
Searching to Exploit Memorization Effect in Learning with Noisy Labels

Quanming Yao 1 Hansi Yang 2 Bo Han 3 4 Gang Niu 4 James T. Kwok 5

Abstract

Sample selection approaches are popular in robust

learning from noisy labels. However, how to

properly control the selection process so that

deep networks can benefit from the memorization

effect is a hard problem. In this paper, motivated

by the success of automated machine learning

(AutoML), we model this issue as a function

approximation problem. Specifically, we design

a domain-specific search space based on general

patterns of the memorization effect and propose

a novel Newton algorithm to solve the bi-level

optimization problem efficiently. We further

provide theoretical analysis of the algorithm,

which ensures a good approximation to critical

points. Experiments are performed on benchmark

data sets. Results demonstrate that the proposed

method is much better than the state-of-the-art

noisy-label-learning approaches, and also much

more efficient than existing AutoML algorithms.

1. Introduction

Deep networks have enjoyed huge empirical success in a

wide variety of tasks, such as image processing, speech

recognition, language modeling and recommender systems

(Goodfellow et al., 2016). However, this highly counts on

the availability of large amounts of quality data, which may

not be feasible in practice. Instead, many large data sets are

collected from crowdsourcing platforms or crawled from

the internet, and the obtained labels are noisy (Patrini et al.,

2017). As deep networks have large learning capacities,

they will eventually overfit the noisy labels, leading to poor

generalization performance (Zhang et al., 2016; Arpit et al.,
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2017; Jiang et al., 2018).

To reduce the negative effects of noisy labels, a number of

methods have been recently proposed (Sukhbaatar et al.,

2015; Reed et al., 2015; Patrini et al., 2017; Ghosh et al.,

2017; Malach & Shalev-Shwartz, 2017; Liu & Tao, 2015;

Cheng et al., 2020). They can be grouped into three

main categories. The first one is based on estimating the

label transition matrix, which captures how correct labels

are flipped to the wrong ones (Sukhbaatar et al., 2015;

Reed et al., 2015; Patrini et al., 2017; Ghosh et al., 2017).

However, this can be fragile to heavy noise and is unable

to handle a large number of labels (Han et al., 2018). The

second type is based on regularization (Miyato et al., 2016;

Laine & Aila, 2017; Tarvainen & Valpola, 2017). However,

since deep networks are usually over-parameterized, they

can still completely memorize the noisy data given sufficient

training time (Zhang et al., 2016).

The third approach, which is the focus in this paper, is based

on selecting (or weighting) possibly clean samples in each

iteration for training (Jiang et al., 2018; Han et al., 2018; Yu

et al., 2019; Wang et al., 2019). Intuitively, by making the

training data less noisy, better performance can be obtained.

Representative methods include the MentorNet (Jiang et al.,

2018) and Co-teaching (Han et al., 2018; Yu et al., 2019).

Specifically, MentorNet uses an additional network to select

clean samples for training of a StudentNet. Co-teaching

improves MentorNet by simultaneously maintaining two

networks with identical architectures during training, and

each network is updated using the small-loss samples from

the other network.

In sample selection, a core issue is how many small-

loss samples are to be selected in each iteration. While

discarding a lot of samples can avoid training with noisy

labels, dropping too many can be overly conservative and

lead to lower accuracy (Han et al., 2018). Co-teaching

uses the observation that deep networks usually learn easy

patterns before overfitting the noisy samples (Zhang et al.,

2016; Arpit et al., 2017). This memorization effect has been

widely seen in various deep networks (Patrini et al., 2017;

Ghosh et al., 2017; Han et al., 2018). Hence, during the early

stage of training, Co-teaching drops very few samples as

the network will not memorize the noisy data. As training

proceeds, the network starts to memorize the noisy data.
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This is avoided in Co-teaching by gradually dropping more

samples according to a pre-defined schedule. Empirically,

this signiificantly improves the network’s generalization

performance on noisy labels (Jiang et al., 2018; Han et al.,

2018). However, it is unclear if its manally-designed

schedule is “optimal”. Moreover, the schedule is not data-

dependent, but is the same for all data sets. Manually finding

a good schedule for each and every data set is clearly very

time-consuming and infeasible.

