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ABSTRACT  

In this paper, we investigate the possibilities offered by the 
Hadoop eco-system for searching time series in an electric power 
company (Top-K or range-queries based on a similarity 
measure). There has been much work done on speeding up the 
search of time series in a large dataset, mainly by designing 
efficient indexing techniques preceded by reduction techniques. 
In this paper, we do not follow these approaches but focus on 
using the brutal force of distributed computations in the Hadoop 
environment. We propose an implementation of time series 
search functions in Hadoop and describe experiments on a large 
database of electric power consumption curves (35M customers 
observed during 1 month at a 30’ sampling rate). We also show 
that this architecture supports easily the computation of several 
distances for the same query with a small response time 
overhead: this is very useful in practice when the end-user does 
not know very well which distance to use. 

Categories and Subject Descriptors 
G.3 [Probability and Statistics]: Time series analysis; 
H.4 [Information Systems Applications]: Miscellaneous; 
H.2.8 [Database Management]: Database applications – Data 
Mining. 

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Time series, Similarity search, Hadoop 

1. INTRODUCTION 
With the upcoming installation of smart meters, millions of 
electric power load curves are bound to be recorded every day. 
Time series data will increase at an unprecedented speed in EDF. 
In this context, tools to store and process massive time series 
databases are needed. In particular, searching for similar patterns 
is a core element of many data mining applications. 

However, electric power consumption is not the only use case of 
time series similarity search in EDF. For example, power plants 
monitoring via transient behaviors of physical signals provide 
amount of time series in which patterns research aiming at 
diagnostic aid is very interesting. Another use case is the grid 

frequency in power plants, which must be maintained constant. 
In this case, we are interested in finding drops in frequency in a 
very large data historian. 

To handle these problems, the Hadoop eco-system is both 
convenient and efficient since it allows inexpensive storage and 
data-intensive distributed applications. This is well suited for 
information search. Indeed, Hadoop is based on two key 
elements, namely the MapReduce programming model and the 
Hadoop Distributed File System (HDFS), which are derived from 
Google’s computing infrastructure. 

Similarity search through dimensionality reduction and 
indexation has been well discussed in the literature. However, it 
is not the case for parallelization’s brutal force. In this work we 
show that a parallel sequential similarity search is both fast and 
flexible. This paper contains the following contributions: 

• Firstly, we propose a storage solution and efficient 
Hadoop user-defined functions with various parameters 
for time series search 

• Secondly, we show their efficiency through a series of 
experiments with performance results dealing with 
single but also multiple queries 

• Lastly, in case the end-user does not know very well 
which distance to use, we introduce a novel idea which 
consists in computing multiple distances and ranking 
the results according to some aggregation methods. 

The rest of this paper is organized as follows. Section 2 defines 
the problem of similarity search in time series. Section 3 surveys 
the related work. In Section 4 we describe our general approach 
in Hadoop. Section 5 focuses on the multi-distances search. 
Section 6 shows the experimental results. Finally we draw 
conclusion in Section 7. 

2. PROBLEM DEFINITION 
Our work in this paper concentrates on univariate time series. 
This is the reason why we will not consider our datasets 
regarding transient behaviors of physical signals, as what is 
chiefly challenging in these datasets is to find various patterns 
located in several variables simultaneously. 

Thus, we use here two main datasets: electric power load (i.e. 
consumption) curves and grid frequency in power plants. The 
first one is synthetic and contains daily load curves at a 30’ 
sampling rate of 35M customers during a month, namely around 
a billion 48-dimensional time series. The second one is a sample 
subset from one power plant with measurements at a 1’’ 
sampling rate during a month, namely 2.5M values. 

Though these are particular examples, they are rather 
representative and can be easily generalized to other univariate 
sensor data. 
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We now define time series. 

Definition 1: A Time Series S of length |S| = n is a real numbers 
sequence: S = S1,S2,… ,Sn. We assume that the sampling rate, that 
is to say, the time step between each measurement, is regular and 
the same for all the time series we consider in the database. 

Definition 2: A Subsequence Si,k of a time series S is a shorter 
time series of length k starting from position i. 

Definition 3: The Euclidean Distance (ED) between two time 
series Q and S where |Q|=|S| is defined as: 

����, �� = 	
 ��� − 
����
���  

When available time series are very long (for instance the 
description of electric power consumption of a customer during 
one month or one year), we split them into consecutive segments 
of size n (for instance each segment describes one day with n=48 
in the case of a 30’ sampling rate). 

