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Abstract—With the increasing availability of moving-object tracking data, trajectory search is increasingly important. We propose and
investigate a novel query type named trajectory search by regions of interest (TSR query). Given an argument set of trajectories, a TSR
query takes a set of regions of interest as a parameter and returns the trajectory in the argument set with the highest spatial-density
correlation to the query regions. This type of query is useful in many popular applications such as trip planning and recommendation,
and location based services in general. TSR query processing faces three challenges: how to model the spatial-density correlation
between query regions and data trajectories, how to effectively prune the search space, and how to effectively schedule multiple
so-called query sources. To tackle these challenges, a series of new metrics are defined to model spatial-density correlations. An
efficient trajectory search algorithm is developed that exploits upper and lower bounds to prune the search space and that adopts a
query-source selection strategy, as well as integrates a heuristic search strategy based on priority ranking to schedule multiple query
sources. The performance of TSR query processing is studied in extensive experiments based on real and synthetic spatial data.
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1 INTRODUCTION

T HE availability of GPS-equipped devices [24] (e.g., ve-
hicle navigation systems and smart phones) and online

map-based services (e.g., Google Maps1, Bing Maps2, and
MapQuest3) enable people to capture their current location
and to share their trajectories by means of services such as
Bikely4, GPS-Way-points5, Share-My-Routes6, and Microsoft
GeoLife7. Also, more and more social networking sites, in-
cluding Twitter8, Four square9, and Facebook10, support the
sharing of trajectories. The availability of massive trajectory
data enables novel mobile applications. Such applications
may utilize trajectory search, which finds trajectories that are
similar in some specific sense to query parameters (a set or
sequence of locations [5], [16], [17], [19], [25], or regions).
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This type of query can benefit popular services, such as travel
planning and recommendation, and location-based services in
general. For example, when planning a trip to multiple places
in an unfamiliar city, a tourist may benefit from the experience
of previous visitors. In particular, visitors with similar interests
may have visited nearby landmarks that the user may not know,
but may be interested in. Or others may have avoided a specific
road because it is unpleasant, although it may seem like a good
choice in terms of distance. Such experiences are captured
in trajectories shared by previous visitors. In existing studies
(e.g., [5], [16], [17], [19], [25]), all trajectories are treated
the same, regardless of their frequencies of use. For example,
some less traveled trajectories may be new or just less popular
because the region they are in is less traveled. Such trajectories
may still be of interest to users.

In most existing studies on trajectory search [5], [16], [19],
the query parameters are a set or sequence of locations. How-
ever, in some cases, a place may not be a point location, but
may be a region of interest that contains several spatial objects
(e.g., a scenic area, a commercial district, or a dining area,
where spatial objects can be points of interest (POIs), geo-
tagged photos, or geo-tagged tweets). Moreover, especially
when planning a trip in an unfamiliar city, users may fail
to specify intended locations exactly and may use intended
regions instead. These two common cases motivate our study.

Extending conventional trajectory search, we propose and
investigate a novel query named trajectory search by regions
(TSR). In our setting, a region is circular, and users can specify
a region on a map simply by specifying a center and a radius.
Given a trajectory set T , a user provides a set of regions of
interest as query parameters, and the TSR query retrieves the
trajectory from T with the highest spatial-density correlation
with the query regions. Intuitively, a trajectory that is spatially
close to regions with many spatial objects is more attractive
to travelers than a further-away trajectory.

To the best of our knowledge, this is the first study of
region-based trajectory search in spatial networks that takes
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Fig. 1. An example of the TSR query

spatial-object density into account. Previous studies (e.g., [5],
[19]) use spatial distance as the sole criterion when computing
results. However, spatial distance in itself fails to fully capture
the relationship between a trajectory and a set of regions.
For example, a user may not be satisfied with a travel route
with a relatively sparse distribution of nearby objects, although
the route is spatially close to the centers of the given query
regions.

This is illustrated in Figure 1, where c1, c2, and c3 are TSR
query regions, p1, p2, and p3 are the corresponding region
centers, and r1, r2, and r3 are the radiuses. Points p3, p4, ..., p8
are sample points in trajectories. Among the sample points in
τ1, p6, p7, and p8 are the closest sample points to centers p1,
p2, and p3. Among the sample points in τ2, p4 and p5 are
the closest sample points to centers p1 and p2. Each region
contains several spatial objects. If only spatial proximity to
the region centers is considered [5], [19], trajectory τ2 is
returned because τ2 is spatially closest to the region centers.
If we consider the distributions of the spatial objects, τ2 is
less attractive than τ1 because it is further away from the
regions with high spatial-object density. When taking both
spatial distances to the spatial objects within query regions
and spatial-object density into account, τ1 is the best choice
for trajectory recommendation (although τ2 is slightly better
than τ1 in spatial proximity).

The TSR query is studied in spatial networks, because in
many practical scenarios, users (e.g., travelers and vehicles)
move in spatial networks (e.g., road and railway networks)
rather than in a Euclidean space. To the best of our knowledge,
no existing method can compute the TSR query efficiently.
Existing studies (e.g., [5], [16], [17], [19], [25]) do not take
query regions and spatial-object distribution into account, and
their associated query processing techniques are either not
applicable or not effective for the TSR query.

We first develop a straight-forward approach to computing
to the TSR query, called uniform-speed search (USS), which
follows the filter-and-refine paradigm. At query time, each
query region center pi is used as a so-called query source,
and network expansions (i.e., Dijkstra’s expansion [6]) are
performed from these query sources at the same speed to
explore the spatial network. Uniform-speed search asks for
trajectories spatially close to the dense subregions of the
query regions. A pair of an upper and a lower bound on the
spatial-density correlation between a trajectory and a set of
query regions are defined to prune the search space. The main

drawback of uniform-speed search is that it lacks effective
scheduling for multiple query sources, which may lead to poor
performance. In addition, if the centers of two query regions
are close to each other and both are selected as query sources,
their search spaces may overlap substantially. The trajectories
in the overlap region will then be traversed more than once,
which unnecessarily decreases performance.

To achieve better performance, a best-expansion search
(BES) algorithm is proposed. First, we reuse an existing query-
source selection strategy [18] to select a set of query sources
from among the centers of the query regions. Second, we
define new upper and lower bounds on the spatial-density
correlation to prune the search space. Third, a heuristic search
strategy based on priority ranking is developed to coordinate
the use of multiple query sources. We maintain and make use
of a dynamic priority ranking heap when processing the query.
At each point in time, we expand the top-ranked query source
until a new query source becomes top ranked. Compared to
uniform-speed search, the best-expansion search algorithm has
two major advantages: (i) it further prunes the search space
for avoiding traversals of overlap regions; (ii) the effective
heuristic search strategy focuses on trajectories more likely to
be the solution and further improves query performance.

Next, it is also possible that a traveler may specify a visiting
sequence for intended regions (e.g., c1, c2, and c3 are the
intended regions, and the visiting sequence is c1 → c2 → c3).
The proposed USS and BES algorithms are further extended
to process the TSR queries with a sequence efficiently.

To sum up, the main contributions are as follows:
• We define a novel trajectory search by regions of interest

(TSR) query, which is useful in trip planning and recom-
mendation, and in location-based services in general.

• We define new measures to evaluate the spatial-density
correlation between a trajectory and a set of regions of
interest.

• We develop a best-expansion search (BES) algorithm
to compute the TSR query efficiently with the support
of upper and lower bounds and heuristic query-source
scheduling.

