
Searching with Mobile Agents in Networks with

Liars

Nicolas Hanusse1, Evangelos Kranakis2, and Danny Krizanc3

1 INRIA Rocquencourt, Carleton University, School of Computer Science, 1125
Colonel By Drive, Ottawa, ON K1S 5B6, Canada,

hanusse@scs.carleton.ca
2 Carleton University,

kranakis@scs.carleton.ca
3 Weysleyan University, Middletown, Connecticut 06459, US,

dkrizanc@caucus.cs.wesleyan.edu

Abstract. In this paper, we present algorithms to search for an item
s contained in a node of a network, without prior knowledge of its ex-
act location. Each node of the network has a database that will answer
queries of the form “how do I get to s?” by responding with the first edge
on a shortest path to s. It may happen that some nodes , called liars,
give bad advice. If the number of liars k is bounded, we show different
strategies to find the item depending on the topology of the network. In
particular we consider the complete graph, ring, torus, hypercube and
bounded degree trees.

1 Introduction

Mobile agents can perform very complex information gathering, like assembling
and digesting “related” topics of interest. Depending on their “behavior” mobile
agents can be classified as reactive (responding to changes in their environment)
or pro-active (seeking to fulfill certain goals). Moreover agents may choose to
remain stationary (filtering incoming information) or become mobile (searching
for specific information across the Internet and retrieving it) [16]. There are
numerous examples of such agents in use today, including the Internet search
engines, like Yahoo, Lycos, etc.

In the present paper we consider the problem of searching for an item in a
distributed network in the presence of “liars.” The objective is to design a mobile
agent that travels along the network links in order to locate the item. Although
the location of the item in the network is initially unknown, information about its
whereabouts can be obtained by querying the nodes of the network. The nodes
have databases providing the first edge on a shortest path to the item sought.
The agent queries the nodes; the queried nodes respond either by providing a
link adjacent to them that is on a shortest path to the node that holds the item
or if the desired item is at the node itself then the node answers by providing

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 583–590, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

584 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc

it to the agent. However certain nodes in the network may be liars, e.g., due
to out-of-date network information in their databases. The liars are unknown
to the mobile agent that must still find the item despite the fact that queries
to responses may be wrong. In this paper we give deterministic algorithms for
searching in a distributed network with a bounded number of liars that has the
topology of a complete network, ring, torus, hypercube, or trees under three
models of liars.

A variant of the above searching model, was introduced in [9], where the net-
work topologies considered were the ring and the torus and the nodes respond
to queries with a bounded probability of being incorrect. Additional investiga-
tions under the same model of “searching with uncertainty” were carried out
for fully interconnected networks in [10]. Models with faulty information in the
nodes have been considered before for the problem of routing (see [1, 3, 7, 8, 14]).
However, in this problem it is assumed that the identity of the node that contains
the information is known, and what is required is to reach this node following the
best possible route. Search problems in graphs, where the identity of the node
that contains the information sought is not known, have been considered before.
These include deterministic search games, where a fugitive that possesses some
properties hides in the nodes or edges of a graph [5, 12, 13]), and the problem
of exploring an unknown graph [2, 11, 15]. Our model is similar in spirit to the
model in [4] where the authors propose algorithms to search for a point on a line
or on a lattice drawn on the plane. While in the models they consider there is
limited if any knowledge of the location of the point, the nodes along the way
do not provide new location information at each step as in our case.

1.1 Preliminaries and Definitions

In order to present the problem more precisely, we must define the search model
in a given network. Since a mobile agent does not know if a network has liars,
we suppose it assumes the number of liars is bounded by k. This assumption
may affect the moves of the mobile agent. Thus, the complexity of our results
will depend on the actual distance d of the mobile agent to the destination as
well as the number of liars assumed.

