
Searching Trajectories by Locations – An Efficiency Study

Zaiben Chen†, Heng Tao Shen†, Xiaofang Zhou†, Yu Zheng‡, Xing Xie‡

† School of Information Technology & Electrical Engineering
The University of Queensland, QLD 4072 Australia
‡Microsoft Research Asia, Beijing 100080 China

{zaiben, shenht, zxf}@itee.uq.edu.au, {yuzheng, xingx}@microsoft.com

ABSTRACT
Trajectory search has long been an attractive and challeng-
ing topic which blooms various interesting applications in
spatial-temporal databases. In this work, we study a new
problem of searching trajectories by locations, in which con-
text the query is only a small set of locations with or without
an order specified, while the target is to find the k Best-

Connected Trajectories (k -BCT) from a database such that
the k-BCT best connect the designated locations geographi-
cally. Different from the conventional trajectory search that
looks for similar trajectories w.r.t. shape or other criteria by
using a sample query trajectory, we focus on the goodness
of connection provided by a trajectory to the specified query
locations. This new query can benefit users in many novel
applications such as trip planning.

In our work, we firstly define a new similarity function for
measuring how well a trajectory connects the query loca-
tions, with both spatial distance and order constraint being
considered. Upon the observation that the number of query
locations is normally small (e.g. 10 or less) since it is imprac-
tical for a user to input too many locations, we analyze the
feasibility of using a general-purpose spatial index to achieve
efficient k -BCT search, based on a simple Incremental k-

NN based Algorithm (IKNN). The IKNN effectively prunes
and refines trajectories by using the devised lower bound
and upper bound of similarity. Our contributions mainly lie
in adapting the best-first and depth-first k -NN algorithms
to the basic IKNN properly, and more importantly ensur-
ing the efficiency in both search effort and memory usage.
An in-depth study on the adaption and its efficiency is pro-
vided. Further optimization is also presented to accelerate
the IKNN algorithm. Finally, we verify the efficiency of the
algorithm by extensive experiments.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

General Terms
Algorithms, Performance

Keywords
Trajectory Search, Locations, Efficiency, Optimization

1. INTRODUCTION
The proliferation of mobile devices enables people to log

their geographical positions and to trace historical move-
ments, which has spawned various novel applications. An
emerging one is trajectory sharing and searching. Different
from the conventional similarity search [22, 21, 8, 20] over
trajectory databases that uses a sample query trajectory for
full matching according to shape or other criteria, new tra-
jectory search applications demand to find trajectories that
connect a few selected locations, i.e., are close to all the loca-
tions. As exemplified in Figure 1, given a set of coordinates
of locations (represented by dots) acquired by clicking on
map or image geo-coding, we retrieve from a database the
raw trajectory (indicated by the marked track) that best
connects these locations. This query can benefit travelers
when they are planning a trip to multiple places of interest
in an unfamiliar city by providing similar routes traveled by
other people for reference.

Figure 1: Trajectory search by locations – an example

Moreover, by utilizing this new query, a tourist/travel
agency can further survey popular routes through some at-
tractions; a zoologist is capable of finding the nearest tra-
jectories of animals to some stationary points (e.g. source
of food) [11]; a transport department is able to investigate
the driving habits of local residence within a suburb and
onwards analyze the traffic causes of some critical road in-
tersections, etc. This work is based on the Microsoft Geo-
Life project [1], and some example websites for sharing and
searching trajectories include Bikely, GPS-Waypoints and

Share My Routes1, that all provide a platform for people to
share trajectories of driving, hiking, boating etc., and some
very simple search functions have already been developed.

In this work, we propose a new type of trajectory query
called the k Best-Connected Trajectory (k-BCT) query for
searching trajectories by multiple geographical locations. Gen-
erally, the k-BCT query is a set of locations indicated by
coordinates like (latitude, longitude), which could be a fa-
mous attraction, a nameless beach, or any arbitrary place
approximated by the center location. The user may also
specify a preferred visiting order for the intended places, in
which case the order of a trajectory needs to be taken into
account as well. For example, a query with three locations
A, B and C appears as

{A(37.2601,122.0941) , B(37.2721,122.0648) , C(37.3344,122.1538)}
where (37.2601, 122.0941) denotes the (latitude, longitude) of
A. If an order constraint further applies, the found trajecto-
ries connecting A, B and C should also preserve the visiting
order (A → B → C). Obviously, the conventional similar-
ity search [22, 21, 8, 20, 9] can not address this problem
since the similarity measure is different in our applications,
which should reveal the connectivity between a trajectory
and the query locations rather than the similarity in shape.
Furthermore, the query is no longer a full trajectory or any
sub-sequence, but a few arbitrary locations, which makes
the query more flexible. In essence, the k-BCT query can
be treated as an extension of the traditional single point-
based query [11, 18] which looks for the nearest trajectories
to only one location, while the k-BCT query searches the
‘nearest’ trajectories to multiple locations.

To answer the k-BCT query, we can separately issue at
each query location an independent single point-based query
to find out the nearest trajectories w.r.t. each location,
and then the trajectories within the intersection of query
results, if exist, are supposed to be close to all the query
locations and thus with a good connectivity. Based on this
basic idea, we propose an Incremental k-NN based Algorithm

(IKNN), which retrieves the nearest trajectory points w.r.t.
each query location incrementally and examines the k -BCT
from the trajectory points discovered so far. In this method,
the pruning and refinement of the search are conducted by
using the lower bound and upper bound of trajectory simi-
larity that are derived from the found trajectory points, and
the retrieval of nearest trajectory points is based on the tra-
ditional best-first and depth-first k -NN algorithms [19, 14]
over an R-tree [13] index. Note that the utilization of the
commonly used R-tree is only for browsing distance between
points. Other spatial indexes can also be easily adapted.

However, the problem of the basic IKNN algorithm that
we concern is about the search efficiency, which originates
from the efficiency of retrieving the nearest trajectory points
incrementally. For the best-first k-NN algorithm [14], it pro-
vides an I/O optimal solution but causes a lack of guarantee
in memory usage, which means it may cause an overlarge
memory consumption that could potentially bring down the
system or severely affect the number of concurrent queries.
For the depth-first k-NN algorithm, it’s consumption of mem-
ory is ascertained, but it performs very poorly in the IKNN
algorithm as it involves too much repetition of search regions

1Bikely (http://www.bikely.com/)
GPS-Waypoints (http://www.gps-waypoints.net/)
Share My Routes (http://www.sharemyroutes.com/)

in our case. Therefore, besides proposing the new query as
well as a new similarity function, we theoretically analyze
the cost of the IKNN adopting these two k-NN algorithms
respectively, and a major part of our contribution lies in
the adaption of the k-NN algorithms to the IKNN. Through
the adaption mechanism, the IKNN adopting the depth-first

strategy achieves a good search performance comparable to
the best-first strategy in terms of R-tree node access and
query time, while it also guarantees a fixed low memory
consumption. Moreover, we also present an optimization
solution to conduct the IKNN search over multiple query
locations smartly, and it achieves notable improvement.

The remainder of the paper is organized as follows. In Sec-
tion 2 we discuss the related work. In Section 3, the formal
definition of the k-BCT query and its similarity function are
given. The IKNN algorithm is presented in Section 4 with
detailed analysis. Finally we show our experiment results in
Section 5 and draw a conclusion in Section 6.

2. RELATED WORK
Our work shares a common methodology with similarity

search on trajectory/time series data. Basically the first step
is to define a similarity/distance function by some kind of
aggregation of distances between trajectory points, and then
efficient query processing algorithms are needed to address
the problem of searching over a large set of candidate tra-
jectories. A considerable amount of related work has been
proposed before. Several typical similarity functions for dif-
ferent applications include Euclidean Distance [2], Dynamic
Time Warping (DTW) [22], Longest Common Subsequence
(LCSS) [21], Edit Distance with Real Penalty (ERP) [7],
Edit Distance on Real Sequences (EDR) [8], and enhanced
techniques for evaluating the similarity of time series are
also studied in [16, 20].