The problem we focus on is the design of fast searching methods 
that search and locate sequences that approximately match a 
specific query sequence in a time series database. 

Before clarifying what a query is, we need to define the dataset 
which is searched. We consider basically two ways to search 
such data, as illustrated in Figure 1 and 2: 

• Whole Matching. The query sequence is compared only 
once to each candidate sequence. Therefore the query 
sequence “jumps” from one sequence to the next. All 
sequences must have the same length, n. 

 
Figure 1: Whole matching (jumping window). 

 

• Subsequence Matching. Here we have a smaller query 
sequence. We look for a subsequence in the large 
sequence that best matches the query sequence and 
report its offset. Therefore the query sequence “slides” 
along every sequence. In the rest of the paper, when 
considering subsequence matching, we will assume the 
query length is l. 

 
Figure 2: Subsequence matching (sliding window). 

We now define a query. Similarity queries can be classified in 
two categories: 

• Top-K queries. The K closest sequences to the query 
sequence are returned. 

• Range-queries. All sequences within an epsilon of the 
query sequence are returned. 

Lastly, we insist on the need for normalization. As stated by the 
author of [19], “in order to make meaningful comparisons 
between two time series, both must be normalized”. This seems 
intuitive when we are interested in similarity in terms of shape 
but not in absolute values. Indeed, the Euclidean distance 

between two time series with a high mean discrepancy appear to 
be high even if the shapes of the time series are similar. It is the 
same for two time series with a high variance difference. 

 

Definition 4: Let S be a time series, µ its mean and σ its standard 
deviation. Let i be in {1, … , n}. The time series can be 

normalized by dividing by the mean (
�� = ��� )  or by 

standardizing (
�� = ����� ). 

3. RELATED WORK 
Time series are all the more fundamentally high dimensional data 
since they are very long. Processing and storing large volume of 
them is very expensive. Thus, with the aim of dealing with large 
time series databases, many techniques have been proposed in 
the literature for representing time series with reduced 
dimensionality, such as Discrete Fourier Transformation (DFT) 
[1][8][23], Single Value Decomposition (SVD) [12][15][20], 
Discrete Wavelet Transformation (DWT) [3][22][23], Piecewise 
Aggregate Approximation (PAA) [12], Adaptive Piecewise 
Constant Approximation (APCA) [13], Symbolic Aggregate 
approXimation (SAX) [17][21], etc. In order to measure a 
similarity, these representations should be associated with a 
distance metric, like classic Euclidean Distance (ED) [1][8] or 
elastic measures such as Dynamic Time Warping (DTW) [14].  

This dimensionality reduction might be used for two major 
reasons: firstly, with a view to smooth raw data and thus, to 
change the query criterion (the distance metric is computed over 
transformed time series); secondly, in order to create a 
multidimensional index structure to avoid sequential scans. In 
this case, dimensionality reduction is performed in order to keep 
indexing efficient by storing no more than 8-12 coefficients for 
each time series. Several index structures have been suggested: 
R-tree [10], R*-tree [2], TV-tree [16], etc. Note that an important 
property proved by [1] is that, in order to guarantee no false 
dismissals, the distance measure in the index space must satisfy 
the following condition: ������	������ �!�,  �"�� ≤ �$%&�	������!, "� 
A and B are two time series, F(A) and F(B) are their 
transformations after performing dimensionality reduction. This 
is called the lower bounding property and allows range-queries to 
be performed on the index structure, provided we discard false 
alarms afterwards. 

However, this approach has some drawbacks. On the one hand, 
we can only deal easily with range-queries since the aim of the 
index structure is to project the query in the index space and to 
retrieve all time series in a range ε. On the other hand, 
subsequence matching queries are quite complex to process with 
an index. Suppose we have a subsequence matching query of 
length '. Faloutsos et al. [8] suggested storing minimum 
bounding rectangles (MBR) containing trails consisting of n −	' 
+ 1 points, one for each possible offset of the sliding window. 
Obviously, we would like to use the same index to handle queries 
of length greater than '. [8] suggested methods based on prefix 
search, but none of them seems entirely satisfactory. 