Motivated by the recent success of automated machine

learning (AutoML) (Hutter et al., 2018; Yao & Wang,

2018), in this paper we propose to exploit the memorization

effect automatically using AutoML. We first formulate the

learning of schedule as a bi-level optimization problem,

similar to that in neural architecture search (NAS) (Zoph &

Le, 2017). A search space for the schedule is designed based

on the learning curve behaviors shared by deep networks.

This space is expressive, and yet compact with only a

small number of hyperparameters. However, computing

the gradient is difficult as sample selection is a discrete

operator. To avoid this problem and perform efficient search,

we propose to use stochastic relaxation (Geman & Geman,

1984) together with Newton’s method to capture information

from both the model and optimization objective. Con-

vergence analysis is provided, and extensive experiments

are performed on benchmark datasets. Empirically, the

proposed method outperforms state-of-the-art methods, and

can select a higher proportion of clean samples than other

sample selection methods. Ablation studies show that the

chosen search space is appropriate, and the proposed search

algorithm is faster than popular AutoML search algorithms

in this context.

Notation. In the sequel, scalars are in lowercase letters,

vectors are in lowercase boldface letters, and matrices are

in uppercase boldface letters. The gradient of a function J
is denoted ∇J , and ‖·‖ denotes the ℓ2-norm of a vector.

2. Related work

2.1. Automated Machine Learning (AutoML)

Recently, AutoML has shown to be very useful in the design

of machine learning models (Hutter et al., 2018; Yao &

Wang, 2018). Two of its important ingredients are:

1. Search space, which needs to be specially designed for

each AutoML problem (Baker et al., 2017; Liu et al.,

2019; Zhang et al., 2020). It should be general (so as to

cover existing models), yet not too general (otherwise

searching in this space will be expensive).

2. Search algorithms: Two types are popularly used. The

first includes derivative-free optimization methods, such

as reinforcement learning (Zoph & Le, 2017; Baker et al.,

2017), genetic programming (Xie & Yuille, 2017), and

Bayesian optimization (Bergstra et al., 2011; Snoek et al.,

2012). The second type is gradient-based, and updates

the parameters and hyperparameters in an alternating

manner. On NAS problems, gradient-based methods are

usually more efficient than derivative-free methods (Liu

et al., 2019; Akimoto et al., 2019; Yao et al., 2020).

2.2. Learning from Noisy Labels

The state-of-the-arts usually combat noisy labels by sample

selection (Jiang et al., 2018; Han et al., 2018; Malach &

Shalev-Shwartz, 2017; Yu et al., 2019; Wang et al., 2019),

which only uses the “clean” samples (with relatively small

losses) from each mini-batch for training. The general

procedure is shown in Algorithm 1. Let f be the classifier

to be learned. At the tth iteration, a subset D̄f of small-

loss samples are selected from the mini-batch D̄ (step 3).

These “clean” samples are then used to update the network

parameters in step 4.

Algorithm 1 General procedure on using sample selection

to combat noisy labels.

1: for t = 0, . . . , T − 1 do

2: draw a mini-batch D̄ from D;

3: select R(t) small-loss samples D̄f from D̄ based on

network’s predictions;

4: update network parameter using D̄f ;

5: end for

3. Proposed Method

3.1. Motivation

In step 3 of Algorithm 1, R(·) controls how many samples

are selected into D̄f . As can be seen from Figure 1(a), its

setting is often critical to the performance, and random

R(t) schedules have only marginal improvements over

directly training on the whole noisy data set (denoted

“Baseline” in the figure) (Han et al., 2018; Ren et al., 2018).

Moreover, while having a large R(·) can avoid training with

noisy labels, dropping too many samples can lead to lower

accuracy, as demonstrated in Table 8 of (Han et al., 2018).

Based on the memorization effect in deep networks (Zhang

et al., 2016), Co-teaching (Han et al., 2018) (and its variant

Co-teaching+ (Yu et al., 2019)) designed the following

schedule:

R(t) = 1− τ ·min((t/tk)
c, 1), (1)

where τ , c and tk are some hyperparameters. As can be

seen from Figure 1(a), it can significantly improve the

performance over random schedules.