The pioneering work by Agrawal et al. in [2] utilizes Dis-
crete Fourier Transform (DFT) to transform trajectories to
multi-dimensional points, and then the comparison between
trajectories can be done by comparing the Euclidean dis-
tance between the points in the feature space, which should
match or under-estimate the real distance. Faloutsos et
al. extend this work in [10] to allow subsequence matching.
Other transform functions such as Discrete Wavelet Trans-
form (DWT) [6] are also available. Cai et al. [5] utilize the
Chebyshev polynomials for approximating and indexing tra-
jectories. However, those methods require the time series to
have the same length and the transform functions are not
applicable for our query.

Frentzos et al. define in [12] a distance measure as the area
of the region between two trajectories. Nevertheless, their
method does not work if the two trajectories are of differ-
ent lengths. In contrast, DTW [22] adopts time-shifting in
the comparison of trajectories and the basic idea is to allow
‘repeating’ some points as many times as needed to achieve
the best alignment. Yet, all points including noises have to
be matched, and therefore it may accumulate an over large
DTW distance merely due to a single noisy point. Com-
pared with DTW, LCSS [21] allows to ‘skip’ some points
other than re-arrange the order of these points. As a con-
sequence, far-away points would be ignored and thus it is
robust to noises. However, it needs a matching threshold to
determine whether to take a point into account. Chen et al.
propose in [8] the EDR distance, which is similar to LCSS in
using a threshold parameter to determine if two points are

matched in comparison, while considering penalties to gaps.
In [7], Chen et al. also propose the ERP distance aiming to
combine the merits of DTW and EDR, by using a constant
reference point for computing distance.

A similarity function is normally designed by consider-
ing the actual application, and none of the similarity func-
tions above satisfies the requirements of our applications, in
which the query is broken into a small set of locations, and
we concern more on whether a trajectory provides a good
connection to query locations rather than whether the tra-
jectory is similar to the query in shape. Therefore, due to
the new application requirements, we need to define a new
similarity function. For query processing, this is the first
work on trajectory search by multiple query locations. As
the number of query locations is typically small, we are able
to use a spatial method for the search. Here, our IKNN al-
gorithm utilizes the k-NN algorithms in [19] and [14] over an
R-tree [13] index of all the trajectory points. Notice that we
do not consider the STR-tree or TB-tree [18] for trajectory
indexing and searching since they focus more on trajectory
preservation and leave other spatial properties like spatial
proximity aside, while in the IKNN algorithm, the R-tree
index is only for fast retrieval of nearest points.

3. THE K-BCT QUERY
A trajectory database contains a large collection of raw

trajectories recorded by GPS devices in the form of a series
of locations/points {p1, p2, · · · , pl}, where pi is a trajectory
point represented by (latitude, longitude), and l is the num-
ber of points in the trajectory. The k Best-Connected Tra-

jectory (k-BCT) query Q, according to our applications, is
represented by a set of locations:

Q = {q1, q2, · · · , qm}

m is the number of query locations, and the user may further
assign a visiting order to the locations, in which case Q is
treated as a sequence of locations from q1 to qm. Notice that
we use the term ‘location’ and ‘point’ interchangeably.

In order to search for the best-connected trajectories from
a database, firstly we need a similarity function to score how
well a trajectory connects the query locations, which should
consider the distance from the trajectory to each query loca-
tion. We simply define the distance Distq between a query
location qi and a trajectory R = {p1, p2, · · · , pl} as:

Distq(qi, R) = min
pj∈R
{Diste(qi, pj)}

Diste(qi, pj) is the Euclidean distance between qi and pj ,
so actually Distq(qi, R) is the shortest distance from qi to
any point on R. Here we call the < qi, pj > a matched pair

where pj is the nearest point on R to qi. Then for a query Q
that consists of {q1, q2, · · · , qm} without an order constraint,
we define the similarity Sim(Q, R) between Q and R based
on the distance of each matched pair as follows:

Sim(Q, R) =

m
X

i=1

e−Distq(qi,R) (1)

The intuition of using the exponential function e−Distq(qi,R)

to measure the contribution of each matched pair to Sim(Q, R)

is that we would like to assign a larger contribution to a
closer matched pair of points while giving a much lower value

to those far away pairs, which results in an exponential de-
creasing of contribution as Distq(qi, R) linearly increases.
Therefore, only a trajectory that is really close to all the
query locations is considered to be ‘similar’, which agrees
with the perception of human beings. A matching example
is illustrated in Figure 2(a), where the query locations q1,
q2 and q3 are matched to the closest points p6, p4 and p7

on R respectively. Therefore, Sim(Q, R) = e−Diste(q1,p6) +

e−Diste(q2,p4) + e−Diste(q3,p7) = e−1.5 + e−0.1 + e−0.1. The
dashed ellipses here indicate the matched pairs.

q2

q1

q3p1 p2
p3

p4

p5

p6 p7 p8

Diste(q1,p6)= 1.5
Diste(q2,p4)= 0.1
Diste(q3,p7)= 0.1

R

(a)

q2

q1

q3p1 p2
p3

p4

p5

p6 p7 p8

Diste(q1,p3)= 2.0
Diste(q2,p4)= 0.1
Diste(q3,p7)= 0.1

R

(b)

Figure 2: Matching a trajectory

When a visiting order is further specified for the query
locations, the matched points on R have to preserve the
order. Thus, an adjustment of matching may be necessary,
and the matched point pj for location qi may not be the
nearest point to qi any longer. Considering the example in
Figure 2(a) again, suppose the user wishes to make visits in
the order of q1 → q2 → q3. The actual order of the matched
points on R is p4 → p6 → p7 (assume R goes from left to
right), rather than p6 → p4 → p7, therefore this matching
does not conform with the user-specified order, and hence we
need to adjust the matching of trajectory points to satisfy
the order constraint. As shown in Figure 2(b), q1 is re-
matched with p3 and then the new visiting order is p3 →
p4 → p7 which correctly preserves the user-specified order.
Here, our target is to maximize the sum of the contribution
of each matched pair, while still keeping the order of visits,
i.e., the sum of the contribution of < q1, p3 >, < q2, p4 >
and < q3, p7 > pairs is maximum among all the possible
combinations that preserve the order.

However, the calculation of similarity is not straightfor-
ward when considering a visiting order. Given a sequence
of query locations Q = {q1, q2, · · · , qm}, and a trajectory
R = {p1, p2, · · · , pl}, we define the similarity Simo(Q,R)
for ordered query locations in a recursive way as follows:

Simo(Q, R) = max

8

>

<

>

:

e−Diste(Head(Q),Head(R))

+Simo(Rest(Q), R)

Simo(Q, Rest(R))

(2)

where Head(∗) is the first point of ∗, e.g., Head(Q) =
q1, and Rest(∗) indicates the rest part of ∗ after remov-
ing the first point, e.g., Rest(Q) = {q2, q3, · · · , qm}. The
idea of Equation 2 is to define the maximal solution to
Simo(Q,R) recursively in terms of the maximal solutions
to subproblems: Simo(Rest(Q),R) and Simo(Q,Rest(R)).
Therefore, once Head(Q) and Head(R) match, we sum up
e−Diste(Head(Q),Head(R)) to the similarity and shift to the
matching of the rest of Q by calling Simo(Rest(Q),R). In

Table 1: A list of notations
Notation Explanation

N The number of all the trajectory points
m The number of query locations
Diste(qi, pj) The Euclidean distance between qi, pj

Distq(qi, R) The shortest distance from qi to R

C The candidate set
c The fanout of the R-tree
ǫ The radius of a ‘shape’

nb(ǫ, ‘shape’) The average number of neighbors within
a region of ‘shape’ and radius ǫ

D2, D0 The Fractal Dimensions, D2 = D0 = 2
for a uniform distribution

r The radius of a λ-NN search region
σj The average side of MBR at level j

Distlast The distance of the previous λth NN
MBR1 The first visited MBR that contains not

less than λ points in a depth-first search
ρ The density of trajectory points
ξ(qi) The contribution of qi to upper bound
µ, ν The weights for optimization

this case, Head(R) is still retained for the next round of
comparison as a trajectory point may be matched with more
than one query locations. Besides that, we can also skip tra-
jectory points by calling Simo(Q, Rest(R)). Essentially this
is a dynamic programming way to figure out the similarity,
while keeping the matched trajectory points in the same or-
der as the query locations. Obviously, Equation 2 combines
the merits of DTW [22] which can repeat some trajectory
points, and LCSS [21] that can skip un-matched trajectory
points including outliers in the matching process. Formally,
we define the k-BCT query as below:

Definition 1. (k-BCT query) Given a set of trajecto-
ries T = {R1, R2, · · · , Rn} (n ≥ k) , a set of locations Q, and
a corresponding similarity function, the k-BCT query is to

find the k trajectories T
′

from T , such that:

Similarity(Q, Ri)Ri∈T
′ ≥ Similarity(Q, Rj)Rj∈T−T

′

where Similarity(Q,Ri) = Sim(Q,Ri) if no order is speci-
fied for Q, otherwise Similarity(Q,Ri) = Simo(Q, Ri).