• We further extend the BES algorithm to scenarios where
a sequence of query regions is given.

• We conduct extensive experiments with real and synthetic
spatial data to investigate the performance of the proposed
algorithms.

The rest of the paper is organized as follows. Related work
is covered in Section 2. Section 3 defines the spatial networks,
trajectories, and metrics used in the paper; and it also gives
problem definitions. A baseline uniform speed algorithm is
introduced in Section 4, and the best-expansion search algo-
rithm is covered in Section 5. The developed algorithms are
further extended to practical scenarios in Section 6, which is
followed by a coverage of experimental results in Section 7.
Conclusions are drawn in Section 8.

2 RELATED WORK

Trajectory search queries aim to find trajectories with the
highest relevance to query arguments (e.g., a single spatial
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point, multiple spatial points, or a trajectory) [5] [8] [16] [17]
[25] [26]. Trajectory similarity functions may contain spa-
tial [5], temporal [17], textual [16] [25], and density elements.
The resulting queries are useful in many popular applications
including travel planning, carpooling, friend recommendation
in social networks, and location-based services in general.

We classify the existing trajectory search queries into
three categories according to their arguments. In the point-to-
trajectory category, the query argument is a single spatial point,
and the query finds trajectories spatially close to the query
point. Zheng et al. [26] extended this query to cover spatial and
textual domains and propose the TkSK query, which retrieves
the trajectories that are spatially close to the query point
and also meet semantic requirements defined by the query.
In the points-to-trajectory category, the query takes a set of
locations (e.g., sightseeing places) as argument and returns
a trajectory that connects or is close to the query locations
according to specific metrics. The concept of trajectory search
by locations (TSL) was first proposed by Chen et al. [5]. This
study considers the spatial domain only (Euclidean space).
Shang et al. [16] observe that spatial similarity does not
fully capture the relationship between query locations and
trajectories due to specific preferences of users. They then
propose user oriented trajectory search and extended the query
to cover both the spatial and the textual domains. Intuitively,
if a trajectory is close to specified query locations (spatial
domain) and its textual attribute values are similar to the user’s
textual preferences (textual domain), it is recommended to the
user. In the trajectory-to-trajectory category, queries retrieve
trajectories that are most similar to a query trajectory (e.g.,
[1], [3], [4], [7], [12], [13], [21], [23]). For example, the PTM
query [17] takes spatio-temporal similarity into account, and
the ATSQ query [25] considers spatial-textual similarity.

Unlike the existing studies, the Trajectory Search by Re-
gions of interest (TSR) query aims to find a trajectory with
the highest spatial-density correlation to a set or sequence of
query regions. The existing TSL solution is ineffective for the
TSR query due to two reasons. First, TSL only takes spatial
proximity into account, while TSR considers both spatial
distance and spatial-object density. Second, TSL is conducted
in Euclidean space, and a spatial index (e.g., an R-tree [11]) is
used to enhance the query efficiency. In our work, the objects’
movements are constrained to a spatial network. When weights
of network edges model a number of aspects of travel (e.g.,
fuel consumption and travel time), the lower bound of network
distance may not be the corresponding Euclidean distance;
hence, spatial indexes such as the R-tree [11] are ineffective.
This is the main reason why we use network expansion (i.e.,
Dijkstra’s expansion [6]).

The most related work is arguably the path nearby cluster
(PNC) query [18], which we therefore cover in some detail.
The TSR query and its solution differ from the PNC query
and its solution in six respects. (i) Query type: the PNC
query is a spatial-density query that is conducted in the spatial
and density domains, while the TSR query is a spatial query
(density is also considered but the query processing occurs in
the spatial domain only). (ii) Query argument and result:
the PNC query takes a route as argument, and it returns the

top-k clusters with the highest distance-and-density evaluation
factor with respect to the query route, while the TSR query
takes a set of regions of interest as argument and returns
the trajectory with the highest spatial-density correlation to
the argument regions. (iii) Similarity function: the similarity
function used for the PNC query evaluates the distance-and-
density relevance in the spatial and density domains, and it
combines these linearly. In the spatial domain, it measures
the network distance between a cluster center and a route;
and in the density domain, it computes the density of clusters.
The similarity function of the TSR query evaluates the spatial-
density correlation between a trajectory and a set of query
regions in the spatial domain. The network distances between
a trajectory and all spatial objects in query regions are taken
into account. (iv) Data model and algorithm structure: for
the PNC query, the densities of clusters are mapped to a
one-dimensional space (the density domain), and PNC query
processing searches this domain to finds the clusters with
high spatial-object density. The TSR query has no sperate
density domain. The density of spatial objects is the sum of
the distances between a trajectory and the spatial objects in
query regions. Due to these differences, PNC and TSR call for
different algorithms. (v) Optimization techniques: due to the
above differences from PNC, TSR needs specific optimization
techniques, including upper and lower bounds (Equations 5–
11, 15–19, 21–30), and heuristic functions (Equations 20,
30). Because the TSR query has multiple query regions as
argument, a strategy is needed to schedule multiple query
regions. TSR reuses and extends the query-source selection
method of PNC (Equations 12–14) to select query sources
from query regions. (vi) Experimental spatial data sets:
different spatial data sets are used. For the PNC query, spatial
objects are geo-tagged micro-blog posts, and trajectory data
is not used, while for the TSR query, the spatial objects are
POIs, and real and synthetic trajectory data is used. Due to
these six differences, the TSR query and its solution are new.
The PNC solution does not work for the TSR problem.

3 PRELIMINARIES

3.1 Spatial Networks

A spatial network is modeled by a connected and undirected
graph G(V,E, F,W ), where V is a vertex set and E ⊆ V ×V
is an edge set. A vertex vi ∈ V denotes a road intersection or
a termination of a road. An edge ek = (vi, vj) ∈ E is defined
by two vertices and represents a road segment that enables
travel between vertices vi and vj . Function F : V ∪ E →
Geometries records geometrical information of the spatial
network G. In particular, it maps a vertex and an edge to
the point location of the corresponding road intersection and
to a polyline representing the corresponding road segment,
respectively.

Function W : E → R is a function that assigns a real-
valued weight to each edge. The weight W (e) of an edge e
represents the corresponding road segment’s length or some
other relevant property such as its fuel consumption [10], [22]
or travel time [9], which can be acquired by mining historic
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traffic data. When weights model aspects (e.g., fuel consump-
tion and travel time), the lower bound of network distance
may not be the corresponding Euclidean distance; therefore,
spatial indexes such as the R-tree [11] are ineffective.

Spatial objects may located off edges or vertices in a spatial
network. We assume that all spatial of the objects have already
been mapped to the spatial network (on edges or vertices)
based on some map-matching algorithm(e.g., [2], [14]). Next,
each spatial object is assigned to its nearest vertex. For each
vertex p ∈ G.V , the number of spatial objects that are
assigned to p is assigned an attribute of p, which is denoted
by p.g. A vertex and its assigned spatial objects constitute
the smallest unit in spatial-object density computations, and
thus we need not access individual spatial objects during TSR
query processing

We share the spatial network modeling and spatial-object
preprocessing with a previous study [18].

3.2 Trajectories and Regions of Interest
Raw trajectory samples obtained from GPS devices are
typically of the form of (longitude, latitude, time). We
assume that all trajectory sample points have already been
map matched onto the vertices of the spatial network by some
map-matching algorithm (e.g., [2], [14]), and that between
two adjacent sample points pa and pb, the object movement
always follows the shortest path connecting pa and pb. A
trajectory is defined as follows.