While R(·) is critical and that it is important to exploit

the memorization effect, it is unclear if the schedule in
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(a) Impact of R(t). (b) Different data sets (training accuracy). (c) Different data sets (testing accuracy).

(d) Different architectures. (e) Different optimizers. (f) Different optimizer settings.

Figure 1. Training and testing accuracies on CIFAR-10, CIFAR-100, and MNIST using various architectures, optimizers, and optimizer

settings. The detailed setup is in Appendix A.2.1.

(1) is “optimal”. Moreover, the same schedule is used by

Co-teaching on all the data sets. This is expected to be

suboptimal, but it is hard to find R(·) for each and every

data set manually. This motivates us to formulate the design

of R(·) as an AutoML problem that searches for a good R(·)
automatically (Section 3.2). The two important ingredients

of AutoML, namely, search space and search algorithm, will

then be described in Sections 3.3 and 3.4, respectively.

3.2. Formulation as an AutoML Problem

Let the noisy training (resp. clean validation) data set be Dtr

(resp. Dval), the training (resp. validation) loss be Ltr (resp.

Lval), and f be a neural network with model parameter

w. We formulate the design of R(·) in Algorithm 1 as the

following AutoML problem:

R∗ = argmin
R(·)∈F

Lval(f(w
∗;R),Dval), (2)

s.t. w∗ = argmin
w

Ltr(f(w;R),Dtr). (3)

where F is the search space of R(·).

Similar to the AutoML problems of auto-sklearn (Feurer

et al., 2015) and NAS (Zoph & Le, 2017; Liu et al., 2019;

Yao et al., 2020), this is also a bi-level optimization problem

(Colson et al., 2007). At the outer level (subproblem (2)),

a good R(·) is searched based on the validation set. At the

lower level (subproblem (3)), we find the model parameters

using the training set.

3.3. Designing the Search Space F

In Section 3.3.1, we first discuss some observations from

the learning curves of deep networks. These are then used

in the design of an appropriate search space for R(·) in

Section 3.3.2.

3.3.1. OBSERVATIONS FROM LEARNING CURVES

Figures 1(b)-1(f) show the training and validation set

accuracies obtained on the MNIST, CIFAR-10, CIFAR-

100 data sets, which are corrupted with different types and

levels of label noise (symmetric flipping 20%, symmetric

flipping 50%, and pair flipping 45%), using a number of

architectures (ResNet (He et al., 2016), DenseNet (Huang

et al., 2017) and small CNN models in (Yu et al., 2019)),

optimizers (SGD (Bottou, 2010), Adam (Kingma & Ba,

2014) and RMSProp (Hinton et al., 2012)) and optimizer

settings (learning rate and batch size).

As can be seen, the training accuracy always increases as

training progresses (Figure 1(b)), while the testing accuracy

first increases and then slowly drops due to over-fitting

(Figure 1(c)). Note that this pattern is independent of

the network architecture (Figure 1(d)), choice of optimizer

(Figure 1(e)), and hyperparameter (Figure 1(f)).

Recall that deep networks usually learn easy patterns first

before memorizing and overfitting the noisy samples (Arpit

et al., 2017). From (1) and Figure 1, we have the following
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observations on R(t):

• During the initial phase when the learning curve rises, the

deep network is plastic and can learn easy patterns from

the data. In this phase, one can allow a larger R(t) as

there is little risk of memorization. Hence, at time t = 0,

we can set R(0) = 1 and the entire noisy data set is used.

• As training proceeds and the learning curve has peaked,

the network starts to memorize and overfit the noisy

samples. Hence, R(t) should then decrease. As can

be seen from Figure 1(a), this can significantly improve

the network’s generalization performance on noisy labels.

• Finally, as the network gets less plastic and in case R(t)
drops too much at the beginning, it may be useful to allow

R(t) to slowly increase so as to enable learning.

The above motivates us to impose the following prior

knowledge on the search space F of R(·). An example

R(·) is shown in Figure 2.