4. QUERY PROCESSING
To answer the k-BCT query, we take advantage of the ob-

servation that the number of query locations is usually small.
Thus we are able to adopt a spatial index for the search of
close-by trajectories for each query location separately, and
then merge the results for the exact k-BCT. The total cost of
this method is expected to be the cost of searching over the
index multiplying the number of query locations, which is
a small constant. Here, since knowing the closest points on
a trajectory to the query locations is sufficient to estimate
the lower bound and upper bound of the proposed trajec-
tory similarity (Equation 1 & 2) for pruning, we adopt the
commonly used R-tree [13] index for the search of closest
trajectory points. With points of all the database trajecto-
ries indexed by one single R-tree, once we find the nearest
point w.r.t. a query location, the trajectory that contains
this point must be the closest trajectory to the query lo-
cation. Besides, to support the whole trajectory retrieval,
points from the same trajectory are further connected by a
double linked list. In the following, we firstly introduce a

simple k -NN based method that utilizes the R-tree for the
search of k-BCT, followed by an in-depth study on effective
adaption and further optimization. Table 1 shows a partial
list of symbols used in this paper.

4.1 The IKNN Algorithm
By indexing trajectory points in an R-tree, we are able

to efficiently find the closest trajectory point with respect
to a query location by using the k-Nearest Neighbor (k-NN)
search [19, 14]. Assume there is a query Q comprising of m
locations {q1, q2, · · · , qm} without an order constraint, we
firstly retrieve the λ-NN of each query location (λ > 0):

λ-NN(q1) = {p1
1, p

2
1, · · · , pλ

1}
λ-NN(q2) = {p1

2, p
2
2, · · · , pλ

2}
· · ·
λ-NN(qm) = {p1

m, p2
m, · · · , pλ

m}
The set of scanned trajectories that contain at least one
point in λ-NN(qi) then form a candidate set Ci for the k -
BCT results. Note that the cardinality |Ci| ≤ λ, as there
may be several λ-NN points belong to the same trajectory.
By merging the candidate sets generated by all the λ-NN(qi),
we get totally f different trajectories as candidates:

C = C1 ∪ C2 ∪ · · · ∪ Cm = {R1, R2, · · · , Rf}
For each trajectory Rx (x ∈ [1, f]) within C, it must contain
at least one point whose distance to the corresponding query
location is determined. For example, if Rx ∈ Ci (Ci ⊆ C),
then the λ-NN of qi must include at least one point on Rx,
and the shortest distance from Rx to qi is known. Therefore,
at least one matched pair of points between Rx and some qi

is discovered, and then a lower bound LB of similarity for
each candidate Rx (x ∈ [1, f]) can thereafter be computed
by using the found matched pairs:

LB(Rx) =
X

i∈[1,m]∧Rx∈Ci

max
j∈[1,λ]∧p

j
i
∈Rx

{e−Diste(qi,p
j
i
)}
!

(3)
Here {qi|i ∈ [1, m] ∧ Rx ∈ Ci} denotes the set of query lo-
cations that have already been matched with some point on

Rx, and the pj
i which achieves the maximum e−Diste(qi,p

j
i
)

with respect to qi is the point on Rx that is closest to qi,

i.e., max
j∈[1,λ]∧p

j
i
∈Rx

{e−Diste(qi,p
j
i
)} = e−Distq(qi,Rx). So

LB(Rx) =
P

i∈[1,m]∧Rx∈Ci
(e−Distq(qi,Rx)) and obviously it

is no larger than
Pm

i=1 e−Distq(qi,Rx), because it only takes
those matched pairs found so far into account. Thus LB(Rx)
must lowerbound the exact similarity Sim(Q, Rx) defined in
Equation 1. On the other hand, if Rx /∈ Ci, then none of
it’s trajectory points has been scanned by λ-NN(qi) yet.

For those trajectories that are not contained in C, they
have not been scanned by any of the λ-NN search, and any
point on them must have a distance to qi no less than the
distance of the λth NN of qi (i.e. Diste(qi, p

λ
i)). Therefore,

we can determine an upper bound UBn of similarity for all
the non-scanned trajectories as follows:

UBn =
m
X

i=1

e−Diste(qi,pλ
i) (4)

By using these two bounds, we can set up a pruning mech-
anism for the k-BCT query to avoid scanning the whole
trajectory database and thus restrict the search space.

Theorem 1. For a k-BCT query without an order con-

straint, if we can get a subset of k trajectories C
′

from the

candidate set C after searching the λ-NN of each query lo-

cation, and we have minRx∈C
′ {LB(Rx)} ≥ UBn, then the

k best-connected trajectories must be included in C.

Proof. For any Rx ∈ C
′

, Sim(Q,Rx) ≥ LB(Rx), while
for any Ry /∈ C (i.e. Ry ∈ C), UBn ≥ Sim(Q, Ry). When
Theorem 1 is satisfied, which is minRx∈C

′ {LB(Rx)} ≥ UBn,

we can conclude that ∀Rx∀Ry(Rx ∈ C
′ ∧ Ry ∈ C) →

(Sim(Q, Rx) ≥ Sim(Q, Ry)). Therefore, no k-BCT result
can be from C, and they must be from C.

Notice that C
′

is not necessarily to be the k -BCT, and we
can only guarantee the k -BCT results are included in C.
Apparently, Theorem 1 provides a way to decide when the
k-BCT results are found during the λ-NN search.

Here, one critical question is that what λ we should choose
in the search to guarantee that the k -BCT results are con-
tained in the candidate set. If λ is set to be a very large
value, it is probably that the k -BCT results will all be re-
trieved, but the search space will be huge as well. Neverthe-
less, a smaller λ may not be enough to make sure the k -BCT
results are included in C and thus leads to false dismissal.
Instead of choosing a fixed λ, we devise an Incremental k-NN

based Algorithm (IKNN) for efficient retrieval of the candi-
date trajectories in a filter-and-refine fasion. The basic idea
is to search for the λ-NN of each query location first (initially
λ can be any positive integer, e.g., λ = k). If the generated
candidate set C does not satisfy Theorem 1, we increase the
search region by some ∆ and search for the (λ+∆)-NN. This
process keeps going until the k -BCT is found. Algorithm 1
shows the details.

In each round of the IKNN (the while loop), we first of
all retrieve the λ-NN of qi by KNN(qi, λ) at line 7, and then
construct the candidate set C through line 8 and 9. If we
have got enough candidates, then the lower bounds LB[] for
all candidates and the upper bound UBn defined in Formula
3 and 4 respectively are computed at line 11 and 12. The
k maximal lower bounds k-LB[] ⊂ LB[] are updated at line
13. If Theorem 1 is satisfied at line 14, which means the k-
BCT has already been included in C and all the non-scanned
trajectories beyond C can be safely filtered out, then the
refinement procedure is triggered to examine the exact sim-
ilarity of candidate trajectories at line 15, after which the
k best-connected trajectories are returned. Otherwise we
increase λ by ∆ and go to the next round.

The refine() function in Algorithm 1 performs a refine-
ment step and it further prunes un-qualified candidates from
C to get the final k-BCT results. To achieve this, we further
define an upper bound UB of similarity for candidate tra-
jectories in C only, following the same rationale of Equation
3 and 4.