The mobile agent is basically a software program running an algorithm that
requires a certain amount of memory, storing relevant information about its
current position in the network, e.g. in a binary tree the distance to the root,
in a ring the distance from the starting node, etc. We will see later that the
algorithm depends on the topology of the network and we will consider different
trade-offs between the amount of memory required by the mobile agent and the
number of steps, i.e the number of moves of the mobile agent.

A network of n nodes is represented as a connected undirected graph G =
(V,E) where V is the set of vertices or nodes and E the set of edges or links. Let
s denote the item the mobile agent is searching for and assume there is a unique
node in G containing s. A query Qu(s) returns either s if the node u contains

Searching with Mobile Agents in Networks with Liars 585

s or a subset of edges, incident to u, belonging to a shortest path leading to
the item s. If Qu(s) returns an edge that does not belong to a shortest path to
s, the node u is called a liar, otherwise a truthteller. The path p = u0u1 · · ·uα

is a sequence of nodes followed by the mobile agent until item s is found. The
number of edges followed by the path p is called the number of steps of the
mobile agent, which is denoted by α. If there are no liars we expect that the
mobile agent will follow an optimal path, i.e. if k = 0, it is obvious that α = d
where d is the distance between the starting node of the mobile agent and the
node containing the item. δ (resp. ∆) is the minimal (resp. maximal) degree of
a given network. By convention, we consider that the nodes can be labelled by
the set {1, 2, . . . , n}.

1.2 Models

We consider three models of responses to queries:

One advice per node with co-ordination (CO) Model: In this case, a
query returns a unique edge. We assume some preprocessing was done when
building the databases stored in each node u of V . Let v be the node containing
s and choose a fixed shortest path tree with destination v. For a given node u,
Qu(s) = e where e is the (unique) outgoing edge incident to u chosen in this
shortest path tree. If a node indicates an edge on another shortest path this
node is considered to be a liar. The mobile agent is assumed to have knowledge
as to how the shortest path trees were originally constructed. For example, we
assume they always report first a row and then a column in the case of the torus.
The truthtellers are co-ordinated in that the set of edges they report leads to
the construction of a particular shortest path spanning tree. An adversary may
decide which nodes are liars but has no influence over which edges are to be
reported by the truthtellers.

One advice per node without co-ordination (NCO) Model: In this model
an adversary does not only decide which nodes are liars but also which correct
edge the truthtellers will report whenever there is a choice of shortest path edges.

One advice per edge (ECO) Model: In this model a truthteller returns
Qu(s) equal to the set of all incident edges to u belonging to a shortest path
tree. A liar may return any (presumably non-empty) subset of the edges incident
to u. Again the adversary has no input as to what is returned by a truthteller.

1.3 Results

In this paper, we consider searching for an item under the above models and for
different topologies: complete graph, ring, torus, hypercube, trees. In each case,
we assume that the mobile agent knows the topology of the network and suspects
a bounded number k of liars. We assume that the responses of the nodes are
set before the start of the algorithm according to the model considered and that

586 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc

they do not change throughout the running of the algorithm. The cost measures
we consider for a given algorithm is the number of steps (i.e, edges traversed)
and the amount of memory required by the mobile agent. Proofs are left out and
only sketches of algorithms are presented due to space limitations.

2 Complete Graphs

In this section, we present two algorithms. The first one prioritizes the number
of steps and the second one the amount of memory. We also establish two lower
bounds on the number of steps for the complete graph and for any graph. Algo-
rithm SearchComplete(s) works as follow: starting from a node u , we follow
its advice to node u′ unless we have already visited u′ in which case we select
any node not previously visited and go there.

Theorem 1. In any complete graph of n vertices with k liars, a mobile agent
can find an item in at most k + 1 steps with k logn bits of memory .

Theorem 2. Let D(u, p) be the set of nodes at a distance p from u and Bp be the
set of nodes at a distance at most p. For any graph so that |D(u, p)| > 1, |Bp| 6 k
and |Bp+1| > k then a mobile agent starting from u may require at least d + k
steps to find an item, where d is the distance between the starting node and s.