Assumption 1 (A Prior on F). The shape of R(·) should

be opposite to that of the learning curve. Besides, as in

(Han et al., 2018; Yu et al., 2019), it is natural to have

R(t) ∈ [0, 1] and R(0) = 1.

3.3.2. IMPOSING PRIOR KNOWLEDGE

To allow efficient search, the search space has to be small

but not too small. To achieve this, we impose the prior

knowledge proposed in Section 3.3.1 on F . Specifically,

we use k basis functions (fi’s) whose shapes follow

Assumption 1 (shown in Table 1 and Figure 2). The exact

choice of these basis functions is not important. The search

space for R(·) is then defined as:

F ≡

{

R(t) =

k
∑

i=1

αifi(t;βi) :
∑

i

αi = 1, αi ≥ 0

}

, (4)

where βi is the hyperparameter associated with basis

function fi. In the experiments, we set all βi’s to be in

the range [0, 1]. Let α = {αi}, β = {βi} and x ≡ {α,β}.

The search algorithm to be introduced will then only need

to search for a small set of hyperparameters x.

Table 1. The four basis functions used to define the search space

in the experiments. Here, ai’s are the hyperparameters.

f1 e−a2t
a1

+ a3(
t
T
)a4

f2 e−a2t
a1

+ a3
log(1+ta4 )
log(1+Ta4 )

f3
1

(1+a2t)a1
+ a3(

t
T
)a4

f4
1

(1+a2t)a1
+ a3

log(1+ta4 )
log(1+Ta4 )

Figure 2. Plots of the basis functions in Table 1. An example R(·)
to be learned is shown in blue.

With F in (4), the outer problem in (2) becomes

{α∗,β∗} = argmin
R(·)∈F

Lval(f(w
∗;R),Dval), (5)

and the optimal R∗ in (2) is
∑k

i=1 α
∗
i fi(t;β

∗
i ).

3.3.3. DISCUSSION

As will be shown in Section 4.2.1, the search space used

in Co-teaching and Co-teaching+ is not large enough

to ensure good performance. Besides, the design of

R(t) can be considered as a function learning problem,

and general function approximators (such as radial basis

function networks and multilayer perceptrons) can also be

used. However, as will be demonstrated in Section 4.2.1, the

resultant search space is too large for efficient search, while

the prior on F in (4) can provide satisfactory performance.

Note that the proposed search space can well approximate

the space in Co-teaching (details are in Appendix B.1).

3.4. Search Algorithm Based on Relaxation

Gradient-based methods (Bengio, 2000; Liu et al., 2019;

Yao et al., 2020) have been popularly used in NAS and

hyperparameter optimization. Usually, the gradient w.r.t.

hyperparameter x is computed via the chain rule as:

∇xLval = ∇w∗Lval · ∇xw
∗. However, ∇xw

∗ is hard

to obtain here, as the hyperparameters in R(·) control the

selection of samples in each mini-batch, a discrete operation.

3.4.1. STOCHASTIC RELAXATION WITH NEWTON’S

METHOD

To avoid a direct computation of the gradient w.r.t x, we

propose to transform problem (2) with stochastic relaxation

(Geman & Geman, 1984). This has also been recently

explored in AutoML (Baker et al., 2017; Pham et al., 2018;

Akimoto et al., 2019). Specifically, instead of (2), we

consider the following optimization problem:

min
θ

J (θ) ≡

∫

x∈F

f̄(x)pθ(x) dx, (6)
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where f̄(x) ≡ Lval(f(w
∗;R(x)),Dval) in (5), and pθ(x)

is a distribution (parametrized by θ) on the search space

F in (4). As αi ≥ 0 and
∑

i αi = 1, we use the

Dirichlet distribution on α. We use the Beta distribution

on β, as each βi lies in a bounded interval. Note that

minimizing J (θ) coincides with minimization of (2), i.e.,

minθ J (θ) = minx f̄(x) (Akimoto et al., 2019).

Let p̄θ(x) ≡ ∇ log pθ(x). As J (θ) is smooth, it can be

minimized by gradient descent, with

∇J (θ) =

∫

x∈F

f̄(x)∇pθ(x)dx = Epθ

[

f̄(x)p̄θ(x)
]

.