We opted for another approach: similarity search through a 
parallel sequential scan. To our knowledge, no one has ever 
considered this approach in a data mining paper. In [18], Qiao et 
al. dealt with parallel algorithms for range-queries and Top-K 
search, but only for whole matching, while JaJa et al. [11] 

n = 1440



developed indexing techniques to efficiently handle querying 
multidimensional time series in a parallel implementation. 

4. TIME SERIES SEARCH IN HADOOP 
Our goal is to design and implement a Hadoop based solution to 
the problem of similarity search in a time series database. 

Hadoop is an open-source software framework that supports 
data-intensive distributed applications. It is based on two key 
elements: the MapReduce programming model and the HDFS 
file management system (Hadoop Distributed File System). 

We also use Hive, a data warehouse infrastructure built on top of 
the Hadoop ecosystem and suitable for analytical treatments and 
ad hoc queries with HiveQL, a SQL-based query language. Hive 
queries are transparently translated into MapReduce jobs. 

Sometimes it might be impossible – or at least difficult – to 
express a query in HiveQL, especially as it is a simplified SQL 
version and does not allow all kinds of subqueries, multiple 
tables in the “where” clause, etc. This problem can be 
circumvented thanks to custom mappers and reducers that can be 
plugged in Hive. There are two ways to do so: either by 
developing streaming mappers and/or reducers scripts or by 
developing customized Java functions called user defined 
functions (see Figure 3). These functions can work row by row 
(User Defined Function, UDF) or they can aggregate several 
rows (User Defined Aggregation Function, UDAF). Hive allows 
two varieties of UDAFs: simple and generic. Simple UDAFs are 
simpler to write but incur performance penalties. Furthermore, 
they do not allow Generic UDAFs’ features such as variable-
length argument lists or complex types input and output. 

 
Figure 3: UDF and UDAF overridden methods summary. 

4.1 Time series storage structure in HDFS 
In a previous work at EDF R&D, we showed that Hadoop could 
be efficiently used to store and manage structured data from 
smart meters [5]. Different representation models, file formats, 
and compression methods for the storage were tested. 

The default parameters were kept (text file format with default 
compression codec: .deflate) since they appeared to give good 
performance while preserving a high compression rate. 

An array representation model for storing time series was also 
designed in [5] and is reused here. It takes advantage of a 
primitive type defined in Hive that is able to store multiple values 
of a same type. Thus, it has the advantage of retrieving an entire 
time series by reading a single record. The array’s length is 
flexible and can be adapted to the sampling rate (i.e. time step): 
we might store minutely, hourly, daily, monthly, etc. time series. 

This representation model is well adapted to any whole matching 
query of length less than or equal to the array’s length. What 
about subsequence matching? If the time series in which we want 
to “slide” are of length less than or equal to the array’s length, we 
do not encounter any problem. However, suppose the time series 
that we want to “slide” in are so long that they were split into 
several segments. How to “slide” in a split time series? At one 

point, we inevitably have to “slide” straddling on both a given 
segment of time series and its following segment. The idea to 
circumvent this problem is to have an overlap of at least twice 
the maximum subsequence matching query length. Thus, we 
need to have access to a new array of length 2n. 

For example, as shown in Figure 4, by overlapping two days in 
the database, we are able to deal with any subsequence matching 
query of length less than or equal to one day. 

 
Figure 4: In order to “slide” along the whole length of a time series 
split up into arrays, we need to overlap at least two arrays. 

We propose two ways to obtain a specific segment and its 
following one. The first one is to operate a self join. This is very 
efficient in terms of file size, but not in terms of query execution 
time, especially as partitioning by day would be useless and 
partitioning by client ID would be impossible (we have more 
than 35M customers). Besides, this storage allows more general 
queries since it is possible to add several segments behind the 
first one. Thus we can handle subsequent matching queries of 
any length. The other possibility is to adapt the storage by 
replicating the following segment at the end of each row. This is 
very efficient in terms of query execution time, but not in terms 
of file size since it nearly doubles the data. 

4.2 Generic search functions 
Based on this storage structure, we now describe the algorithms 
and how we parallelize them. We produce naive algorithms for 
Top-K and range-query in case of whole matching search. They 
are presented in Table 1 and 2. 