We may be interested in a trade-off between the memory and the number of
steps required by a mobile agent to find an item. Algorithm SearchComplete2
illustrates this idea: follow advice of nodes labeled 1, 2, . . . , k + 1 until you find
the item, i.e. if node labeled i gives a bad advice and sends you to a node u then
go to node labeled i+ 1.

Theorem 3. In any complete graph of n vertices and k liars, a mobile agent
can find an item in at most 2k + 3 steps with log k bits of memory.

3 Ring and Torus

For the ring, each vertex is of degree two and we may consider a global orien-
tation known by each processor. Each node has a left and a right edge labelled
respectively Left and Right , i.e. the query Qu(s) returns Left or Right. Algo-
rithm SearchRing(s, k) works as follow: (1) choose a direction to follow, (2)
move in this direction until either s is found or k + 1 query responses in the
opposite direction are given and then move in the opposite direction.

Theorem 4. In a ring of n vertices with k liars, a mobile agent can find an
item in at most d+ 4k + 2 steps with O(log k) bits of memory.

Searching with Mobile Agents in Networks with Liars 587

Theorem 5. There exists a distribution of k liars in the ring of n vertices for
which the number of steps is at least d+ 2k.

We present three algorithms to find the item in a torus of n vertices. As for
the ring, we suppose there exists a global orientation of the edges known by each
node and its four incident edges are labelled L, R, U, D for the left, right, up and
down direction. We also use the notation ←,→, ↑, ↓ for the edges. u represents
the current location.If dir is a direction, d̄ir indicates the opposite direction:
←= →̄ and ↑= ↓̄. The advice of a block or of a rectangle consists in the set of
directions {a1, ..., at} so that each ai has been given at least k + 1 times.

CO Model: For this model, we assume truthtellers always report first a row
and then a column. The algorithm SearchRingII(s,m, l) travels in a set, called
block, of l consecutive nodes along the direction m and returns the number of
query responses for each direction ←,→, ↑, ↓. The advice of a block B corre-
sponds to the direction indicated by the majority of B.

The sketch of the algorithm SearchTorus(s) is the following: (1) follow
the advice of a block of size 2k + 1 until two blocks B, B′ are found with the
opposite advice, (2) locate the column of s by a walk 1 in a square containing
B, B′,(3) find s in the column c using a search algorithm in a ring.

Theorem 6. In any torus of n vertices and k liars, a mobile agent of O(k log k)
bits of memory can find an item in at most d+O(k) steps.

NCO and ECO Models: In the NCO Model, the walk of SearchTorus does
not work. Indeed, a row of truthtellers may indicate different columns for the
item. We propose a new strategy to choose a starting direction in Search-
TorusII, we make a search within a square of area O(k) instead of a segment
of O(k) nodes along a given direction (in SearchTorusIII, we will use the
previous method). We propose a variant of an algorithm which can be found in
[9] to choose a starting direction in a square:

SearchSquare(s, u, l): (a) For each direction dir, adir = 0, let m = {}; (b)
mobile agent searches for the desired item s by testing all nodes in a square B
of area l centered at node u; for each node of advice dir, adir = adir + 1; (c)
return {adir};

The idea of SearchTorusII is the following: (1) we first locate s in a band of
columns (or rows) c1, . . . , cw of width w = O(

√
k) finding two adjacent squares

S, S′ of area 4k + 1 with different horizontal or vertical advice, (2) we find
the vertical (horizontal) direction to follow by a walk in a rectangle R of size
O(
√
k) ∗ (2k + 1) containing S, S′ (3) we search for s in in the direction given

by R in consecutive rectangles of size O(
√
k) in the direction given by R.

1 this walk not described here finds c in O(k) steps

588 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc

Roughly speaking, since each iteration of Step 32 takes O(k) steps and moves
the mobile agent Ω(

√
k) closer to the item, we have the following result:

Theorem 7. In any torus of n vertices and k liars, a mobile agent can find an
item in at most O(d

√
k) steps with O(log k) bits of memory.