The expectation can be approximated by sampling K xi’s

from pθ(·), leading to

∇J (θ) ≃
1

K

K
∑

i=1

f̄(xi)p̄θ(xi). (7)

The update at the mth iteration is then

θm+1 = θm + ρH−1∇J (θm), (8)

where ρ is the stepsize, H = I for gradient descent and

H = Epθm
[p̄θ(x)p̄θ(x)

⊤] (i.e., Fisher matrix) for natural

gradient descent.

In general, natural gradient considers the geometrical

structure of the underlying probability manifold, and is

more efficient than simple gradient descent. However, here,

the manifold is induced by a pθ that is artificially introduced

for stochastic relaxation. Subsequently, the Fisher matrix is

independent of the objective J . In this paper, we instead

propose to use the Newton’s method and set H = ∇2J (θ),
which explicitly takes J into account. The following

Proposition shows that the Hessian can be easily computed

(proof is in Appendix C), and clearly incorporates more

information than the Fisher matrix. Moreover, it can also be

approximated with finite samples as in (7).

Proposition 1. ∇2J (θ) = Epθ

[

f̄(x)∇2 log pθ(x)
]

+

Epθ

[

f̄(x)p̄θ(x)p̄θ(x)
⊤
]

.

The whole procedure, which will be called Search to Exploit

(S2E), is shown in Algorithm 2.

3.4.2. CONVERGENCE ANALYSIS

When K = ∞ in (7), classical analysis (Rockafellar, 1970)

ensures that Algorithm 2 converges at a critical point of (6).

When J is convex, a super-linear convergence rate is also

guaranteed. However, when K 6= ∞, the approximation of

∇J (θ) in (7) and the analogous approximation of ∇2J (θ)
introduce errors into the gradient. To make this explicit, we

rewrite (8) as

θm+1 = θm−(∆m)−1(∇J (θm)−em), (9)

Algorithm 2 Search to Exploit (S2E) algorithm for the

minimization of the relaxed objective J in (6).

1: Initialize θ1 = 1 so that pθ(x) is uniform distribution.

2: for m = 1, . . . ,M do

3: for k = 1, . . . ,K do

4: draw hyperparameter x from distribution pθm(x);
5: using x, run Algorithm 1 with R(·) in (4);

6: end for

7: use the K samples in steps 3-6 to approximate

∇J (θm) in (7) and ∇2J (θm) in Proposition 1;

8: update θm by (8);

9: end for

where ∆
m and em are the approximated Hessian and

gradient errors, respectively, at the mth iteration.

We make the following Assumption on J , which requires

J to be smooth and bounded from below.

Assumption 2. (i) J is L-Lipschitz smooth, i.e.,

‖∇J (x)−∇J (y)‖ ≤ L ‖x− y‖ for some positive

L; (ii) J is coercive, i.e., infθ J (θ) > −∞ and

lim‖θ‖→∞ J (θ) = ∞.

We make the following Assumption 3 on (9). Note that

ε̄ = 0 when K → ∞. However, since K 6= ∞ in

practice, the errors in ∆
m and em do not vanish, i.e.,

limm→∞

[

∆
m −∇2J (θm)

]

6= 0 and limm→∞ em 6= 0,

Assumption 3 is more relaxed than the typical vanishing

error assumptions used in classical analysis of first-order

optimization algorithms (Schmidt et al., 2011; Bolte et al.,

2014; Yao et al., 2017).

Assumption 3. (i) η ≤ σ(∆m) ≤ L, where σ(·) denotes

eigenvalues of the matrix argument, and η is a positive

constant; (ii) Gradient errors are bounded: ∀m, ‖em‖≤ ε̄.

Using Assumptions 2 and 3, the following Proposition

bounds the difference in objective values at two consecutive

iterations. Note that the RHS below may not be positive,

and so J may not be non-increasing.

Proposition 2. J (θm) − J (θm+1) ≥ 2−Lη
2η ‖γm‖

2
−

‖em‖ ‖γm‖, where γm = θm+1 − θm.