UB(Rx) =
X

i∈[1,m]∧Rx∈Ci

(max
j∈[1,λ]∧p

j
i
∈Rx

{e−Diste(qi,p
j
i
)}) (5)

+
X

i∈[1,m]∧Rx /∈Ci

(e−Diste(qi,pλ
i))

In Equation 5, Rx ∈ C = {C1 ∪ C2 · · · ∪ Cm}. For a query
location within {qi|i ∈ [1, m] ∧ Rx ∈ Ci}, the closest point
on Rx to qi is found by the λ-NN(qi) search, and thus we
accumulate to UB(Rx) the contribution of the matched pair

< qi, closestPoint >, which is the same as Equation 3. Oth-
erwise, for a qi that λ-NN(qi) has not covered any point on
Rx (i.e. Rx /∈ Ci), we consider the current λth NN of qi (i.e.
pλ

i) that must be closer than the matched point, and accu-
mulate the contribution of the < qi, p

λ
i > pair to UB(Rx),

which is similar to Equation 4. Straightforwardly, we have:

Sim(Q, Rx) − UB(Rx) =
Pm

i=1 e−Distq(qi,Rx) −
P

i∈[1,m]∧Rx∈Ci
(e−Distq(qi,Rx))

−
P

i∈[1,m]∧Rx /∈Ci
(e−Diste(qi,pλ

i))

=
P

i∈[1,m]∧Rx /∈Ci
(e−Distq(qi,Rx) − e−Diste(qi,pλ

i))

≤ 0

Thus, for any candidate Rx within C, we have Sim(Q, Rx) ≤
UB(Rx). Algorithm 2 shows the refinement process.

Algorithm 1: IKNN()

input : k, Q
output: k-BCT
Candidate Set C;1

Upperbound UBn;2

Lowerbounds LB[], k-LB[];3

Integer λ ← k;4

while true do5

for each qi ∈ Q from q1 to qm do6

λ-NN(qi) ← KNN(qi, λ);7

Ci ← trajectories scanned by λ-NN(qi);8

C ← C1 ∪ C2 · · · ∪ Cm;9

if |C| ≥ k then10

compute LB[] for all trajectories in C;11

compute UBn;12

k-LB[] ← LB[].topK();13

if k-LB[].min ≥ UBn then14

k-BCT ← refine(C);15

return k-BCT;16

λ← λ + ∆;17

Algorithm 2: refine(Candidate Set C)

k-BCT ← SortedList(k);1

compute UB for each candidate in C;2

sort candidates in C by UB in descending order;3

for x = 1 to |C| do4

compute Sim(Q, Rx) by traversing Rx;5

if x ≤ k then k-BCT.insert(Rx, Sim(Q,Rx));6

else7

if Sim(Q, Rx) > k-BCT.min then8

k-BCT.removeLast();9

k-BCT.insert(Rx, Sim(Q, Rx));10

if x = |C| or k-BCT.min ≥ UB(Rx+1) then11

return k-BCT;12

In Algorithm 2, the k-BCT maintains a list of k best-connected
trajectories found so far, together with the exact similarity.
As the algorithm examines the candidates from C in the de-
scending order of UB, once the current minimum similarity
of the k-BCT is even larger than or equal to the UB of the
next candidate Rx+1 (line 11), the k-BCT is safely returned
as the final result. Here the exact similarity of a trajectory
is computed by traversing all the points on it through the
double linked list (line 5), and the k-BCT is updated at line
8-10 whenever a more similar trajectory is discovered.

4.2 Adaption of the λ-NN Algorithm
The λ-NN search is a major component of the IKNN as it

determines the efficiency of retrieving the λ nearest trajec-
tory points. Basically, we have two options in designing the
λ-NN function, i.e., KNN(qi, λ), invoked at line 7 of the Al-
gorithm 1. The first one is the best-first k-NN algorithm in
[14], and the second choice is the depth-first k-NN approach
in [19]. They are tree traversal methods and apply to R-tree
index. The best-first approach, although provides an I/O op-
timal solution, has a risk in huge memory usage, while the
depth-first one does have a guarantee of low memory usage
but is sub-optimal in query processing. In the following, we
elaborate how to adapt them to the IKNN separately, and
how to significantly improve the performance of the depth-

first strategy. Specifically, we use existing cost models [3,
15] to estimate the cost of the best-first strategy, and develop
a new upper bound of cost for the depth-first strategy.

4.2.1 The Best-First Strategy
The best-first approach in [14], maintains a priority queue

to store all the R-tree entries that have yet to be visited,
using the MINDIST from the query location to an MBR as
a key. Initially, the queue only contains the entries of the
root. When deciding which entry to traverse next, it picks
the entry with the least MINDIST (i.e. head of the queue).
After the selected entry is visited, it is removed from the
queue and it’s children entries are subsequently put on the
queue. In such a manner, an entry is not examined until it
reaches the head of the queue. Therefore, the first data point
that comes to the head must be the 1st nearest neighbor
since all entries closer to the query location have already
been examined, and then the data point is dequeued. As
this process proceeds, the next nearest neighbor is reported
incrementally whenever it reaches the head of the queue.

Adopting this algorithm, we can simply record the pri-
ority queue of each λ-NN search, and resume the search
at a later time for the (λ + ∆)-NN by using the previ-
ous priority queue. Thus, each time the IKNN further re-
quires ∆ more trajectory points because the Theorem 1
has not been met, the KNN(qi, λ) function in Algorithm
1 can restart the traversal from the previous queue to get
the (λ + 1)th, (λ + 2)th, · · · , (λ + ∆)th nearest points. The
advantage is that there is no revisit to any processed entry
and each λ-NN point is examined only once. We call the
IKNN using this best-first strategy the IKNNbf Algorithm.

The complexity of the IKNNbf is obviously the cost of the
best-first λ-NN search multiplying a constant m. Here we
borrow some formulas from existing work to show the R-tree
node access when a k-BCT query is returned. Specifically,
we estimate the total leaf access when the m query locations
all involve a λ-NN search. Firstly, given N points in an E-
dimensional unit space, the average number of neighbors
nb(ǫ, ‘shape’) of a point within a region of regular ‘shape’
and radius ǫ is given by [3]:

nb(ǫ, ‘shape’) =

„

vol(ǫ, ‘shape’)

vol(ǫ, �)

«

D2

E

× (N−1)× (2ǫ)D2 (6)

D2 is the Correlation Fractal Dimension [3] and vol(ǫ, ‘shape’)
indicates the volume of a shape of radius ǫ. In a two-
dimensional space (E = 2), vol(ǫ, �) is the volume of a
square, and firstly we want to estimate the radius r of a circle
that encloses λ trajectory points. Since vol(r, ‘circle’) = πr2

and vol(r, �) = (2r)2, Equation 6 is transformed to:

nb(r, ‘circle’) = (πr2

4r2)
D2

2 × (N − 1)× (2r)D2

= (N − 1)(r
√

π)D2

(7)

By substituting nb(r, ‘circle’) with λ and some simple alge-
braic manipulations, we get the radius r of a λ-NN search
region in Equation 8, where r is actually the distance from
the λth NN to the query location.

r =
1√
π

D2

r

λ

N − 1
(8)

For a best-first λ-NN search, only MBRs that intersected
by the circle of radius r are visited. Hence it turns into
a specific range query problem asking the number of node
accesses w.r.t a search circle of radius r. To estimate it, we
adopt the formulas in [15]. Firstly, assume the average side
of MBR at level j of the R-tree is σj , and σj is given using
the Hausdorff Dimension D0 [15].