 Table 1: Range-query search algorithm 
Algorithm RangeQuery(Q,ε) 
for i = 1 to N                  // For each row (record) 

  Ci ← (Ci – μ(Ci))/σ(Ci);     // Optional: normalize 

  Ci ← SomeTransformation(Ci); // Optional: transform 

  if D(Ci,Q) < ε 
    list_id.add(Ci.id);       // Insert the ID of the  
  end;                        // current row in the list 
end; 

Ding et al. [4] showed that, “as the size of the training set 
increases, the accuracy of elastic measures converges with that 
of Euclidean distance”. Thus, the computed distance D(Ci,Q) 

will be Euclidean on raw, normalized or transformed data. 

For Top-K search, we keep up to date a two-dimension table 
containing the IDs of the K nearest neighbors and their distances. 
If a row with a distance less than the best-so-far maximum 
distance is found, then the best-so-far distance is replaced as well 
as the corresponding ID. 

 Table 2: Top-K search algorithm 
Algorithm TopK(Q,K) 
for i = 1 to N                  // For each row 

  Ci ← (Ci – μ(Ci))/σ(Ci);     // Optional: normalize 

  Ci ← SomeTransformation(Ci); // Optional: transform 
  if D(Ci,Q) < max(tab_dist) 
    tab_id.update(Ci.id);     // Update the Top-K tab by 
    tab_dist.update(D(Ci,Q)); // replacing the previous 
  end;                        // max by D(Ci,Q) 
end; 

UDAF

public abstract class GenericUDAFEvaluator

getNewAggregationBuffer(): AggregationBuffer
reset(AggregationBuffer): void
init(Mode, ObjectInspector[]): ObjectInspector
iterate(AggregationBuffer, Object[]): void
merge(AggregationBuffer, Object): void
terminatePartial(AggregationBuffer): Object
terminate(AggregationBuffer): Object

… sorties …

… entrées …

… entrées …

… entrées …

output

input
input

input

… sorties …

public abstract class GenericUDF
… entrées … UDF

initialize(ObjectInspector[]): ObjectInspector
evaluate(DeferredObject[]): Object

input output

n1

2008-06-01 2008-06-02 2008-06-29 2008-06-30…….

n1
n1

n1
n1

n1
n1

n1



Note that computing the mean and variance for the normalization 
step requires a loop iterating n times over the values of the 
current array. This is the same for computing the Euclidean 
Distance between the query and the current array. As it is a sum 
of positive terms, we can early abandon the calculation as soon 
as it is higher than ε (for range-queries) or than the best-so-far 
maximum distance (for Top-K queries), see [19]. 

These algorithms are easily adaptable to subsequence matching 
by adding another loop immediately after the loop over the rows. 
Indeed, this new loop must examine each subsequence and must 
normalize each subsequence, as stated in [19]. If the current array 
is at the beginning or in the middle of a time series, then this new 
loop iterates n times (half the size of the replicated array). Else if 
the current array is the end (i.e. last segment) of a time series, 
then data is not replicated and the loop iterates n – l + 1 times. 

We now want to parallelize these algorithms in Hadoop and 
Hive. The basic idea is that data are split in blocks replicated 
three times in HDFS. The previously described naive algorithm 
is executed on each block, and a local table (Top-K or range-
query) is returned. Then, these local tables are merged two by 
two, until obtaining the final table. 

For the implementation, we use Generic UDAFs since they 
outperform any other kind of customization in Hive. Firstly, we 
have to define an aggregation structure and to initialize it. For 
Top-K search, it is a two-dimension table storing IDs and 
distances, whereas for range-query, it is a list with only IDs. Note 
that when dealing with subsequence matching, a new field 
storing the position is added to the aggregation. Then, we iterate 
over rows and keep the aggregation up to date. After merging 
partial aggregations, we get a final aggregation and return it in 
Hive. The function is plugged in Hive as shown by Table 3. 

 Table 3: Hive code for executing UD(A)Fs 
CREATE TEMPORARY FUNCTION TopK as 'com.UDAF.TopK'; 
SELECT TopK(id, values) 

FROM table 
WHERE …; 

One of the most useful aspects of using Hive is that these 
functions can be combined with relational algebra: projections, 
selections, joins, etc. 

4.3 Grouping several queries 
We started from whole matching and showed that algorithms, 
Generic UDAFs, and aggregation structures were also adapted to 
subsequence matching. Likewise, it is possible to search 
simultaneous several queries by keeping up to date a similar 
aggregation structure with an additional dimension in order to 
refer to the various queries. Moreover, we are still able to use the 
early abandoning: while at least for one query the current sum is 
less than the corresponding best-so-far maximum distance, we 
stay on the row and keep doing the calculation by reading next 
terms of the array. Thus, for each row, we drop one by one the 
queries as soon as they do not need further terms. It is reasonable 
to expect that it will be very cost-effective since only one pass on 
the data is necessary to answer to multiple queries 
simultaneously. 