The following Theorem shows that we can obtain an

approximate critical point for which the gradient norm is

bounded by a constant factor of the gradient error. As ε̄ = 0
when K → ∞, Theorem 1 ensures that a limit point can be

obtained.

Theorem 1. Assume that 2−Lη+η2 and 2η2+Lη−2 are

non-negative. Then, (i) For every bounded sequence {θm}
generated by Algorithm 2, there exists a limit point θ̄ such

that
∥

∥∇J (θ̄)
∥

∥ ≤ c1ε̄, where c1 is a positive constant. (ii)

If {θm} converges, then limm→∞ ‖em‖ ≤ c2ε̄, where c2 is

a positive constant.
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(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 3. Testing accuracies (mean and standard deviation) on MNIST (top), CIFAR-10 (middle) and CIFAR-100 (bottom).

Proofs are in Appendix C, and are inspired by (Sra, 2012;

Schmidt et al., 2011; Yao et al., 2017). However, they do

not consider stochastic relaxation and the use of Hessian.

4. Experiments

In this section, we demonstrate the superiority of the

proposed Search to Exploit (S2E) algorithm over the

state-of-the-art in combating noisy labels. In step 5

of Algorithm 2, we use Co-teaching as Algorithm 1.

Experiments are performed on standard benchmark data

sets. All the codes are implemented in PyTorch 0.4.1, and

run on a GTX 1080 Ti GPU.

4.1. Benchmark Comparison

In this experiment, we use three popular benchmark data

sets: MNIST, CIFAR-10 and CIFAR-100. Following

(Patrini et al., 2017; Han et al., 2018), we add two types

of label noise: (i) symmetric flipping, which flips the label

to other incorrect labels with equal probabilities; and (ii)

pair flipping, which flips a pair of similar labels. We use

the same network architectures as in (Yu et al., 2019). The

detailed experimental setup is in Appendix A.1.

4.1.1. LEARNING PERFORMANCE

We compare the proposed S2E with the following state-of-

the-art methods: (i) Decoupling (Malach & Shalev-Shwartz,

2017); (ii) F-correction (Patrini et al., 2017); (iii) MentorNet

(Jiang et al., 2018); (iv) Co-teaching (Han et al., 2018); (v)

Co-teaching+ (Yu et al., 2019); and (vi) Reweight (Ren

et al., 2018). As a simple baseline, we also compare with

a standard deep network (denoted Standard) that trains

directly on the full noisy data set. All experiments are

repeated five times, and we report the averaged results.

As in (Patrini et al., 2017; Han et al., 2018), Figure 3 shows

convergence of the testing accuracies. As can be seen, S2E

significantly outperforms the other methods and is much

more stable.
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(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 4. R(·) obtained by the sample selection methods. Note that MentorNet (MN), Co-teaching (Co) and Co-teaching+ (Co+) all use

the same R(t).

(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 5. Label precision of MentorNet, Co-teaching, Co-teaching+ and S2E on MNIST. Plots for CIFAR-10 and CIFAR-100 are in

Appendix A.3.

4.1.2. THE R(·) LEARNED

Figure 4 compares the R(·)’s obtained by the proposed

S2E and the sample selection methods of MentorNet, Co-

teaching and Co-teaching+. As can be seen, the R(·)’s
learned by S2E are dataset-specific, while the other methods

always use the same R(·). Besides, the R(·) learned on the

noisier data is smaller (e.g., compare symmetric-50% vs

symmetric-20%). This is intuitive since a higher noise level

means there are fewer clean samples (smaller R(·)) in each

mini-batch. Moreover, the proportion of large-loss samples

dropped by R(·) is larger than the underlying noise level.

Intuitively, a large-loss sample usually has a larger gradient,

and can have significant impact on the model if its label is

wrong. As a large-loss sample may not necessarily be noisy

because the model is not perfect, more samples are dropped.

On the other hand, simply dropping more samples can lead

to lower accuracy (as demonstrated in Table 8 of (Han et al.,

2018)). Following (Han et al., 2018), Figure 5 compares

the label precision (i.e., ratio of clean samples in each mini-

batch after selection) of S2E and other compared methods.

As can be seen, S2E’s label precision is consistently the

highest. This shows that the training samples used by S2E

are cleaner, and thus yield better performance.