σj = (
ch−j

N
)

1

D0 (9)

where h = logc(N) is the height of the R-tree and c is the
fanout. Then the average node access P (λ) of R-tree for
answering a range query with radius r is given by [15]:

P (λ) =

h−1
X

j=0

(N − 1)(σ2
j + 4rσj + πr2)

D2

2 + 1

ch−j
(10)

The idea of Equation 10 is to sum up the access probability
of every single node from the root (j = 0) to the leaf level
(j = h − 1). For simplicity, we just take the node access
Pleaf (λ) of leaves into consideration (j = h − 1 only), and
assume a uniform distribution of trajectory points (i.e. D0 =

D2 = 2, σh−1 =
p

c/N). Therefore, by simplifying Equation
10, we get the leaf access of a best-first λ-NN search:

Pleaf (λ) =
(N − 1)(σ2

h−1 + 4rσh−1 + πr2)
D2

2 + 1

c
(11)

=
N − 1

N
+ 4

r

λ(N − 1)

πcN
+

λ + 1

c

≈ 1 + 4

r

λ

πc
+

λ + 1

c
= O(

√
λ + λ)

For the IKNNbf algorithm, there is no overlap between the
search region of the λ-NN and the region of the (λ+∆)-NN.
Therefore, the total leaf access for IKNNbf is:

LeafAccessbf = m×O(
√

λ + λ) (12)

However, one major concern here is that the size of the
priority queue used by the IKNNbf could potentially be-
come very large. In an extreme case, it has to keep all the
entries of the R-tree in the queue [14], which could easily oc-
cupy the main memory and possibly bring down the system.
Consequently, no guarantee of memory usage is given by the
IKNNbf , and that is why we introduce the second option:
the depth-first strategy, which can theoretically guarantee
the usage of memory.

4.2.2 The Depth-First Strategy
In the depth-first k-NN algorithm [19], the basic idea is to

recursively traverse the R-tree level by level in a depth-first
manner, while maintaining a global list of k nearest candi-
dates. Therefore, starting from the root of the R-tree, the
entries of an internal node (organized as a BranchList) are
sorted according to the MINDIST from the query location,
and the entry with the smallest MINDIST is visited first.
This downward process repeats recursively until reaching a
leaf node where a potential nearest neighbor may be found.
During the backtracking to upper levels, it only visits the
entries whose MINDIST is smaller than the distance of the
kth nearest candidate in the global list found so far. With
this method, we need a recursion stack to keep track of what
entries have yet to be visited. There are totally logc(N) lev-
els, and the BranchList at each level has a size of c, where
c is the fanout of the R-tree, so the size of the stack is as-
certained to be O(c logc(N)). Here, we mention the IKNN
using this depth-first strategy the IKNNdf Algorithm.

Nevertheless, the price paid for fixed memory usage by
this method is that we can no longer simply record the state
of the traversal where the λ-NN search stopped previously
and resume it later for the (λ + ∆)-NN, because some valid
candidates for the (λ+∆)-NN may have been skipped during
the previous search. As a result, we have to restart the
search from the very beginning and the previous λ-NN points
will be re-scanned by the (λ + ∆)-NN search. Assume λ is
initially k and ∆ = k as well for ease of proof. When a
depth-first λ-NN search returns, each of the 1st, 2nd, · · · , kth

nearest points has been visited by λ
k

times, and each of the

(k+1)th, (k+2)th, · · · , (2k)th nearest points has been visited
by λ

k
− 1 times, and so on. Thus, the total number of visits

Vsum of all the λ-NN points is:

Vsum =
P

λ
k
i=1(k × i) = k + 2k + 3k + · · ·+ λ

k
k

= k
2
(λ

k
+ (λ

k
)2) = O(λ2

k
)

In the case that λ≫ k, the performance degrades dramati-
cally, and indeed this phenomenon happens frequently in a
large dataset which is point-intensive as we need to search
for a comparatively large λ before determining the k-BCT.
In contrast, the Vsum of the best-first strategy is always λ.

Intuitively if we can guess correctly how large λ will even-
tually be, this depth-first algorithm can go directly for the λ-
NN without any repetition of search. However, this is nearly
impossible even though the trajectory distribution is known
in advance. To save cost, we suppose to reduce the number
of repetitions. Here, instead of increasing λ by a constant
∆, we double λ at each round, that is, λ = k× 2round, with
round = 0, 1, 2, · · · , and hence ∆ = k×2round. By doing so,
the Vsum of all the λ-NN points is reduced to:

Vsum =
Plog2(λ

k
)

i=0 (k × 2i) = k(20 + 21 + · · ·+ 2log2(λ
k

))
= 2λ− k = O(λ)

This is similar to allocating space for dynamic tables.
Theoretically, the Vsum drops from quadratic to linear, al-
though λ may be over larger than necessary. As a conse-
quence, now we are able to use the depth-first λ-NN algo-
rithm directly for the IKNNdf with the line 17 in Algorithm
1 changed to ‘λ← λ×2’. Although it is a very simply modi-
fication, it brings down Vsum to the same order of magnitude
as that of the best-first strategy.

Practically, we can further improve the search efficiency

by using the MAXDIST that is defined as the distance from
the query location qi to the furthest position on a MBR as
illustrated in Figure 3.

MAXDIST(qi, MBR) = max
pj∈MBR

{Diste(qi, pj)} (13)

By using MAXDIST, when the depth-first algorithm is
traversing the R-tree for the (λ + ∆)-NN, all encountered
MBRs whose MAXDIST is smaller than the distance Distlast

of the λth NN found in the previous round can be safely
pruned, since all the points they contain must have been
processed already. As exemplified in Figure 3, MBR1 and
MBR2 can be skipped since they are totally covered by the
circle with center qi and radius Distlast. However, MBRs
intersect with the circle partially, e.g., MBR3 and MBR4,
still need to be processed even though they were visited be-
fore. The modified depth-first traversal method is shown in
Algorithm 3 which is simplified from the one in [19] for an
easier illustration. Here the only change is at line 6-7, where
it skips the MBR contained by the circle of radius Distlast.

MBR4

MBR5

MAXDIST

MBR1

MBR2
MBR3

qi

Distlast

Figure 3: Pruning by MAXDIST

Algorithm 3: DepthTraversal(Node)

if Node = Leaf then update result;1

else2

BranchList ← Node.entries;3

sort BranchList by MINDIST;4

for each e ∈ BranchList do5

if MAXDIST(qi, e.MBR) < Distlast then6

skip e;7

else if MINDIST(qi, e.MBR) < result.max then8

DepthTraversal(e);9

else break;10

To estimate the leaf access of the IKNNdf , however, we can
not use Equation 11 directly, since in a depth-first algorithm
probably some leaf nodes that are further than the λth NN

will be visited as well. Due to the difficulty in estimating
it’s exact cost [4], here we just derive an upper bound of leaf
access. Note that an upper bound for 1-NN search is given
in [17], but it is not applicable for the λ-NN case.

In our derivation, denote by MBR1 the first visited MBR
(at any level) that contains not less than λ points during
the depth-first traversal (MBR1 is not necessarily to center
at the query location). Obviously, a full global list with λ
candidates is generated after visiting MBR1, and any MBR
whose MINDIST is larger than the distance of the furthest

point in the global list will be pruned. Assume rmax is the
distance from the furthest point to the query location as
illustrated in Figure 4. Only MBRs intersected by the circle
with center qi and radius rmax can be visited after MBR1

is examined. Therefore, we can estimate an upper bound
of the exact leaf access by using the leaf access w.r.t. the
search circle of radius rmax. Then Equation 11 can be used
directly for calculation by setting r = rmax.

qi

furthest point

rmax

MAXDIST

MBR1

r1

MINDIST

r2

Figure 4: Estimating MAXDIST(qi,MBR1)

Although rmax is not easy to be determined, we can up-
perbound rmax by rmax ≤MAXDIST(qi, MBR1) because the
furthest point is enclosed by MBR1. Thus, now the problem
is how to estimate MAXDIST(qi, MBR1). As shown in Fig-
ure 4, denote by r1 the distance between the closest position
and the furthest position to qi on the boundary of MBR1,
and by r2 the length of the diagonal of MBR1 (obviously
r2 ≥ r1). According to triangle inequality, we have:

MAXDIST(qi, MBR1) ≤ r1 + MINDIST(qi, MBR1)
≤ r2 + MINDIST(qi, MBR1)

(14)

We further notice that:

MINDIST(qi, MBR1) ≤ Diste(qi, 1
stNN) (15)

The proof of Inequation 15 is as follows: If the 1st nearest

point of qi locates within MBR1, then MINDIST(qi,MBR1) ≤

Diste(qi, 1
stNN) as MINDIST is the shortest distance to qi.

Otherwise, if the 1st NN is enclosed by some other MBR
′

at the same level, then we must have MINDIST(qi,MBR
′

) ≤

Diste(qi, 1
stNN). Since MBR1 is the first visited MBR that

has the minimum MINDIST among all the MBRs at it’s

level, we have MINDIST(qi, MBR1) ≤ MINDIST(qi,MBR
′

) ≤

Diste(qi, 1stNN). Therefore, Inequation 15 is proved.