Definition: Trajectory
A trajectory is a finite, time-ordered sequence 〈v1, v2, ..., vn〉,
where vi = (pi, ti), with pi being a sample point (at a vertex)
in G and ti being a timestamp. In this study, we only consider
the spatial attribute of trajectories.

Definition: Region of interest
A region of interest is a subgraph c ⊆ G that contains the
vertices c.V and edges c.E from G that are in a region defined
by a center vm and a radius r, where c.vm is a vertex in G.V
and r is the network distance from c to the boundary of the
region.

3.3 Spatial-density Correlation
Given any two vertices pa and pb in a spatial network, the
network shortest path between them is denoted by SP (pa, pb),
and its length is denoted by sd(pa, pb). Given a trajectory τ
and a vertex o in a spatial network, the minimum distance
dM (o, τ) between vertex o and trajectory τ is defined by

dM (o, τ) = min
pi∈τ
{sd(o, pi)}, (1)

where pi is a vertex belonging to τ .
Given two spatial points p1 and p2, the spatial influence

factor I(p1, p2) is defined as follows.

I(p1, p2) =

{
0 if sd(p1, p2) > ε
e−sd(p1,p2) otherwise

(2)

Here ε is a threshold. The value of I(p1, p2) is inversely
proportional to sd(p1, p2). If the distance between p1 and p2
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Fig. 2. Spatial-density correlation

exceeds the threshold, the influence factor between them is
set to 0. Intuitively, the threshold is used to prune trajectories
faraway from the query regions. The value of I(p1, p2) is in
range [0, e−ε], e−ε ∈ (0, 1).

The spatial-density correlation Csd(c, τ) between a region
c and a trajectory τ is defined as follows.

Csd(c, τ) =
∑
pi∈c

pi.g · I(pi, p) (3)

Here, pi is a vertex belonging to c, p ∈ τ is the closest
vertex to the region center c.m, and pi.g is the number of
spatial objects attached to pi. Spatial distance and spatial-
object density are both taken into account. These functions
extend the well known Longest Common Subsequence (LCSS)
[20] by taking the density of spatial objects into account.

An example is shown in Figure 2, where τ is a trajec-
tory and c1 and c2 are two regions and p1 and p2 are
their centers correspondingly. Vertices {p3, p4} ∈ τ are the
closest vertices to p1 and p2, and {p5, p6, p7, p8} ∈ c1
and {p9, p10} ∈ c2. According to Equations 4, the spatial-
density correlations Csd(c1, τ) and Csd(c2, τ) are computed
as Csd(c1, τ) = p1.g · I(p1, p3) + p5.g · I(p5, p3) + p6.g ·
I(p6, p3)+p7.g · I(p7, p3)+p8.g · I(p8, p3), and Csd(c2, τ) =
p2.g · I(p2, p4) + p9.g · I(p9, p4) + p10.g · I(p10, p3).

In our settings, each region plays an equally significant role
in the TSR query processing, so we use the Sigmoid func-
tion [15] to normalize the spatial-density correlation Csd(c, τ)
to a range [0, 1], i.e., ( 2

1+e−Csd(c,τ)
−1) ∈ [0, 1]. By combining

the spatial-density correlation of each region ci ∈ C, the
spatial-density correlation between a set of regions C and a
trajectory τ is given by

Csd(C, τ) =
∑
ci∈C

(
2

1 + e−Csd(ci,τ)
− 1). (4)

Frequently used notations are given in Table I.

3.4 Problem Definition

Given a spatial network G(V,E, F,W ), a set of trajectories
T , and a set of regions of interest C, the TSR query finds the
trajectory τ ∈ T with the maximum spatial-density correlation
Csd(C, τ): ∀τ ′ ∈ T \ {τ}(Csd(C, τ) ≥ Csd(C, τ ′)).
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Table I: A List of Notions
Notion Description
G.V the set of vertices in graph G
G.E the set of edges in graph G
p.g the number of spatial objects attached to p
c.m the center of region c
sd(pi, pj) network distance between vertices pi and pj
dM (p, τ) network distance between vertex p and trajectory τ
I(pi, pj) spatial influence factor between vertices pi and pj
Csd() spatial-density correlation factor
Csd().lb, Csd().ub the lower and upper bounds of spatial-density cor-

relation
UB ,LB the global upper and lower bounds
Tf , Tp a set of fully and partially scanned trajectories
p.c the cluster of region centers that are attached to

query source p
p.l the priority label of query source p
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Fig. 3. An example of uniform-speed search

4 BASELINE METHOD

4.1 Basic Idea
The uniform-speed search (USS) is a straightforward approach
to computing the TRS query based on the filter-and-refine
paradigm. Given a trajectory data set T and a query region set
C, USS asks for the trajectories spatially close to the spatial-
object dense areas within the query regions. Each region
center ci.m (ci ∈ C) is selected as a so-called query source,
and network expansions (i.e., Dijkstra’s expansion [6]) are
performed from the query sources at the same speed to explore
the network. A pair of upper and lower bounds of spatial-
density correlation are defined to prune the search space.
By integrating the results, the trajectory with the maximum
spatial-density correlation to C is found.

Consider the example in Figure 3. Regions c1 and c2 are
two query regions, and τ1, τ2, and τ3 are trajectories. Vertices
p1 and p2 are centers of regions c1 and c2; p3 and p4 in τ1 are
the closest vertices to p1 and p2; and p7 ∈ τ2 is the closest
vertex to p1. In USS, we use region centers p1 and p2 as query
sources and apply Dijkstra’s expansion [6] from these at the
same speed. The explored circular regions (Figure 3), where
the radii are the shortest network distances from query sources
p1 and p2 to the corresponding expansion boundaries (re1 and
re2). Here, re1 = re2 because the expansion speeds are the
same.

According to Dijkstra’s algorithm that selects the vertex
with the minimum distance label for expansion, if p ∈ τ is
the first vertex scanned by the expansion from p′, p is just the
closest vertex to p′ (i.e., dM (p′, τ) = sd(p, p′)). For instance,

p3 is the closest vertex to p1, thus dM (p1, τ) = sd(p1, p3).
When a trajectory such as τ1 in Figure 3 is covered by the
expansions from all query sources, the trajectory is marked as
fully scanned. A trajectory such as τ2 is marked as partially
scanned, and a trajectory such as τ3 is marked as unscanned.

4.2 Upper and Lower Bounds
To prune the search space, a pair of a lower and an upper
bound of the spatial-density correlation is defined11. If the
upper bound of a trajectory τ is less than the lower bound
of any other trajectories, τ cannot be the trajectory with
the maximum spatial-density correlation to the query regions;
thus, it can be pruned safely.

Once trajectory τ is scanned by the expansion from region
center c.m (e.g., τ1 in Figure 3), we obtain the value of
dM (c.m, τ), and we estimate the upper and lower bounds of
sd(pi, p) according to the characterization of triangle inequal-
ity for the shortest path, where pi ∈ c.V and p ∈ τ is the
closest vertex to c.m (dM (c.m, τ) = sd(c.m, p)). The triangle
inequality in spatial networks is represented as follows.

sd(p, p′) + sd(p′, p′′) > sd(p, p′′)

sd(p, p′)− sd(p′, p′′) < sd(p, p′′)

Here, p, p′, and p′′ are vertices in G, and p′′ is not on
the shortest path between p and p′. Otherwise, we have that
sd(p, p′) + sd(p′, p′′) = sd(p, p′′).