5. MULTI-DISTANCE SEARCH 
In practice, end-users might want to look for particular patterns 
without knowing precisely which distance would be the best to 
minimize. The solution we propose is to compute several 
distances simultaneously for the same query, for example 
Euclidean Distance or DTW [14] on various representations 

(normalized and/or transformed data). This is done by keeping up 
to date one table for each considered distance. 

Once again, this is easily implementable in Hive through Generic 
UDAFs functions using a similar aggregation structure with an 
additional dimension in order to refer to the tables corresponding 
to the various distances. 

Assuming that distances are Euclidean, early abandoning is still 
usable: while at least for one distance the current sum is less than 
the corresponding best-so-far maximum distance, we stay on the 
row and keep doing the calculation by reading next terms of the 
array. Thus, for each row, we drop one by one the distances as 
soon as they do not need further terms. 

Our approach might be used in order to distinguish between the 
various distances and to favor one of them, according to some 
experts’ knowledge. But the solution we designed is to run a 
Top-K query for each distance and obtain a combined final 
ranking (an inter-ranking) based on the ranks given by all the 
Top-K of the various distances. This is a rank aggregation 
problem, a research field of social choice theory dating back to 
the 18th century which regains interest in the context of machine 
learning, data and Web mining. 

5.1 Rank aggregation problem 
The problem is the following: 

Problem 1: Given D distances and D Top-K candidates for each 
distance, the problem is to obtain a combined final ranking of U 
distinct time series, in reasonable execution time and as 
consensual as possible. 

We first define U, the set of results. Let CD be the set of all time 
series appearing in the D Top-K (i.e. in the intersection). 
Similarly, let CD-1 be a set of all the time series appearing in D-1 
Top-K. Thus, we can recursively define D sets of time series, C1, 
C2, … , CD. As among all the chosen distances, each one 
optimizes a particular criterion, it is highly unlikely that the D 
Top-K contain exactly the same time series ordered differently. 
However, should this case happens, we would define U = CD and 
have only full lists: the D Top-K would be (�, (�, … , (* 
permutations of the set U. 

In general, we will have only partial lists, which are not 
permutations yet. Then, we set U = CD or U = CD ∪	CD-1 for 
example and we come down to full lists like this: 

• For each distance, we take (in the corresponding Top-
K) the relative ranks of the time series in CD as well as 
the relative ranks of the time series in CD-1 which are 
present in this particular Top-K. 

• For the time series in CD-1 which are not present in this 
particular Top-K, we suggest two solutions: either to 
add them at the end of the ranking, or to compute their 
distances and to place them in the ranking according to 
it. 

We now have D permutations (or rankings) (�, (�, … , (* of |U| 
time series (or candidates) ,�, ,�, … , ,|.|. The problem now is to 
obtain a new permutation / as consensual as possible. 

5.2 Optimal rank aggregation 
We want to “minimize the total disagreement between the several 
input rankings and their aggregation” [7] by pleasing a majority 
of individual preferences. Thus, we aim at satisfying the extended 
Condorcet criterion: if the Condorcet winner exists (a candidate 
that wins the most duels by pairwise simple majority voting), 
then it should be ranked first. If it does not exist, then a set of 



candidates preferred by the majority over another set should be 
ranked higher. Formally, we aim at achieving optimality of the 
function below: 

0�/� =
1234�/, (��
*
���

 by finding /∗ = argmin
1234�/, (��
*
���

 

where 1234�/, (� is the Kendall tau distance and counts the 
number of pairwise disagreements between two permutations: <�/, (� = 	 |	=	2, >	 ∈ U	 ∶ 	/�2� < /�>�	but	(�2� > (�>�	G	| 
The permutation /∗ obtained by optimizing Kendall tau distance 
is called Kemeny optimal aggregation and satisfies the extended 
Condorcet criterion. However, [7] showed that computing the 
optimum is NP-Hard, even for D = 4. 