Combining Formula 14 and Formula 15, MAXDIST(qi,MBR1)

is further upperbounded as follows:

MAXDIST(qi, MBR1) ≤ r2 + Diste(qi, 1
stNN) (16)

In the following, we reckon r2 and the distance of the 1st

NN. Considering Equation 8, we set λ = 1 and get:

Diste(qi, 1
stNN) =

1√
π

D2

r

1

N − 1
(17)

For estimating r2, again, we use Equation 6 by setting ‘shape
= MBR’. Here, we take the same assumption from [17] that
all MBRs are squares with side 2ǫ. Let nb(ǫ, ‘MBR’) = λ.
The radius of a MBR that contains λ points is estimated as:

ǫ =
1

2
D2

r

λ

N − 1
(18)

We have r2 = 2
√

2ǫ, D2 = 2 and consequently:

MAXDIST(qi, MBR1) ≤
r

2λ

N − 1
+

s

1

π(N − 1)
(19)

Let r = MAXDIST(qi, MBR1) in Equation 11. Through
similar algebraic manipulations, we finally estimate an upper
bound of leaf access for the depth-first λ-NN search by:

Pleaf (λ) ≈ (4 + 2
√

π)
q

2λ
c

+ 2πλ+2
c

+
q

1
πc

+ 1

= O(
√

λ + λ)
(20)

In a depth-first traversal, the actual leaf access should be
smaller than the Pleaf (λ) in Equation 20, since not all the
leaves within range r need to be visited with the global list
being updated during the search. From this analysis, we can

also see that both the best-first and depth-first λ-NN search
involve the same order of magnitude of leaf access.

For the IKNNdf strategy, the (λ + ∆)-NN will re-scan the
search region of the λ-NN more or less even though MAXDIST

is used for pruning. However, the order of complexity is ex-
pected to be unchanged, if we double λ at each round.

LeafAccessdf ≤ m×Plog2(λ
k

)

i=0 Pleaf (k × 2i)

= m×O(
√

λ + λ)

(21)

As a result, we prove that the cost of the IKNNdf and
IKNNbf tend to be similar through doubling λ, while the
IKNNdf also avoids potential high memory usage that can
not be guaranteed by the IKNNbf . However, it does not
mean that the IKNNbf is worse. In a normal case, the prior-
ity queue can still be accommodated in main memory easily
and typically the IKNNbf is faster than the IKNNdf as it
involves no repetition.

4.3 Optimization
In the previous setting of the IKNN algorithm, query lo-

cations are treated equally by increasing λ by the same ∆
for each λ-NN(qi). However, note that not all the query lo-
cations are of equal importance as different λ-NN(qi) prob-
ably have different contributions in constructing the can-
didate set and determining lower/upper bounds of similar-
ity. For instance, given two query locations qi and qj , if
Diste(qi, p

λ
i) > Diste(qj , pλ

j) for the same λ, which means the

λth NN of qi is farther, then e−Diste(qi,pλ
i) is smaller than

e−Diste(qj ,pλ
j). Since UBn = e−Diste(q1,pλ

1
) +e−Diste(q2,pλ

2
) +

· · ·+e−Diste(qm,pλ
m) according to Formula 4, we may say the

λth NN of qi helps more than the λth NN of qj does in low-
ering the UBn. Apparently, the lower the UBn is, the easier
Theorem 1 would be satisfied, and thus the IKNN would re-
turn results more quickly. In the following, we analyze how
the contribution of qi is affected by λ. Firstly, we define the
contribution of qi to UBn by ξ(qi):

ξ(qi) = e−Diste(qi,pλ
i)

Obviously the smaller contribution q1 to qm holds, the smaller
UBn will be. Denote the density of trajectory points by ρ
and the radius of a λ-NN search by r = Diste(qi, p

λ
i). Within

the region of a λ-NN search, we roughly estimate ρ as

ρ =
λ

πr2

Easily, we have r =
q

λ
πρ

and ξ(qi) is rewritten as

ξ(qi) = e−r = e
−

q

λ
πρ

Here, our target is to figure out how fast ξ(qi) decays as λ
increases, and then assign different ∆ for q1 to qm according
to it’s decay rate when proceeding to the (λ+∆)-NN search.
We take the derivative dξ

dλ
of ξ(qi) as the decay rate Dec(qi):

dξ

dλ
=

d

dλ
e
−

q

λ
πρ = −1

2
(πρλ)−

1

2 × e
−

q

λ
πρ (22)

Each time of calculating dξ
dλ

, again, we approximate ρ in

Equation 22 by λ
πr2 using the current λ and r. Thus, the

current decay rate is approximated by:

Dec(qi) = | dξ

dλ
| = r

2λ
e−r (23)

We can see that, given a fixed λ, the decay rate rises first
and then drops gradually as r grows from 0 to ∞. Thus, in
the beginning we should assign a higher priority in exploring
a query location with a sparser distribution of trajectories
(i.e. with a larger r). However, after r reaches some value,
instead, a denser distribution (i.e. with a comparatively
smaller r) generates a larger decay rate. Therefore, more
effort should be made for query locations with dense trajec-
tories around. By doing so, we can decrease the UBn more
efficiently. Nevertheless, when r and λ are all large enough,
a further search for more trajectory points doesn’t help any
more in reducing UBn because dξ

dλ
is already close to 0.

Another potential way to accelerate the IKNN algorithm
is to increase the lower bound LB of candidates as fast as
possible, because larger lower bounds also make Theorem 1
easier to be satisfied. However, the lower bound of a tra-
jectory is derived from the search results of more than one
query locations, and it is not easy to predict when and where
a λ-NN(qi) will meet with a point of a given trajectory. Con-
sequently, regarding LB, we face difficulties in quantitatively
estimating the contribution of a query location. As an al-
ternative solution, we define the retrieval ratio Rat(qi) as
a search heuristic, based on the number of new trajectories
found by the λ-NN(qi) at each round.

Rat(qi) =
Num(qi)

λ− λ′
(24)

where λ
′

indicates the λ of the previous round, and Num(qi)
is the number of new trajectories found by the λ-NN. The
idea is that the more new trajectories are retrieved, the
larger candidate set C will be, and it is likely to discover
more points on the k best-connected trajectories. Thus the
lower bounds probably rise more quickly.

By considering both the decay rate and retrieval ratio, we
increase ∆ for different query locations accordingly.

∆(qi) = δ

„

µ
Dec(qi)

Pm
i=1 Dec(qi)

+ ν
Rat(qi)

Pm
i=1 Rat(qi)

«

(25)

In Equation 25, µ and ν are weights, and δ = m · k · 2round

for the IKNNdf , while δ is equal to m multiplying some
constant ∆ for the IKNNbf . As a result, instead of increasing
λ for all query locations equally at line 17 of Algorithm
1, the optimized IKNN determines λ for each qi separately
according to Equation 25 (i.e. λ(qi) = λ(qi) + ∆(qi)), and
therefore more effort is put on exploring important query
locations which may potentially accelerates the searching of
the k-BCT. Note that the optimized IKNN explores totally
Pm

i=1 ∆(qi) NN points at each round, and we have:

Pm
i=1 ∆(qi) = δ

“

µ
Pm

i=1
Dec(qi)

P

m
i=1

Dec(qi)
+ ν

Pm
i=1

Rat(qi)
P

m
i=1

Rat(qi)

”

= δ · (µ + ν)

To guarantee the IKNN searches for a certain number of
points per round, we set µ + ν = 1 (e.g. µ = ν = 0.5), so
the total number of new points got per round is always δ.

4.4 Extension to Queries with an Order
Provided the query is with an order constraint, as dis-

cussed in Section 3, we further consider the visiting order in
the matching between query locations and trajectories. In
this case, the similarity is measured by Simo as formulated
in Equation 2. Typically, Simo can be solved by a Dy-
namic Programming (DP) paradigm as shown in Algorithm
4, which conducts a shifting on trajectory R = {p1, p2, . . . , pl}

by repeating/skipping some pi in order to best-match with
the query, and finally figures out Simo(Q, R).