In Figure 3, p3 ∈ τ1 is the closest vertex to region center p1
(dM (p1, τ1) = sd(p1, p3)), and p6 is a vertex in c1. According
to the triangle inequality, we have sd(p6, p3) < sd(p1, p3) +
sd(p6, p1) and sd(p6, p3) > sd(p1, p3) − sd(p6, p1). By
substituting these inequalities into Equation 2, we derive the
upper and lower bounds of I(p6, p3) as follows.

e−sd(p6,p3) > e−(sd(p1,p3)+sd(p6,p1)) = I(p6, p3).lb

e−sd(p6,p3) < e−(sd(p1,p3)−sd(p6,p1)) = I(p6, p3).ub

Then we substitute I(p6, p3).lb and I(p6, p3).ub into Equa-
tion 4 and derive the upper and lower bounds of Csd(c1, τ1).

Csd(c1, τ1).lb =
∑
pi∈c1

pi.g · e−(dM (p1,τ1)+sd(pi,p1)) (5)

Csd(c1, τ1).ub =
∑
pi∈c1

pi.g · e−(dM (p1,τ1)−sd(pi,p1)) (6)

If a trajectory is fully scanned (e.g., τ1 in Figure 3), we
compute the lower bound of its spatial-density correlation
Csd(C, τ1).lb by substituting Equation 5 into Equation 4.

Csd(C, τ1).lb =
∑
ci∈C

(
2

1 + e−Csd(ci,τ).lb
− 1). (7)

Among all fully scanned trajectories, we define a global lower
bound LB as

LB = max
τ∈Tf
{Csd(C, τ).lb}, (8)

11. In the following computation, we only consider the situations where
∀ci ∈ C(rei < ε). If rei ≥ ε, according to Equations 2, for vertex p outside
the browsed region, we have I(p, ci.m) = 0.
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where Tf is the set of fully scanned trajectories. Note that the
value of LB changes dynamically during query processing.

If a trajectory τ has not been scanned by the expansion
from region center p1 (e.g., τ3 in Figure 3), we have that
dM (p1, τ) > re1. Hence, we can use the value of re1 to
replace that of dM (p1, τ) in Equation 6, and derive that

Csd(c1, τ).ub =
∑
pi∈c1

pi.g · e−(re1−sd(pi,p1)), (9)

where p1 is the center of region c1.
By merging Equations 6 and 9 into Equation 4, the upper

bound of the spatial-density correlation Csd(C, τ).ub is com-
puted by

Csd(C, τ).ub =
∑
ci∈C

(
2

1 + e−Csd(ci,τ).ub
− 1). (10)

Csd(ci, τ).ub =


∑
pj∈ci pj .g · e

−(dM (pi,τ)−sd(pi,pj)) if C1∑
pj∈ci pj .g · e

−(rei−sd(pi,pj)) if C2

C1: τ is scanned by the expansion from pi = ci.m.
C2: τ is not scanned by the expansion from pi = ci.m.

Among all fully scanned trajectories, we define a global
upper bound UB as

UB = min
τ∈Tf
{Csd(C, τ).ub}, (11)

where Tf is the set of fully scanned trajectories. The trajecto-
ries in Tf are sorted according to their upper bounds. As for
LB , the value of UB dynamically changes.

Note that to reduce the time and space costs, we only
generate and update the lower bounds of fully scanned trajec-
tories, because partially scanned and unscanned trajectories
cannot have upper bounds of the spatial-density correlation
that exceeds those of fully scanned trajectories (refer to
Equation 10).

4.3 Filter and Refine
Once we have LB > UB , network expansions terminates.
Fully scanned trajectories whose upper bound exceeds LB and
all partially scanned and unscanned trajectories are pruned.
The remaining trajectories in Tf are sorted according to
Csd(C, τ).ub and are refined from the maximum to the mini-
mum. Intuitively, a trajectory τ with larger Csd(C, τ).ub may
have a higher probability of being the trajectory with the
maximum spatial-density correlation to C.

For a trajectory τ ∈ Tf , suppose {p1, p2, ..., pi} ∈ τ are
the vertices closest to region centers {c1.m, c2.m, ..., ci.m}.
We perform Dijkstra’s expansion [6] from {p1, p2, ..., pi} to
compute the network distances between pi and vertices within
region ci. The value of Csd(C, τ) is derived according to
Equation 4. Once we have

max
τ∈Tr
{Csd(C, τ)} ≥ max

τ ′∈Tu
{Csd(C, τ ′).ub},

the refinement terminates, and the trajectory with the maxi-
mum Csd(C, τ) is returned. Here Tr is the set of refined trajec-
tories, Tu is the set of unrefined trajectories, and Tr∪Tu = Tf .

4.4 Algorithm
Uniform-speed search is detailed in Algorithm 1. Initially, the
global lower bound LB is set to 0, and the global upper
bound UB is set to +∞. Network expansion is performed
from each center pi of query regions in turn using Dijkstra’s
algorithm [6], which conducts expansion by selecting the
vertex with the minimum distance label (lines 1–4). For each
newly scanned trajectory τ , if it has not been scanned by the
expansion from pi, it is labeled as having been scanned by pi,
and we compute its spatial-density upper bound Csd(C, τ).ub
and lower bound Csd(C, τ).lb. If Csd(C, τ).lb > LB , LB is
updated to Csd(C, τ).lb. Moreover, if Csd(C, τ).ub < UB ,
UB is updated to Csd(C, τ).ub (lines 5–14). If LB > UB or
the search radius exceeds the threshold ε, network expansions
terminate, and trajectories whose Csd(C, τ).ub is less than LB
are removed from Tf (lines 15–18). Trajectories in Tf are sort-
ed according to the value of Csd(C, τ).ub and are refined from
the maximum to the minimum. Once maxτ∈Tr{Csd(C, τ)} ≥
maxτ ′∈Tu{Csd(C, τ ′).ub}, the refinement terminates, and the
trajectory with the maximum spatial-density correlation is
returned (lines 19–22).
Algorithm 1: Uniform-Speed Search

Data: graph G(V,E, F,W ), trajectory set T , query region set
C

Result: trajectory τ with the maximum value of Csd(C, τ)
LB ← 0;UB ← +∞;Tf ← null;1
while true do2

for each query source pi do3
expand(pi);4
for each newly scanned trajectory τ do5

if τ.scanned(pi) = false then6
τ.scanned(pi)← true;7
if τ is fully scanned then8

Tf .add(τ);9
compute Csd(C, τ).ub and Csd(C, τ).lb;10
if Csd(C, τ).lb > LB then11

LB ← Csd(C, τ).lb;12

if Csd(C, τ).ub < UB then13
UB ← Csd(C, τ).ub;14

if (LB > UB) ∨ (re ≥ ε) then15
for each τ ∈ Tf do16

if Csd(C, τ).ub < LB then17
Tf .remove(τ);18

for each trajectory τ ∈ Tf do19
compute Csd(C, τ);20
if maxτ∈Tr{Csd(C, τ)} ≥ maxτ ′∈Tu{Csd(C, τ

′).ub}21
then

return trajectory τ with maxτ∈Tr{Csd(C, τ)};22

4.5 Complexity Analysis
Uniform-speed search (USS) follows the filter-and-refine
paradigm. In the filtering phase, we perform |C| Dijkstra’s
expansions to explore the network. Thus, its time complexity
is O(|C|(|V | log |V |+|E|)), where |C| is the number of query
regions (a constant), and |V | and |E| are the vertex and edge
counts in graph G.
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In the refinement phase, we perform |C| Dijkstra’s expan-
sions to refine each trajectory in candidate set Tf , yielding
the time complexity O(|C||Tf |(|V | log |V | + |E|)). In the
worst case, |Tf | = |T |. When combining the two phas-
es, the time complexity of uniform-speed search becomes
O(|C|(|V | log |V |+ |E|)) +O(|C||Tf |(|V | log |V |+ |E|)) =
O(|T |(|V | log |V |+ |E|)).