If d = Ω(
√
k log k), another strategy illustrated by SearchTorusIII may

be interesting: (1) we first locate s in a band of columns (or rows) c1, . . . , cw
finding two consecutive blocks B, B′ of size 4k+1 with different advice3, (2) The
next steps consist of applying a variant of the dichotomy principle in rectangles
of size O(k)×O(k) to find the column of s.

Theorem 8. In any torus of n vertices and k liars, a mobile agent of O(log k)
bits of memory can find an item in at most O(d + k log k) steps.

In the ECO Model, the mobile agent may use the same algorithms as for CO
Models. Indeed, the mobile agent can do the co-ordination itself choosing one
edge per node. Since we have a lower bound of d+Ω(k) steps for any model, the
upper bounds in ECO Model does not change a lot if we do not pay particular
attention to the constants.

4 Hypercube

For the hypercube, we show that the ECO model has an advantage over the
CO model. Let Cn be an hypercube of 2n vertices. Each node u is coded by
(xn, . . . , x1) with xi ∈ {0, 1}. As for the torus, we assume there exists a global
orientation of edges known by each node such that two nodes are adjacent along
the direction i, labelled →i, if they agree in all but the position i. For n > 2,
Cn is hamiltonian (see [6]) and it follows that any subgraph of Cn isomorphic
to Cn′ with n′ < n is hamiltonian. Moreover, there exists in Cn an hamiltonian
circuit.

In this model, the co-ordination works in the following way : each node always
reports first the direction 1, then direction 2, . . . , direction n. In other words,
if the advice of a node u = (xn, . . . , x1) is →i, it indicates that the destination
v should have at least i− 1 identical coordinates xi−1 . . . x1.

Let us consider the starting node u=(xn,. . ., x1) and the node v=(yn,. . ., y1)
is the node containing s. The idea of the algorithm to find the coordinates of
v is the following : let i = 1; (1) we choose a subgraph Q′ = C�2k+1� ∈ Cn

such that all nodes of Q′ have same coordinates xi, yi−1, . . . , y1 (2) we follow an
hamiltonian path in Q′ and compute, for the first 2k + 1 nodes, the number m
of responses→i of Q′; (3) if m > k then yi = 1−xi else yi = xi; (4) repeat Step
1 until the item is found.
2 it may happen that we found s in Step 2 but the walk in the rectangle R is a spiral
to obtain the same result

3 This can be done with O(k) extra steps

Searching with Mobile Agents in Networks with Liars 589

Theorem 9. In an hypercube Cn of 2n vertices with k liars, a mobile agent of
O(n+ log k) bits of memory can find an item in at most d(2k + 1) steps.

In the ECO Model, a node u gives a response Qu = (an−1, . . . , a0). The
position of s is given using the majority among 2k + 1. Immediately, an easy
upper bound of d + 4k + 2 steps can be obtained by following 2k + 1 nodes in
a hamiltonian path in Cn. This result can be improved if we consider only a
hamiltonian path in a subgraph of Cn isomorphic to C�log (2k+1)�.

Theorem 10. In a hypercube Cn of 2n vertices with k liars, a mobile agent can
find an item in at most d+ 2k + 1 + �log (2k + 1)� steps with O(n log k) bits of
memory.

5 Trees

We pay particular attention on the CO Model for a tree. Indeed, the shortest
path is unique and so, we do not have a question of co-ordination of the nodes.
We present one algorithm for bounded degree trees. In this case, the ECO model
would lead to the same result as for the CO model.