Algorithm 4: DP (Q, R)

Matrix M[i,j];1

∀i ∈ [1, m], M[i,0] ← 0;2

∀j ∈ [1, l], M[0,j] ← 0;3

for i = 1 to m do4

for j = 1 to l do5

if e−Diste(Head(Q),Head(R))+M[i-1,j] > M[i,j-1]6

then
// match qi with pj and repeat pj

M[i,j] ←7

e−Diste(Head(Q),Head(R))+M[i− 1,j];
else8

// skip pj

M[i,j] ← M[i,j − 1];9

return M[m,l];10

Here M[i,j] records the similarity of a subproblem, i.e.,
Simo({q1, · · · , qi}, {p1, · · · , pj}). Once we got M[i − 1,j] and

M[i,j − 1], we compare e−Diste(Head(Q),Head(R))+M[i− 1, j]
with M[i, j − 1] at line 6 and take the maximum as M[i,j].
If the former one is larger, we say qi is matched with pj

and accumulate e−Diste(Head(Q),Head(R)) to Simo, otherwise
pj is skipped. In such a bottom-up manner, Algorithm 4
figures out M[i,j] with i goes from 1 to m and j from 1 to l,
where m is number of query locations and l is the number of
trajectory points. Finally the M[m,l] returned by DP (Q, R)
at line 10 is the exact Simo(Q, R). The complexity of the
algorithm is O(l ·m) and it tends to be linear since m is a
small constant.

Now the problem is how to adapt the IKNN algorithm
to find the k-BCT with respect to Simo, observing that the
lower bound LB and upper bound UB are not applicable any
more as they are designed for Sim. Firstly, for a candidate
trajectory Rx ∈ C generated by the IKNN, some of it’s
trajectory points are scanned by the λ-NN search. Denote

the set of scanned points on Rx by R
′

x, and we get:

R
′

x = {pi|pi ∈ Rx ∧ pi ∈ S}

where S = λ-NN(q1)∪λ-NN(q2)∪· · ·∪λ-NN(qm). Actually R
′

x

is a sub-trajectory that includes only a subset of points on

Rx. Let R
′

x still follow the order of Rx. we have:

Simo(Q,Rx) ≥ Simo(Q, R
′

x) (26)

The proof of Inequation 26 is as follows: Suppose on the

contrary there exists a matching between Q and R
′

x with

Simo(Q, R
′

x) > Simo(Q, Rx). Assume the matched pairs be-

tween Q and R
′

x are {< q1, p(w1) >, < q2, p(w2) >, · · · , <

qm, p(wm) >} where {p(w1), p(w2), · · · , p(wm)} are the matched

points on R
′

x, and Simo(Q,R
′

x) =
Pm

i=1 e−Diste(qi,p(wi)).

Since R
′

x ⊆ Rx, {p(w1), p(w2), · · · , p(wm)} must be contained

in Rx. Therefore the above matching can be applied on

Rx as well and consequently Simo(Q, Rx) should be at least

Simo(Q, R
′

x), which is a contradiction with the assumption.

Based on Inequation 26, we define a new lower bound
LBo of similarity for ordered query locations by using the
partially retrieved trajectory points of Rx.

LBo(Rx) = Simo(Q, R
′

x) = DP (Q, R
′

x) (27)

where DP (Q, R
′

x) is calculated using Algorithm 4. For the
refinement step, similar to the definition of UB in Equation
5, we define a new upper bound UBo for candidate trajec-
tories within the candidate set C only.

UBo(Rx) = LBo(Rx) +
X

i∈[1,m]∧Rx /∈Ci

(e−Diste(qi,pλ
i)) (28)

Therefore, we replace the LB in Algorithm 1 and the UB
in Algorithm 2 with LBo and UBo respectively, and then
the IKNN algorithm can be seamlessly adapted to k-BCT
queries with an order constraint.

5. EXPERIMENTS
In this section, we conduct experiments on the Beijing

dataset which consists of 12,653 GPS trajectories (1,147,116
points) collected by the Microsoft GeoLife Project [1], and
the distribution of the dataset is illustrated in Figure 5. The
IKNN algorithm is implemented in Java and examined on
a windows platform with Intel Core 2 CPU (2.13GHz) and
1.0GB Memory. All the trajectory points are indexed by
one single R-tree. In the experiments, k-BCT queries are
collected manually by selecting a sequence of coordinates of
places of interest that complies with a reasonable visiting
order. We don’t use random generation for query locations
as it may cause a sudden jump from one location to another
far-away location that probably won’t happen in real life.

Figure 5: The Beijing dataset

The main metric we adopt for measuring the performance
is the Query Time that reflects how fast a query is returned,
and the Node Access that indicates the number of visits to
R-tree nodes. Here we simply record how many times the
internal nodes and leaf nodes of the R-tree are accessed dur-
ing a query. Besides, we also compare the memory usage by
using the Queue Size which is the number of elements of the
m priority queues in the IKNNbf algorithm, or the total size
of the branch lists in the IKNNdf algorithm. As this is the
first work on searching trajectory by locations, we only com-
pare the performance of the IKNN with different settings.
The IKNNbf with the best-frist strategy is denoted by BF,
while the IKNNbf with optimization is mentioned as BF-O.
Similarly, the IKNNdf that uses a constant ∆ is indicated
by DF-C, and DF-D is referred to as the IKNNdf that dou-
bles λ at each round. DF-D-M further considers MAXDIST
for pruning, and DF-D-M-O also includes the optimization
mechanism. The experiment setting is as follows:

the number of k : 1 to 25, default 15
the number of locations : 2 to 10, default 8
the constant ∆ for BF and DF-C : 50
the µ, ν for optimization : 0.5

Note that adjusting ∆, µ and ν also affects the perfor-
mance perceptibly although the trend is still similar. The
figures are not shown due to the limit of space.

5.1 Different Number of Query Locations
The number of query locations is a critical assumption in

our applications, in which we assume the number is small
as it’s impractical to input tens of locations for a query and
importantly a few locations are enough to search a trajec-
tory around some places of interest. In this part, we fix k to
15 and compare the IKNN variants as the number of query
locations ranges from 2 to 10. In effect, the algorithm works
without any problem even though the number of query lo-
cations goes up to 100 or more, but in this case the problem
itself is no longer very meaningful in our applications.

5.1.1 Best-first vs. Depth-first
As shown in Figure 6(a) and 6(b), the best-first method

BF notably outperforms the depth-first method DF-C with-
out any optimization. As the number of query locations goes
up to 10, the Query Time and Node Access of the DF-C rise
quickly to more than 800 ms and 14, 000 respectively, while
the BF just raises the cost smoothly with Query Time≈ 200
ms and Node Access≈ 800. The root cause is that the DF-
C involves an excessive number of re-visits to previous λ-
NN search regions and consequently produces a much larger
number of Node Access compared with the BF that intrinsi-
cally avoids any overlap of search regions. However, the price
paid by the BF to achieve high performance is high memory
usage. As shown in Figure 6(c), the Queue Size of the BF
is approximately 10 times larger than that of all the depth-

first variants. With a very skewed dataset distribution, it
is believed that much more queue capacity is required by
the BF. Nevertheless, even though the Queue Size peaks to
above 700, it still can be fitted in main memory easily (but a
smaller number of concurrent queries). Therefore, neglect-
ing very bad cases, the best-first strategy is the best choice
for processing the k-BCT queries.