Another popular distance measure between two permutations is 
the Spearman footrule distance which sums over all candidates i 
in U the absolute difference between the ranks of i according to 
the two permutations: 

 �/, (� =
|/�2� − (�2�||.|
���

 

5.3 Heuristic approaches 
We now enumerate rank aggregation methods that do not 
optimize  any criteria, but are still effective in practice. 

5.3.1 Footrule optimal aggregation 
The following relation shows that the Kendall tau distance can 
be approximated via the Spearman footrule distance: ∀	/, (			<�/, (� ≤  �/, (� ≤ 2<�/, (� 
Thus, by computing a footrule optimal aggregation, we will have 
a lower bound (by a factor of two) on the optimal Kendall tau 
distance. 

[7] investigated footrule optimal aggregation and showed that “it 
can be computed in polynomial time, specifically, the time to find 
a minimum cost perfect matching in a bipartite graph”. 

Let (C, R, W) be this graph where � = J,�, … , ,|.|K is the set of 
candidates and L = =1,… , |U|G is the set of available ranks. The 
weighs are the following: 

∀	, ∈ �, ∀	N ∈ L, O�,, N� = ∑ |(��,� − N|*��� . 

Thus, for a certain matching, the sum of weighs is ∑ O�,, N��|.|��� , 
which is exactly function 0 with 1234�/, (� =  �/, (�. 
5.3.2 Positional methods 
Borda’s method was devised by Borda in 1770 but it is an old 
voting system already used by the Romans. It consists in giving 
each candidate a certain vector of length D containing its rank in 
each of these D input rankings. Each rank gives a number of 
points (in general equal to the rank). Then, these |U| vectors are 
sorted according to their L1 or L2 norms, their means, their 
medians, etc. 

5.3.3 Markov chain methods 
The idea is to represent the |U| candidates as vertices in a graph 
with transition probabilities depending in some particular way on 
the relative rankings of the candidates. From this state-transition 
matrix, we get a stationary distribution and thus, an inter-ranking. 

Dwork et al. [7] suggested four ways to define the transition 
probabilities. 

 

6. EXPERIMENTS 
As mentioned earlier, two different datasets were used to conduct 
experiments with the following different goals: 

• On the synthetic electric power load curves dataset, we 
tested the scalability and measured execution time for 
Top-K search, both for whole and subsequence 
matching. 

• In the grid frequency in power plants dataset, we 
looked for substantial drops in frequency, ideally a 
50mHz fall happening in 10 seconds or less, being 
stable before and after the fall. The end-user, who is an 
expert, visually knows whether time series resulting 
from the Top-K search match or not. This pattern was 
defined by the end-user who was not able to define 
precisely which distance to use. For example, it could 
be the Euclidean Distance on the whole original 
pattern, on the drop only, on the derivative of the 
original pattern, etc. In this experiment, we tested 
different distances and showed the improvement 
provided by inter-ranking. 

6.1 Hadoop infrastructure 
As in [5], the cluster we used in our experiments is composed of 
2 racks and a total of 20 nodes with 2 kinds of commodity 
servers (7 are 1U and 13 are 2U). The 1U servers have 4x1 TB 
disks while the 2U servers have 8x1 TB disks. Most of the 
servers have 2 CPUs AMD Opteron(tm) with 8 cores each (2 
have 2 x 12 cores). In total, the cluster is composed of 132 TB of 
storage and 336 cores. The Hadoop distribution installed is the 
open source CDH3u3 from Cloudera. 

6.2 Datasets 

6.2.1 Electric power load curves 
This first dataset was generated in the context of the proof of 
concept (POC) carried out by the R&D Division, see [5]. We 
tested our algorithms on a subset of this dataset: 35,027,502 
customers with raw electricity consumption measurements (in 
Wh) every 30 minutes during one month. This is equivalent to 
around 3.3 TB of uncompressed data (≈110 GB per day). 

For our experiment, we chose as basic length of arrays n = 48 
and we created two tables: one for daily whole matching queries 
(of length 48), and one for subsequence matching queries (of 
length up to 48). 

The table used for daily whole matching queries has three 
columns shown in Table 4. 

Table 4: Table structure for  whole matching. id_client 
and day form the primary key of the table. 
ID_CLIENT 

(int) 
DAY 

(string) 
VALUES 

(array<int>) 

136630 2008-06-07 [ 625,  473, 483, 202, 396, 241, … ] 

The table used for subsequence matching queries concatenates to 
each row the values of the next day, thus introducing redundancy 
as suggested in Section 4.1. This approach is illustrated in Table 
5 for the second dataset. 