5 TSR QUERY PROCESSING

The main drawback of the uniform-speed search (USS) is its
lack of an effective scheduling strategy for multiple query
sources, which may lead to poor performance. In addition,
if the centers of two query regions are close to each other and
both are selected as query sources, their search spaces may
overlap substantially, which again decreases performance.

Motivated by this, we develop a best-expansion search
(BES) algorithm. First, we reuse an existing query-source
selection strategy [18] to select a set of query sources from the
set of centers of query regions (Section 5.1). Second, we define
new upper and lower bounds on the spatial-density correlation
to enable pruning (Section 5.2). Third, we propose a heuristic
search method to schedule expansion from the query sources
effectively. We establish and maintain a dynamic priority
ranking heap during query processing. At each step, we expand
from the top-ranked query source until a new top-ranked query
source appears (Section 5.3). The BES algorithm is detailed
in Section 5.4. Compared to USS, the BES algorithm has
two major advantages: (i) it further prunes the search space
for avoiding the traversal of overlap areas; (ii) it is able to
focus trajectories more likely to be the solution and to further
improve the query performance.

5.1 Query-Source Selection Strategy
We reuse the query-source selection strategy from PNC query
processing [18] (Equations 12–14). This strategy aims to
reduce the search space during query processing.

Linear programming is adopted to select query sources from
query region centers. We assume trajectories and query regions
are uniformly distributed. Given a set C of query regions
(|C| = n), p1, p2, .., pn−1, and pn are centers of query regions.
Matrix M is an n × n matrix where mij = 1 if the centers
of the ith and the jth regions are adjacent query sources.
Otherwise, mij = 0. We estimate the area ω of search space
in Equation 12, and our goal is to minimize the value of ω.

ω =
π

4

∑
mij · (sdij + 2ε)2, (12)

where i < j,
∑n
j=1 a0j = 1,

∑n
i=1 ai0 = 1,

∑n
j=1 aij ≤ 1,∑n

i=1mij ≤ 1,
∑n
j=1mij =

∑n
k=1mki. Here sdij is the

network distance between the centers of the ith and the jth

query regions. We use
∑
mij to estimate the number of query

sources. Here ε is a threshold, and sdij
2 +ε is the search radius

of a query source in worst case. If the distance between two
vertices exceeds this threshold, the influence factor between
them is set to 0 (refer to Equation 2).

In an online scenario, Equation 12 can be simplified if we
assume that the gap between any two adjacent query sources

re3

re2

p1

p5

p3

re1

p4

p6

c1 p2

c2

τ1

τ2

τ3

c3

c4

Fig. 4. An example of the best-expansion search

is the same. Subsequently, our objective is changed to find the
optimal number of query sources.

ω(x) =
π · x
4
· ( l · (n− 1)

x− 1
+ 2ε)2, (13)

where l = sd(pn−1, pn) is the average network distance
between two adjacent region centers. The value of x corre-
sponding to the minimum ω(x) is acquired by means of the
derivative of the function in Equation 13.

ω(x)′ =
∂ω

∂x
= 0 ⇒

2l2(n−1)2(x−1)−3+(l2(n−1)2+4εl(n−1))(x−1)−2+4ε = 0
(14)

We solve the cubic equation in Equation 14 by applying the
general formula of roots, so x uniformly distributed region
centers are selected as query sources. The need for performing
the query-source selection depends on the value of x. If there
is at most x region centers (i.e., n ≤ x), query-source selection
is not necessary. The query sources that define the minimum
search space can be found by following the aforementioned
procedure.

5.2 Upper and Lower Bounds
The region centers that are not selected are attached to their
closest query sources. We estimate their upper and lower
bounds correspondingly. An example is shown in Figure 4,
where τ1, τ2, and τ3 are trajectories, and c1, c2, c3, and c4 are
query regions. Region centers p1 and p3 are selected as query
sources, and p2 and p4 are attached to them. If a trajectory is
fully scanned (e.g., τ1), for a non-query-source region center
pm (e.g., p2 and p4), the upper and lower bound of its network
distance to τ is estimated as follows.

dM (pm, τ).lb = dM (pn, τ)− sd(pm, pn) (15)

dM (pm, τ).ub = dM (pn, τ) + sd(pm, pn) (16)

Here, pn is pm’s closest query source, so pm is attached to
pn, and ren is the expansion radius of pn.

Consider the example in Figure 4, where τ1 has been
scanned by the expansion from p1 and where p5 ∈ τ1 is the
closest vertex to p1 (dM (p1, τ1) = sd(p1, p5)). Hence, τ1 is
tangent to a circular region that is defined by (p1, dM (p1, τ1))
(p1 is the center and dM (p1, τ1) is the radius), and p5 is
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the tangent point. If re2 = dM (p1, τ1) − sd(p1, p2), we can
guarantee that the circular region (p2, re2) is enclosed by
the circular region (p1, dM (p1, τ1)), and thus we have that
dM (p2, τ1) ≥ re2 = dM (p1, τ1) − sd(p1, p2). On the other
hand, SP (p2, p1)+SP (p1, p5) is a path from p2 to τ1; hence,
we have that dM (pm, τ) ≤ dM (pn, τ) + sd(pm, pn).

We substitute Equation 15 into Equation 6 and Equation 16
into Equation 5, and we derive the upper and lower bounds of
Csd(c2, τ1).

Csd(c2, τ1).lb =
∑
pi∈c2

pi.g · e−(dM (p1,τ1)+sd(p1,p2)+sd(pi,p2))

(17)
Csd(c2, τ1).ub =

∑
pi∈c2

pi.g · e−(dM (p1,τ1)−sd(p1,p2)−sd(pi,p2))

(18)
Here, p1 and p2 are the centers of regions c1 and c2. Region
center p1 is a query source, p2 is a non-query-source region,
and p2 is attached to p1.

If a trajectory τ has not been scanned by the expansion
from region center p1 (e.g., τ3 in Figure 4), we have that
dM (p1, τ3) > re1. Hence, we can use the value of re1 to
replace that of dM (p1, τ3) in Equation 18, and derive that

Csd(c2, τ3).ub =
∑
pi∈c2

pi.g · e−(re1−sd(p1,p2)−sd(pi,p2)), (19)

where p1 is the center of region c1.
By merging Equations 5 and 17 into Equation 7 and

Equations 6, 18, and 19 into Equation 10, the lower and upper
bounds of Csd(C, τ1) are computed.

5.3 Query-Source Scheduling
We proceed to introduce a heuristic scheduling strategy based
on a priority ranking of the query sources, which is helpful to
avoid devoting unnecessary search efforts to trajectories that
are unlikely to be the optimal choice.