5.1.2 Effect of Adaption
To achieve a guarantee of low memory usage, we can con-

sider the depth-first strategy. However, as observed, the
DF-C doesn’t scale well and further adaption is necessary.
Firstly, we study how ∆ affects the performance. As shown
in Figure 6(a) and 6(b), the DF-D that doubles λ at each
round presents smoother curves of the Query Time and Node

Access than the DF-C does, which confirms the fact that by
doubling λ, the DF-D reduces the number of rounds from
O(λ/∆) to O(log2 λ), and thus the number of repetitions is
reduced greatly. In essence, increasing λ exponentially is a
fast way to achieve a necessarily large λ with a small number
of rounds. Although DF-D still has to cover all the previous
search regions, it already brings the search cost to the same
order of magnitude as that of the BF. Pruning by MAXDIST
is another adaption for the depth-first strategy. Again, as
shown in Figure 6(a) and 6(b), DF-D-M further lowers the
cost as it reduces the area of repetition remained with the
DF-D. An interesting observation is that the Node Access

of the DF-D-M drops slightly as the number of locations
rises from 8 to 10. That is because more query locations
may help in raising the lower bound of trajectories greatly
in some cases and thus make Theorem 1 easier to be satis-
fied. Besides, note that the Query Time of the BF is even
larger than that of the DF-D-M as the BF involves frequent
queue operations, which increases the cost notably when the
Queue Size is large, and the BF also has to compute lower
and upper bounds for many rounds (O(λ/∆)).

 0

 200

 400

 600

 800

 1000

 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(m
s)

Number of Query Points

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 2 3 4 5 6 7 8 9 10

N
od

e
A

cc
es

s

Number of Query Points

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(b)

 0

 200

 400

 600

 800

 1000

 1200

 2 3 4 5 6 7 8 9 10

Q
ue

ue
 S

iz
e

Number of Query Points

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(c)

 0

 500

 1000

 1500

 2000

 5 10 15 20 25

Q
ue

ry
 T

im
e

(m
s)

Number of K

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(d)

 0

 5000

 10000

 15000

 20000

 5 10 15 20 25

N
od

e
A

cc
es

s

Number of K

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(e)

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25

Q
ue

ue
 S

iz
e

Number of K

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(f)

Figure 6: Performance for queries without an order

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 3 4 5 6 7 8 9 10

Q
ue

ry
 T

im
e

(m
s)

Number of Query Points

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 3 4 5 6 7 8 9 10

N
od

e
A

cc
es

s

Number of Query Points

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(b)

 0

 200

 400

 600

 800

 1000

 1200

 2 3 4 5 6 7 8 9 10

Q
ue

ue
 S

iz
e

Number of Query Points

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(c)

 0

 1000

 2000

 3000

 4000

 5000

 5 10 15 20 25

Q
ue

ry
 T

im
e

(m
s)

Number of K

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(d)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 5 10 15 20 25

N
od

e
A

cc
es

s

Number of K

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(e)

 0

 200

 400

 600

 800

 1000

 1200

 5 10 15 20 25

Q
ue

ue
 S

iz
e

Number of K

BF
BF-O
DF-C
DF-D

DF-D-M
DF-D-M-O

(f)

Figure 7: Performance for queries with an order

5.1.3 Effect of Optimization
The purpose of adjusting ∆ separately for different query

locations by considering their importance is to put more
effort on exploring more important query locations. As ex-
pected, a further improvement over the DF-D-M is achieved
by the DF-D-M-O. In Figure 6(b), the Node Access is further
reduced by nearly 1/4 ∼ 1/2, while in Figure 6(a) the Query

Time is reduced by about 1/5. For the best-first strategy,
a more significant improvement is observed. The BF-O re-
quires only 295 Node Access which is about 50% less than
that of the BF when the number of locations is 10. Obvi-
ously, the reason of improvement is that both strategies visit
fewer trajectory points during the query through optimiza-
tion, and from Figure 6(c) it is seen that the Queue Size of
the BF-O is lowered by up to 2/3 compared with the BF.

5.2 Different Number of k
Another concern about the IKNN algorithm is how it

scales with different number of k. Here, we show the results
in Figure 6(d), 6(e) and 6(f) with the number of locations
fixed to 8. It is observed that the BF-O exposes an amaz-
ingly stable performance without any significant fluctuation
in both Query Time and Node Access as k increases from
1 to 25, while the Queue Size is kept at a comparatively
low number (≈ 200). Besides that, the DF-D-M and DF-D-
M-O also appear to be scalable with k, and no significant
rise in terms of Query Time and Node Access is shown. On
the other hand, the figures of the DF-C boost drastically to
more than 1.5 second and 20,000 respectively, which reveals
that a pure depth-first algorithm does not work well and the
adaption and optimization are very necessary.

5.3 Queries with an Order
In comparison with queries without an order, when a

query is with an order constraint, more computation is needed
to figure out the lower bound and the exact similarity of
a trajectory by using the Algorithm 4, and furthermore a
query location may not be matched with the nearest point
on a trajectory any longer which consequently requires a
scanning of more trajectory points to get the best match-
ing. Therefore, more Node Access and Query Time are in-
troduced, as confirmed in Figure 7(a), 7(b), 7(d) and 7(e)
where all the variants have brought up the cost more or less.
However, the trends of the figures are still similar to that of
the queries without an order in Figure 6. Regarding the size
of queue, it does not change perceptibly in Figure 7(c) and
7(f) compared with Figure 6(c) and 6(f).

6. CONCLUSIONS
In this paper, we study a new problem of searching the k

Best-Connected Trajectories from a database by using a set
of locations with or without an order constraint. Since the
number of query locations is typically small, it enables us
to adopt a spatial method for answering a similarity search
query. We start the study based on a simple IKNN algorithm
and then analyze the efficiency of different variants. As a
conclusion, we would say that the BF-O achieves the best
query performance although involving a risk of high mem-
ory usage. The pure DF-C algorithm, although guarantees
a low memory consumption, performs poorly in efficiency.
Therefore, we further devise the DF-D-M and DF-D-M-O to
improve the DF-C for fewer R-tree node access and shorter
query time, and finally their performance are theoretically
and experimentally confirmed to be close to that of the BF.

7. REFERENCES
[1] http://research.microsoft.com/en-us/projects/geolife/.

[2] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient
similarity search in sequence databases. In FODO,
pages 69–84, 1993.

[3] A. Belussi and C. Faloutsos. Estimating the selectivity
of spatial queries using the ‘correlation’ fractal
dimension. In VLDB, pages 299–310, 1995.

[4] C. Böhm. A cost model for query processing in high
dimensional data spaces. TODS, 25(2):129–178, 2000.

[5] Y. Cai and R. Ng. Indexing spatio-temporal
trajectories with chebyshev polynomials. In SIGMOD,
pages 599–610, 2004.

[6] K.-P. Chan and A. W.-C. Fu. Efficient time series
matching by wavelets. In ICDE, pages 126–133, 1999.

[7] L. Chen and R. Ng. On the marriage of lp-norms and
edit distance. In VLDB, pages 792–803, 2004.

[8] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In
SIGMOD, pages 491–502, 2005.

[9] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang,
and E. Keogh. Querying and mining of time series
data: experimental comparison of representations and
distance measures. PVLDB, pages 1542–1552, 2008.

[10] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In SIGMOD, pages 419–429, 1994.

[11] E. Frentzos, K. Gratsias, N. Pelekis, and
Y. Theodoridis. Algorithms for nearest neighbor
search on moving object trajectories. Geoinformatica,
11(2):159–193, 2007.

[12] E. Frentzos, K. Gratsias, and Y. Theodoridis.
Index-based most similar trajectory search. In ICDE,
pages 816–825, 2007.

[13] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[14] G. R. Hjaltason and H. Samet. Distance browsing in
spatial databases. TODS, 24(2):265–318, 1999.

[15] F. Korn, B.-U. Pagel, and C. Faloutsos. On the
‘dimensionality curse’ and the ’self-similarity blessing’.
TKDE, 13(1):96–111, 2001.

[16] M. D. Morse and J. M. Patel. An efficient and
accurate method for evaluating time series similarity.
In SIGMOD, pages 569–580, 2007.

[17] A. Papadopoulos and Y. Manolopoulos. Performance
of nearest neighbor queries in r-trees. In ICDT, pages
394–408, 1997.

[18] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel
approaches in query processing for moving object
trajectories. In VLDB, pages 395–406, 2000.

[19] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD, pages 71–79, 1995.

[20] R. Sherkat and D. Rafiei. On efficiently searching
trajectories and archival data for historical
similarities. PVLDB, pages 896–908, 2008.

[21] M. Vlachos, G. Kollios, and D. Gunopulos.
Discovering similar multidimensional trajectories. In
ICDE, pages 673–684, 2002.

[22] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time sequences under time warping.
In ICDE, pages 201–208, 1998.