We suppose that we are starting from a node u1, considered as a root of
the tree. Node u1 gives an orientation of the edges. Each node, except the root,
has ∆− 1 incident edges, corresponding to the directions upward, downward 1,
downward 2, etc. and labelled ↑, ↓1, . . . , ↓∆−1. By convention, the edge pointing
upward is the edge leading to the root. A node u is a suspect if its response is
upward and if its parent’s response is downward. SearchTree(s, k) works as
follow: (1) follow the downward advice until either a suspect ul or s is found (2)
traverse the all subtree rooted in ul of depth 2k and choose to follow the k first
edges belonging to the path to leaves with the maximum of downward responses,
(3) iterate first step. Analyzing SearchTree, we obtain :

Theorem 11. In a tree of bounded degree ∆ of n vertices and k liars, a mobile
agent can find an item in at most d+O((∆− 1)2k+1) steps with O(k log∆) bits
of memory.

It is the first example where the number of steps is exponential in k. However,
the next result indicates that the gap between the upper bound and lower bound
is not so large:

Theorem 12. For k < logδ−1 n, there exists a distribution of k liars in the tree
of bounded degree δ with n vertices so that the number of steps required to find
s is at least d+Ω((δ − 1)k).

590 Nicolas Hanusse, Evangelos Kranakis, and Danny Krizanc

References

[1] Y. Afek, E. Gafni, and M. Ricklin, Upper and lower bounds for routing
schemes in dynamic networks, in: Proc. 30th Symposium on Foundations
of Computer Science, (1989), 370–375.

[2] S. Albers and M. Henzinger, Exploring unknown environments, in Proc.
29th Symposium on Theory of Computing, (1999), 416–425.

[3] B. Awerbuch, B. Patt-Shamir, and G. Varghese, Self-stabilizing end-to-end
communication, Journal of High Speed Networks 5 (1996), 365–381.

[4] R.A. Baeza-Yates, J.C. Culberson and G.J.E Rawlins, Searching in the
plane, Information and Computation 106(2) (1993), 234–252.

[5] D. Bienstock and P. Seymour, Monotonicity in graph searching, Journal of
Algorithms 12 (1991), 239–245.

[6] P.J. Cameron. Topics, Techniques, Algorithms. Cambridge University
Press, 1994.

[7] R. Cole, B. Maggs and R. Sitaraman, Routing on butterfly networks with
random faults, in: Proc. 36th Symposium on Foundations of Computer Sci-
ence, (1995), 558–570.

[8] S. Dolev, E. Kranakis, D. Krizanc and D. Peleg, Bubbles: Adaptive routing
scheme for high-speed networks, SIAM Journal on Computing, to appear.

[9] E. Kranakis and D Krizanc, Searching with uncertainty, in: Proc. 6th Inter-
national Colloquium on Structural Information and Communication Com-
plexity (SIROCCO), (1999), C. Gavoille, J.-C, Bermond, and A. Raspaud,
eds., pp, 194-203, Carleton Scientific, 1999.

[10] L.M. Kirousis, E. Kranakis, D. Krizanc, and Y.C. Stamatiou. Locating
information with uncertainty in fully interconnected networks. unpublished
paper, (1999).

[11] E. Kushilevitz and Y. Mansour, Computation in noisy radio networks, in
Proc. 9th Symposium on Discrete Algorithms, 1998, 236–243.

[12] L. Kirousis and C. Papadimitriou, Interval graphs and searching, Discrete
Mathematics 55 (1985), 181–184.

[13] N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou, The
complexity of searching a graph, Journal of the ACM 35 (1988), 18–44.

[14] T. Leighton and B. Maggs, Expanders might be practical, in: 30th Proc.
Symposium on Foundations of Computer Science, (1989), 384–389.

[15] P. Panaite and A. Pelc, Exploring unknown undirected graphs, in: Proc.
9th Symposium on Discrete Algorithms, (1998), 316–322.

[16] Mobile Agents, W. R. Cockayne and M. Zyda, editors, Manning Publica-
tions Co., Greenwitch, Connecticut, 1997.
http://www.manning.com/Cockayne/Contents.html

	Introduction
	Preliminaries and Definitions
	Models
	Results

	Complete Graphs
	Ring and Torus
	Hypercube
	Trees