Consider the scenario in Figure 4. Trajectory τ1 is fully
scanned, while trajectories τ2 is partially scanned, and τ3
is unscanned. Each query source pn is given a label p.l to
describe its priority. We maintain a dynamic priority heap
ordered on p.l that contains these query sources. In each step,
we search the query source on the top of the heap until a new
center takes its place. Then we search the new top-ranked
query source. The priority of each query source p.l is defined
as follows.

p.l = |p.c|
∑

τ∈Tp\Ts(p)

eCsd(C,τ).ub (20)

Here, p.c is a cluster that contains query source p and all
non-query-source region centers that have p as their closest
query source, and |p.c| is its size. Tp is the set of partially
scanned trajectories (e.g., Tp = {τ2}) and Ts(p) is a set of
trajectories scanned by the expansion from p (e.g., Ts(p1) =
{τ1, τ2}, Ts(p3) = {τ1}). Fully scanned trajectories (e.g., τ1)
and unscanned trajectories (e.g., τ3) are not taken into account
in this ranking model.

Fundamentally, the priority of p should reflect the size of
cluster |p.c|. The larger it is, the higher the priority. We share

the similar idea with the UOTS and PTM queries [16], [17],
and we aim to transform partially scanned trajectories into
fully scanned trajectories as quickly as possible because we
only compute the lower bound of fully scanned trajectories
(refer to Equation 7). To be fully scanned, a trajectory should
be scanned by the expansions from all query sources. The
priority of p is proportional to its “margin” (i.e., the size of
Tp \ Ts(p)). For example, in Figure 4, Tp = {τ2}, Ts(p3) =
{τ1}, and Tp \ Ts(p3) = {τ2}. As a result, the margin of p3
is 1. Moreover, Csd(C, τ).ub is used to estimate the spatial-
density correlation between C and τ . Intuitively, a trajectory τ
with larger Csd(C, τ).ub may have a higher probability to be
the trajectory with the maximum value of Csd(C, τ). If τ ∈
Tp \ Ts(p), the value of Csd(C, τ).ub should be proportional
to p’s priority.

5.4 Algorithm

Algorithm 2: Best-Expansion Search
Data: graph G(V,E, F,W ), trajectory set T , query region set

C
Result: trajectory τ with the maximum value of Csd(C, τ)
LB ← 0;UB ← +∞;Tf ← null;1
select query sources;2
∀pi ∈ Ec (p.l← 0);3
p← Ec.top();4
while true do5

expand(p);6
for each newly scanned trajectory τ do7

if τ.scanned(pi) = false then8
τ.scanned(pi)← true;9
if τ is fully scanned then10

Tf .add(τ);11
compute Csd(C, τ).ub and Csd(C, τ).lb;12
update UB and LB ;13

if (LB > UB) ∨ (∀pi ∈ Ec(rei ≥ ε+ p.dist)
2

)) then14
for each τ ∈ Tf do15

if Csd(C, τ).ub < LB then16
Tf .remove(τ);17

if p 6= Ec.top() then18
p← Ec.top();19

for each trajectory τ ∈ Tf do20
compute Csd(C, τ);21
if maxτ∈Tr{Csd(C, τ)} ≥ maxτ ′∈Tu{Csd(C, τ

′).ub}22
then

return trajectory τ with maxτ∈Tr{Csd(C, τ)};23

Best-expansion search is detailed in Algorithm 2. Initially,
the global lower bound LB is set to 0, and the global upper
bound UB is set to +∞. We select a set of query sources
according to the method described in Section 5.1 (lines 1–2).
The priority labels of all query sources are set to 0, and at each
step, we search the top-ranked query source (the one with the
maximum priority label), and the network expansion follows
Dijkstra’s algorithm [6] (lines 3–6). For each newly scanned
trajectory τ , if it has not been scanned by the expansion from
p, it is labeled as having been scanned by p. We then compute
its spatial-density upper bound Csd(C, τ).ub and lower bound
Csd(C, τ).lb, and update UB and LB correspondingly (lines
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7–13). If LB > UB or all search radiuses exceed the
value of ε + p.dist)

2 ) (p.dist = max{sd(p, p′), sd(p, p′′)},
and p′ and p′′ are adjacent query sources of p), network
expansions terminate, and the trajectories whose Csd(C, τ).ub
is less than LB are removed from Tf (lines 14–17). If
p is not the top-ranked query source in Ec, the network
expansion from p terminates, and we begin to search from
the new top-ranked query source (lines 18–19). The refine-
ment phase is similar to that of Algorithm 1. Trajectories
in Tf are sorted according to the value of Csd(C, τ).ub
and are refined from the maximum to the minimum. Once
maxτ∈Tr{Csd(C, τ)} ≥ maxτ ′∈Tu{Csd(C, τ ′).ub}, where Tr
is a set of refined trajectories and Tu is a set of unrefined
trajectories and Tr ∪ Tu = Tf , the refinement terminates, and
all unrefined trajectories are pruned. The trajectory with the
maximum spatial-density correlation is returned (lines 20–23).

5.5 Complexity Analysis
Best-expansion search (BES) also follows the filter-and-refine
paradigm. In the filtering phase, we perform x Dijkstra’s ex-
pansions, getting a time complexity of O(x(|V | log |V |+|E|)),
where x ≤ |C| is the (constant) number of query sources (cf.
Section 5.1), and |V | and |E| are the vertex and edge counts
in graph G. Recall that the filtering phase of USS has a time
complexity of O(|C|(|V | log |V |+ |E|)) and x ≤ |C|.

In the refinement phase, we perform x Dijkstra’s expansions
to refine each trajectory in candidate set T ′f , which has
a time complexity of O(x|T ′f |(|V | log |V | + |E|)). Recall
that the refinement phase of USS has a time complexity of
O(|C||Tf |(|V | log |V | + |E|)) and x ≤ |C| and |T ′f | ≤ |Tf |
(cf. Section 5.1).

When combining the two phases, the time complexi-
ty of best-expansion search is O(x(|V | log |V | + |E|)) +
O(x|T ′f |(|V | log |V | + |E|)) = O(|T |(|V | log |V | + |E|)). In
the worst case, the time complexity of BES is the same as that
of USS. However, in experiments on real data sets, we shall
see that BES outperforms USS by a factor of 2–3 due to its
pruning capabilities (cf. Tables III and IV).

6 EXTENSION
In some scenarios, users may specify a preferred visiting
sequence for the query regions of interest. In that case, the
order of the regions needs to be taken into account. Here,
the proposed uniform-speed search and best-expansion search
algorithms are extended to cover this case.

Given a sequence of query regions C = 〈c1, c2, ..., ci〉
and a trajectory τ = 〈v1, v2, ..., vj〉, where the vertices
{p1, p2, ..., pi} are the centers of regions {c1, c2, ..., ci}, the
spatial-density correlation between C and τ is defined recur-
sively [17] as follows.

C ′sd(c, v) =
∑
∀p∈c

p.g · e−sd(p,v) (21)

C ′sd(C, τ) = max


( 2

1+e−C
′
sd

(C.head,τ.head)
− 1)

+C ′sd(C.tail, τ)

C ′sd(C, τ.tail),

(22)

where C ′sd(c, v) is the spatial-density correlation between
region c and vertex v ∈ τ , ∗.head is the first item of ∗,
(e.g., C.head = c1 and τ.head = v1) and ∗.tail indicates
the list obtained by removing ∗.head from ∗ (e.g., C.tail =
〈c2, c3, ..., ci〉 and τ.tail = 〈v2, v3, ..., vj〉). In Equation 22,
the value of C ′sd(c, v) is normalized to the range of [0, 1].

The lower bound of C ′sd(c, v) is estimated as follows. If the
center of region c is a query source, C ′sd(c, v).lb is derived by
merging Equation 21 into Equation 5.

