
(should a query require the same offset for eadialie, or
should we allow some offset), the weight of eachialde
(should some variables be more important than sthetc.

Finally, we project to implement and test indexattechniques
in Hadoop, for example R-trees. This has been #istiussed in
the literature, though not it a parallelized enmirent, and
consists in indexing the first few coefficients af particular
transformation (for example PAA, DFT, DWT, etc).
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