Recall that we used a text file format with a deflate compression. 
With this configuration, the final volume of the whole matching 
table is around 96 GB (replicated three times in HDFS). It is a 
considerable saving in terms of storage disk space compared to 
the original 3.3 TB of uncompressed data. The final volume of 
the compressed subsequence matching table is around 185 GB. 



6.2.2 Grid frequency in power plants 
This dataset is made up of real electric power network frequency 
measurements taken at one power plant every second during one 
month. This makes 29 × 24 × 60 × 60 = 2,505,600 values and 
around 145 MB of uncompressed data. Note that it is only a 
sample: we expect to process historical data of several years. In 
this dataset, we were trying to find drops in frequency, defined as 
follows: a fall greater than or equal to 50 mHz, happening in 10’’ 
or less, stable during 30’’ before and 60’’ after the fall. This is a 
subsequence matching problem because the drop may start at any 
position. Since the length of the query is 100, we used the 
previously described storage structure and created arrays of 240 
values with an overlapping of 120 values. Thus, we can handle 
any subsequence matching query of maximal length 120 (namely 
2 minutes). The table we used contained 2,505,600 / 120 = 
20,880 rows. It is illustrated in Table 5. 

Table 5: Table structure used for the grid frequency 
dataset. id_minute is the primary key of the table  

 
We also used a text file format with a deflate compression, for a 
total volume of 3.98 MB. Obviously, the challenge for this 
dataset is not response time but the fact that experts are not able 
to define the right distance to use. 

Note that raw data is stored and the algorithm normalizes each 
examined subsequence (by shifting but not scaling since we are 
interested in the absolute value of the drop). 

6.3 Results on scalability 

6.3.1 Simple query Top-K search 
In this section, we measured the time taken by a Top-K search on 
our electric power consumption dataset. We first show how 
important is the distribution of the data in HDFS blocks. Indeed, 
the number of blocks is equal to the number of Mappers which 
depends on the number of nodes in the cluster, but also on the 
complexity of tasks. 

We created several versions of the table mentioned earlier, with 
various block sizes and thus, various numbers of blocks. Then, 
we measured the time taken for a Top-K search (arbitrarily K = 5 
since we noticed almost no influence of K on the execution time) 
and averaged it on 100 queries (drawn randomly in the dataset). 

We did the same for the subsequence matching table. We recall 
that we mentioned two ways to handle subsequence matching 
queries: by a self join or a replicated storage. The self join takes 
around 50’ to be executed: this confirmed what we intuited in 
Section 4.1. Consequently, we concentrate on the replicated table 
solution in the following. The results are shown in Figure 5. 

  
Figure 5: left) Time taken by a Top-5 whole matching search in 
terms of the number of HDFS blocks. right) idem for a Top-5 
subsequence matching search. 

Hadoop indicates that a good level of parallelism is between 10 
and 100 Mappers per node. Our cluster containing 20 nodes, it 
makes between 200 and 2000 Mappers. This result is validated 
by our experimental results since our 1000 optimal blocks are 
located between these bounds. Using this new data distribution, 
we obtained final query execution times shown in Table 6. These 
response times do not allow interactive search but appear to be 
satisfactory for the applications we consider. 

Table 6: Time taken (in minutes, averaged on 100 queries 
drawn randomly in the table) by Top-5 queries on two 1000-block 
tables, one for whole matching and one for subsequence matching. 

 
 

Whole 
Matching 

Subsequence Matching 
l = 5 l = 20 l = 45 

Min 3.00 5.62 5.87 6.33 

Mean 3.20 5.85 6.52 7.82 

Max 3.32 6.15 7.08 8.88 

 

 

 

 
Figure 6: left) Time taken (in minutes) by a whole matching Top-5 search in terms of the number of simultaneous queries. right) Time taken (in 
minutes) by subsequence matching queries (of length 5, 20, and 45) Top-5 search in terms of the number of simultaneous queries. 
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6.3.2 Multiple queries Top-K search 
We implemented slightly modified functions allowing up to 1000 
simultaneous queries with early-abandon. Clearly, we kept the 
previously described optimal tables with 1000 blocks. As we 
expected, our approach is very efficient, as shown by Figure 6, 
and enables us to process 100 queries in less than 10 minutes. 