C ′sd(c, v).lb =
∑
∀p∈c

p.g · e−(sd(p,c.m)+sd(c.m,v)) (23)

Otherwise, if c.m is not a query source, we substitute Equa-
tion 21 into Equation 17 and C ′sd(c, v).lb is derived by

C ′sd(c, v).lb =
∑
p∈c

p.g ·e−(sd(p
′,v)+sd(c.m,p′)+sd(p,c.m)), (24)

where c.m is attached to its closest query source p′. By
merging Equations 23 and 24 into Equation 22, the lower
bound of C ′sd(C, τ) is derived.

C ′sd(C, τ).lb = max


( 2

1+e−C
′
sd

(C.head,τ.head).lb
− 1)

+C ′sd(C.tail, τ)

C ′sd(C, τ.tail)

(25)

If all vertices in τ have been visited by the expansions from
all query sources, we get the network distances between each
c.m ∈ Ec and each vi ∈ τ . Hence, we can compute the value
of C ′sd(C, τ).lb. This type of trajectory is fully scanned. Other
trajectories are partially scanned (i.e., part of its vertices have
been scanned) or unscanned (i.e., no vertex has been scanned).
Among all fully scanned trajectories, the global lower bound
is defined by

LB ′ = max
τ∈Tf
{C ′sd(C, τ).lb}. (26)

For a region c, if its center c.m is a query source, the upper
bound of C ′sd(c, v) is estimated as follows.

C ′sd(c, v).ub =


∑
p∈c p.g · e−(sd(c.m,v)−sd(p,c.m)) if C1∑
p∈c p.g · e−(re−sd(p,c.m)) if C2

(27)
C1: τ is scanned by the expansion from c.m.
C2: τ is not scanned by the expansion from c.m.

If c.m is a query source, the value of C ′sd(c, v) is computed
as follows.

C ′sd(c, τ).ub =
∑
p∈c p.g · e−(sd(p

′,v)−sd(c.m,p′)−sd(p,c.m)) if C1∑
p∈c p.g · e−(re

′−sd(c.m,p′)−sd(p,c.m)) if C2

(28)
C1: τ is scanned by the expansion from p′.
C2: τ is not scanned by the expansion from p′.
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Here c.m is attached to its closest query source p′, and re′

is the expansion radius of p′. By merging Equations 27 and
28 into Equation 22, the upper bound of C ′sd(C, τ) is derived.

C ′sd(C, τ).ub = max


( 2

1+e−C
′
sd

(C.head,τ.head).ub
− 1)

+C ′sd(C.tail, τ)

C ′sd(C, τ.tail)
(29)

Among all fully scanned trajectories, the global upper bound
is defined by

UB ′ = min
τ∈Tf
{C ′sd(C, τ).ub}. (30)

By merging Equation 29 into Equation 20, the priority label
of query source p is defined by

p.l = |p.c|
∑

τ∈Tp\Ts(p)

eC
′
sd(C,τ).ub, (31)

where Tp is a set of partially scanned trajectories.
The TSR query processing for the query regions with

a sequence is conducted by merging Equations 21–31 into
Algorithms 1 and 2.

7 EXPERIMENTAL STUDY

We report on extensive experiments with real and synthetic
spatial data sets that offer insight into the efficiency and
scalability of the proposed algorithms.

7.1 Settings
We use graphs extracted from two spatial networks, namely
the Beijing Road Network (BRN) and the North America
Road Network (NRN)12, which contain 28,342 vertices and
27,690 edges, and 17,813 vertices and 179,179 edges. The
graphs are indexed by adjacency lists. For BRN, we use a real
trajectory data set of Beijing taxis and a real data set of points
of interest (spatial objects), which contain 800,000 trajectories
and 300,000 POIs. Raw POIs have longitude and latitude. They
are mapped to the spatial network and assigned to their nearest
vertices. For each vertex p in BRN, we record the number of
objects having it as their nearest vertex. Therefore, we are
not required to access individual spatial objects during TSR
query processing. We share the POI setting with a previous
study [18]. For NRN, larger synthetic data is used to study
scalability. NRN contains 4,000,000 trajectories. For each
vertex p′ in NRN, we derive the number of attached spatial
objects, and we store this number as one of its attributes. We
have 1,800,000 derived spatial objects. In BRN, the default
distance threshold ε (refer to Equation 2) is set to 10 km,
while in NRN, it is set to 200 km by default.

In the experiments, the graphs are stored in memory when
running Dijkstra’s algorithm [6], as the memory cost of BRN
and NRN is less than 20 MB. All algorithms are implemented
in Java and run on a Windows 8 platform with an Intel
Core i7-3520M Processor (2.90 GHz) and 8 GB memory. All
experimental results are averaged over 20 independent trails

12. http://www.cs.utah.edu/l̃ifeifei/SpatialDataset.htm

Table II: Parameter Settings
BRN NRN

Number of tra-
jectories |T |

500,000–800,000
/default 600,000

1,000,000–4,000,000
/default 1,000,000

Trajectory
length τ.l

10–50 vertices /default
20 vertices

50–200 vertices /default
100 vertices

Number of re-
gions |C|

2–10 /default 6 2–10 /default 6

Radius of region
c.r

2 km–10 km /default 6
km

50 km–250 km /default
150 km

ε 3 km–15 km /default 10
km

30 km–200 km /default
150 km

Table III: Pruning Effectiveness
USS BES BES-w/o-h

Pruning ratio (BRN) 0.32 0.76 0.70
Candidate ratio (BRN) 0.68 0.24 0.30
Pruning ratio (NRN) 0.37 0.69 0.63
Candidate ratio (NRN) 0.63 0.31 0.37

Table IV: Pruning Effectiveness for Sequential Scenarios
USS BES BES-w/o-h

Pruning ratio (BRN) 0.23 0.71 0.62
Candidature ratio (BRN) 0.77 0.29 0.38
Pruning ratio (NRN) 0.25 0.64 0.58
Candidature ratio (NRN) 0.75 0.36 0.42

with different inputs. We evaluate CPU time and the count of
visited trajectories. The count of visited trajectories is selected
as an evaluation metric since it captures the amount of data
accesses.

The parameter settings are presented in Table II. By de-
fault, the trajectory set size was set to 600,000 in BRN
and 1,000,000 in NRN, the trajectory length (the number of
vertices in a trajectory) was set to 20 in BRN and 100 in NRN,
and the number of query regions was set to 6 in both BRN and
NRN. The average radius of the query regions varies from 2
km to 10 km in BRN (default 6 km) and from 50 km to 250 km
in NRN (default 150 km). The best-expansion search algorithm
(Section 5) is denoted by BES, the uniform-speed search
(Section 4) denoted is by USS, and the best-expansion search
algorithm without heuristic scheduling strategies is denoted by
BES-w/o-h.

7.2 Pruning Effectiveness
First, we investigate the pruning effectiveness of the three
algorithms with default settings. The experimental results are
shown in Tables III (TSR query) and IV (TSR query for
sequential scenarios, Section 6), and the pruning ratio and
candidate ratio are defined as follows.

Candidate ratio =
|Tf |
|T |

Pruning ratio = 1− Candidate ratio

Here, Tf is the candidate set and T is the trajectory set
(cf. Section 4.3). By comparing the pruning and candidate
ratios of BES-w/o-h to those of USS, we see that the pruning
effectiveness is improved by approximately a factor of 2–3
with the support of the new upper and lower bounds based
on the query-source selection strategy (cf. Section 5.1), which
prune the search space and to avoid the traversal of overlap
areas. Then, we compare the pruning and candidate ratios
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of BES-w/o-h to those of BES and find that the pruning
effectiveness is improved by a factor of 1.2–1.3 with the
support of the heuristic scheduling strategy (cf. Section 5.3),
which enables TSR search to focus on trajectories more likely
to be the optimal choice.