4.2. Ablation Study

4.2.1. SEARCH SPACE

In this experiment, we study different search space designs

using the data sets in Section 4.1. The search space of S2E

is compared with (i) Co-teaching: the space specified in (1);

and (ii) Single: the space spanned by a single basis function

in Table 1. Here, we report the best performance over the

four basis functions; (iii) RBF: the space of functions output

by a radial basis function network, with one input (epoch t),
a RBF layer, and a sigmoid output unit. (iv) MLP: the space

of functions output by a multilayer perceptron with one

input, a single hidden layer of ReLU units, and a sigmoid

output unit; The numbers of hidden units in the MLP and

RBF are set to four, which is equal to the number of basis

functions in S2E. For a fair comparison, random search is

used in this experiment. This is repeated 50 times, and the

average results reported.

Table 2 shows the best testing accuracy over all epochs

obtained by the various search space variants. Co-teaching

and Single perform better than the two general function

approximators (RBF and MLP), as their search spaces

encapsulate the prior knowledge that R(·) should be of

the form in Assumption 1. Figure 7 shows the R(·)
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(a) symmetry flipping (20%). (b) symmetry flipping (50%). (c) pair flipping (45%).

Figure 6. Search efficiency of S2E and the other search algorithms.

Table 2. Best testing accuracy obtained by the various search space designs.

noise Co-teaching Single RBF MLP S2E

symmetry-20% 97.83 97.67 96.94 97.69 97.87

MNIST symmetry-50% 96.54 96.56 95.53 96.16 96.90

pair-45% 93.27 94.99 89.37 93.25 95.47

symmetry-20% 57.24 57.83 56.58 56.82 58.73

CIFAR-10 symmetry-50% 47.14 47.81 45.15 46.18 50.82

pair-45% 44.87 45.19 42.61 44.26 47.58

symmetry-20% 44.89 44.93 44.24 44.57 45.32

CIFAR-100 symmetry-50% 36.53 36.71 30.99 35.88 38.74

pair-45% 27.30 31.25 27.96 28.06 32.44

obtained by MLP (which outperforms RBF) on the CIFAR-

10 data set (results on MNIST and CIFAR-100 are similar).

As can be seen, the shapes generally follow that in

Assumption 1, providing further empirical evidence to

support this Assumption. The performance attained by

S2E is still the best (even though only random search

is used here). This demonstrates the expressiveness and

compactness of the proposed search space.

Figure 7. R(t) obtained by MLP on CIFAR-10.

4.2.2. SEARCH ALGORITHM

Recall that S2E uses stochastic relaxation with Newton’s

method (denoted Newton) as the search algorithm. In this

section, we study the use of other gradient-based search

algorithms, including (i) gradient descent (GD) (Liu et al.,

2019); and (ii) natural gradient descent (NG) (Amari, 1998);

and also derivative-free search algorithms, including (i)

random search (random) (Bergstra & Bengio, 2012); (ii)

Bayesian optimization (BO) (Bergstra et al., 2011); and (iii)

hyperband (Li et al., 2017). For fairness and consistency, all

these are used with Co-teaching as in previous experiments.

We do not compare with reinforcement learning (Zoph & Le,

2017), as our search problem does not involve a sequence

of actions. The experiment is performed on the CIFAR-10.

In Algorithm 2, the most expensive part is step 5 where

Algorithm 1 is called and model training is required.

Figure 6 shows the testing accuracy w.r.t. the number of

such calls. As can be seen, S2E, with the use of the Hessian

matrix, is most efficient than the other algorithms compared.

5. Conclusion

In this paper, we address the problem of learning with

noisy labels by exploiting deep networks’ memorization

effect with automated machine learning (AutoML). We first

design an expressive but compact search space based on

observations from the learning curves. An efficient search

algorithm, based on stochastic relaxation and Newton’s

method, overcomes the difficulty of computing the gradient

and allows incorporation of information from the model

and optimization objective. Extensive experiments on

benchmark data sets demonstrate that the proposed method

outperforms the state-of-the-art, and can select a higher

proportion of clean samples than other sample selection

methods.
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