6.4 Results on multi-distance search 
We report here experiments related to the technique described in 
Section 5, applied to the grid electric power frequency dataset. 
We are looking for a very precise pattern. 

We implemented the following four distance measures: 

• d1: Weighted Euclidean Distance on the whole 
pattern (illustrated below). We assign higher weighs to 
the drop in order to balance the trade-off between the 
absolute value of the drop and the stability before and 
after. 

 

• d2: Weighted Euclidean Distance on the derivative 
pattern (illustrated below). The derivative, computed 
as the difference between a value and its following one, 
ensures the stability before and after the fall. 

 

• d3: Euclidean Distance on the drop only (illustrated 
below). This distance guarantees to return only the time 
series with a substantial linear drop of 50mHz in 10 
seconds. However, it does not ensure stability. 

 

• d4: Variance of the two stability zones (illustrated 
below). This is not a distance but rather a 
quantification of how the examined subsequence 
matches a model: for each subsequence, we compute W�..YZ[[[[[[ (the mean of the first 30 values) and W\�..�ZZ[[[[[[[[[ (the 
mean of the last 60 values). If the difference is higher 
than a certain threshold (ideally 50), then the measure 
is defined and it is the sum of the variances of the two 
stability zones. 

 
We now determine the best K (recall that we execute a Top-K 
search for each distance) in order to have a set of candidates U 
for the inter-ranking. We tried various values of K between 1 and 
1000 but there does not exist a K beyond which all distances 
would return the same time series. 

For our experiment, we used K = 30 and U = C4 ∪	C3. This 
choice led us to inter-rank 12 time series A, B, … , L.  

We obtained four permutations from which we tested the 
previously described rank aggregation methods. The results are 
shown in Figure 7. 

 
Figure 7: Borda’s method (L1-norm of the D-dimensional vector of 
the ranks) induces equally placed time series. All possible 
permutations are listed. 

The optimal function was computed for each method. It appears 
that Borda’s method exhibits the best permutation, although it is 
very simple. 

Finally, we can visualize graphical results (see Figures 8 and 9). 
Experts claimed that it clearly appears that this technique 
outperforms the classic one using only one distance measure. 

 
Figure 8: The first four final time series obtained using inter-ranking 
technique. 

 

 
Figure 9: The first four final time series obtained using only one 
distance, here it is d2 (on the derivative pattern). 

 

7. CONCLUSION AND FURTHER WORK 
In this paper, we proposed an approach for similarity search in a 
very large time series database, typically containing more than a 
billion 48-dimensional time series. We used the brutal force of 
Hadoop and Hive along with its adaptability and flexibility 
potential to parallelize this search. 

On the 336 cores cluster set up in EDF R&D, the result of the 
Top-K search is obtained in a few minutes. But this is only a 
glimpse on all the advantages showed by Hadoop’s brutal force. 
In our case for example, its data processing power allows to 
answer multiple queries in only one pass without reducing much 
the execution time. We can also carry out normalizations and/or 
complex transformations on the time series, in order to smooth 
them or to compute another kind of distance. We evaluated 
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performance on synthetic time series representing smart metering 
data.  

However, as the distance depends a lot on the data contents, it is 
frequent that the end-user does not know precisely which 
distance to use. Similarly to multiple queries, we suggested to 
solve this problem by computing several distances, and thus to 
build several rankings, one for each considered distance. Then, 
based on these rankings, we get a final one using heuristics on 
rank aggregation methods. We implemented this approach with 
four distances on grid frequency data. We tested various rank 
aggregation methods.  

In future work we intend to improve our ranking approach by 
using relevance feedback: for each result returned by our 
algorithms, an expert accesses its relevance. If queries, results, 
and relevance are recorded, the system can improve by itself. 
This would be another way to approve or to dismiss a particular 
distance. 

We also plan to search multivariate time series. How to define a 
multivariate query? This raises several problems, such as the 
number of queries (should we have a query for each variable or 
not), the length of the queries (should all the queries be the same 
length; if not, what would be the limit), the time’s position 
(should a query require the same offset for each variable, or 
should we allow some offset), the weight of each variable 
(should some variables be more important than others), etc. 

Finally, we project to implement and test indexation techniques 
in Hadoop, for example R-trees. This has been well discussed in 
the literature, though not it a parallelized environment, and 
consists in indexing the first few coefficients of a particular 
transformation (for example PAA, DFT, DWT, etc). 
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