7.3 Effect of the Number of Trajectories
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Fig. 5. Effect of the number of trajectories

Figure 5 presents the performance of the algorithms when
varying the number of trajectories |T |. Intuitively, a larger |T |
causes more trajectories to be processed and yields a larger
search space. As a result, both the CPU time and the count
of visited trajectories are expected to be higher for all three
algorithms. However, Figure 5 shows that the BES algorithm
is able to outperform the USS algorithm by almost a factor of
8 in NRN (for both CPU time and visited trajectories). The
upper and lower bounds (cf. Section 5.2) based on the query-
source selection strategy can improve the efficiency of USS
by a factor of 4–6, and the heuristic scheduling strategy can
further improve the efficiency by a factor of 2, in terms of
both CPU time and the count of visited vertices. It is worth
noting that the CPU time is not fully aligned with the count of
visited trajectories. To prune the search space, the algorithms
need more computational effort to maintain their bounds. In
some cases, the increased computation cost may offset the
benefits of the reduction in the count of visited trajectories.

7.4 Effect of Trajectory Length
Next, we vary the trajectory length τ.l. Longer trajectories
cause more sample points (vertices) to be processed. Conse-
quently, the CPU time and the count of visited vertices are
expected to increase for all three algorithms. Figure 6 shows
that the CPU time and the count of visited vertices of the
USS algorithm increase much faster than those of the BES
algorithm. This occurs because USS lacks effective query-
source selection and scheduling strategies. For example, with
the trajectory length τ.l = 200 in NRN, the BES algorithm

100

200

300

400

10 20 30 40 50

R
u

n
ti

m
e 

(m
s)

Trajectory Length

USS
BES

BES-w/o-h

(a) BRN

20K

40K

60K

80K

100K

10 20 30 40 50

C
o

u
n

t 
o

f 
V

is
it

ed
 T

ra
je

ct
o

ri
es

Trajectory Length

USS
BES

BES-w/o-h

(b) BRN

200

400

600

800

1000

50 100 150 200

R
u

n
ti

m
e 

(m
s)

Trajectory Length

USS
BES

BES-w/o-h

(c) NRN

50K

100K

150K

200K

250K

50 100 150 200

C
o

u
n

t 
o

f 
V

is
it

ed
 T

ra
je

ct
o

ri
es

Trajectory Length

USS
BES

BES-w/o-h

(d) NRN

Fig. 6. Effect of trajectory length

outperforms the USS algorithm by almost a factor of 4 (for
both CPU time and visited trajectories).

7.5 Effect of the Number of Regions
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Fig. 7. Effect of the number of regions

Figure 7 covers the effect of varying the number of query
regions |C|. More query regions cause more query sources
to be processed and have a larger search space. Thus, the
CPU time and the count of visited trajectories for all three
algorithms increase with |C|, and the increase of the USS
algorithm is much faster than those of the BES algorithms.
The CPU time and the count of visited trajectories required
by the USS algorithm are at least 4–6 times higher than those
needed by the BES algorithm. The heuristic search strategy
improves the efficiency by almost a factor of 2 (for both CPU
time and visited trajectories).
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7.6 Effect of the Region Radius
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Fig. 8. Effect of the region radius

Figure 8 shows the effect of varying region radius c.r on the
efficiency of the algorithms. A larger value of c.r means that
more spatial objects have to be processed and implies a larger
search space; thus, more CPU time and visited trajectories
are required. When c.r =10 km in BRN, BES outperforms
USS by almost an order of magnitude (for both CPU time
and visited trajectories).

7.7 Effect of ε
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Fig. 9. Effect of the ε

Figure 9 shows the effect of varying threshold ε on the
efficiency of the algorithms. A larger ε implies a larger search
space with more trajectories to be processed; thus, more
CPU time and trajectories are involved. The effect on query
efficiency is negligible when ε ≥ 10 km in BRN and ε ≥ 150
km in NRN.

7.8 Effect of Object Density
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Fig. 10. Effect of object density

We study the effect of object density on query performance.
In BRN, the number of spatial objects in each region varies
from 5,000 to 25,000, while in NRN, the number of spatial
objects in each region varies from 10,000 to 50,000. The
number of query regions and region radiuses are both with
default settings (see Table II). Intuitively, a higher object den-
sity results in higher computation cost and more trajectories
to be visited (Equation 3). As a result, both the CPU time
and the count of visited trajectories are expected to be higher
for all three algorithms. In Figure 10, we see that the BES
algorithm outperforms the USS algorithm by almost an order
of magnitude (for both CPU time and visited trajectories).

7.9 Effect of Region Overlap
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Fig. 11. Effect of region overlap
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Fig. 12. Performance for the sequential TSR query

We study the effect of region overlap on query performance.
The proportion of overlapping area is defined as follows.

Proportion of Overlapping Area =
Overlapping Area

Total Area
A higher proportion of overlapping area means that query
regions are closer to each other, which is equivalent to
reducing the number of query regions. Thus, the CPU time
and the count of visited trajectories are expected to be lower.
In Figure 11, when Proportion of Overlapping Area = 0.8,
the BES algorithm is able to process the query in 100 ms (for
both BRN and NRN). Moreover, the query-source selection
strategy (cf. Section 5.1) demonstrates its effectiveness as we
increase the proportion of overlapping area.

7.10 Performance of the Sequential TSR Query
We conducted experiments to study the performance of pro-
cessing the sequential TSR query (where query regions are

ordered, cf. Section 6). Compared to the original TSR query,
the sequential TSR query needs more computational efforts
to compute the upper and lower bounds, due to the more
complex distance measures. In addition, a query source may
not be matched with the closest vertex on a trajectory, which
consequently requires a scan of more trajectory vertices to
get the best match. Therefore, more query time and trajectory
accesses are incurred. However, the trend of Figure 12 is still
similar to that of the original TSR query in Figures 6–9. In
Figure 12, the BES algorithm can still outperform the USS
algorithm by a factor of 4–6 times in terms of both CPU time
and the count of visited trajectories.

8 CONCLUSION AND FUTURE DIRECTIONS

We propose and study a novel problem, namely trajectory
search by regions of interest (TSR query), that finds the
trajectory with the highest spatial-density correlation to a
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sequence of query regions. Compared to existing studies of
trajectory search by locations, we take the concept of query
region and the density of spatial objects into account. This type
of query is useful in many popular applications such as trip
planning and recommendation, and location based services in
general. To compute the TSR query efficiently, we develop
a best-expansion search algorithm that exploits upper and
lower bounds to prune the search space and adopts a query-
source selection strategy, as well as a heuristic search strategy
based on priority ranking to schedule multiple query sources.
The performance of the TSR query was investigated through
extensive experiments on both real and synthetic spatial data.

Three directions for future research are promising. First,
users may assign different significance for different query
regions, making it of interest to take the significance of query
regions into account. The upper and lower bounds, query-
source selection strategy, and the heuristic search strategy must
be reworked correspondingly. Second, it is of interest to take
temporal information into account and further extend the TSR
query into a spatiotemporal query. The resulting query aims
to find the trajectory with the highest spatial-temporal-density
correlation to the query regions. Third, it is of interest to study
how to effectively split and combine trajectories in order to
return better results.
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