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Abstract
In problem domains where an informative heuristic evalua-
tion function is not known or not easily computed, abstrac-
tion can be used to derive admissible heuristic values. Op-
timal path lengths in the abstracted problem are consistent
heuristic estimates for the original problem. Pattern databases
are the traditional method of creating such heuristics, but
they exhaustively compute costs for all abstract states and
are thus usually appropriate only when all instances share
the same single goal state. Hierarchical heuristic search al-
gorithms address these shortcomings by searching for paths
in the abstract space on an as-needed basis. However, exist-
ing hierarchical algorithms search less efficiently than pattern
database constructors: abstract nodes may be expanded many
times during the course of a base-level search. We present a
novel hierarchical heuristic search algorithm, called Switch-
back, that uses an alternating direction of search to avoid ab-
stract node re-expansions. This algorithm is simple to im-
plement and demonstrates superior performance to existing
hierarchical heuristic search algorithms on several standard
benchmarks.

Introduction
It is easy to find search problems for which no easily com-
putable, informative heuristic is known. For example, the
classic Manhattan distance heuristic for the sliding tile puz-
zle becomes significantly less effective if one merely spec-
ifies that a single tile in the puzzle cannot move. While
trivial, this example captures the fact that the elegant com-
binatorial structure underlying real-world problems is often
obscured by annoying application-specific constraints.

For such problems, informative heuristics can often be de-
rived by solving an abstraction of the problem optimally and
then using the solution costs in the abstraction as heuris-
tic estimates for the original problem. An abstraction of
a search problem is a simplification of that problem such
that (1) the minimum the cost between any two nodes in the
abstraction is no greater than the minimum cost between the
corresponding nodes in the original problem, and (2) all goal
states in the original problem are goal states in the abstracted
problem (Prieditis 1993).

The traditional way of utilizing abstraction in heuristic
search is to construct a pattern database (Culberson and

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Schaeffer 1998). A pattern database is a look-up table that
maps abstract problem states to admissible heuristic cost-to-
go estimates for the original problem states. These estimates
can then be used to guide a heuristic search algorithm such
as A* (Hart, Nilsson, and Raphael 1968). While this tech-
nique can provide powerful heuristic values for many do-
mains, pattern databases have significant drawbacks. Pattern
databases are typically generated by performing an exhaus-
tive uniform-cost search in the abstract space in the reverse
direction, starting from the goal state. This preprocessing
not only limits the database to a single goal state (or an eas-
ily enumerable number of goal states), but it also may take
hours to compute for a sufficiently fine-grained abstraction.
Another drawback to pattern databases is that they can con-
sume large amounts of memory, which will no longer be
available for storing search nodes. Typically, only a tiny
fraction of the total pattern database is consulted during a
search, while the remainder merely contributes to memory
overhead (Holte, Grajkowski, and Tanner 2005).

Hierarchical heuristic search is an alternative to pat-
tern databases that, in effect, computes the look-up table
lazily (Holte et al. 1996). That is, when a hierarchical
heuristic search computes the heuristic estimate between a
new node and the goal node, the nodes are abstracted and
a heuristic search is executed at the abstract level. The cost
of the optimal solution in the abstract space is then used as
the heuristic estimate at the lower level. This abstract-and-
search technique can be applied recursively until some max-
imum level of abstraction is reached, where any search space
is so small that an uninformed search algorithm can be used.
Because heuristic values are computed only as needed, hi-
erarchical heuristic search can solve many instances in the
time it takes to construct an entire high-performance pat-
tern database. Therefore, hierarchical heuristic search is
more appropriate than pattern databases when only a few
instances must be solved or if the goal changes between in-
stances (Holte, Grajkowski, and Tanner 2005).

A naive implementation of hierarchical heuristic search
is hopelessly inefficient, as each required heuristic estimate
computation executes a search at the next level of abstrac-
tion. Furthermore, because many searches at any abstract
level may be conducted, nodes at an abstract level may be
expanded many times during the course of the base-level
search. In order to make hierarchical heuristic search practi-



cal, several caching techniques have been devised (Holte et
al. 1996; Holte, Grajkowski, and Tanner 2005). However,
previously proposed caching techniques can be difficult to
implement efficiently and do not eliminate the problem of
abstract node re-expansions.

In this paper, we introduce a new hierarchical heuristic
search algorithm called Switchback that expands nodes at
most once. Switchback searches in alternating directions
at each level of the abstraction hierarchy using the A* al-
gorithm. This new algorithm is complete and admissible,
and is both simpler to implement and has less overhead than
previous approaches. It is applicable to domains in which
the predecessors of a node can be easily computed and in
which useful (i.e., informative and relatively easy to com-
pute) abstractions can be defined. We empirically evaluate
the effectiveness of this algorithm on several benchmark do-
mains, finding that it consistently expands fewer nodes than
previous techniques and expands nodes at a faster rate, lead-
ing to an overall speed-up of up to a factor of four compared
to existing hierarchical search algorithms.

Previous Work
Hierarchical A* In Hierarchical A* (HA*), a forward
search algorithm based on A* is used at each level of the ab-
straction hierarchy (Holte et al. 1996). It uses three caching
schemes to improve performance, all of which depend on
the fact that the goal node at each abstract level remains the
same for any single base-level search.

First, the heuristic estimate function h(n) checks a cache
to see if the heuristic value for n is already known; if not,
a search is executed at the next level of abstraction, and the
cost of the solution found is stored in the cache and returned.
If the search is at the highest level of abstraction the heuris-
tic is computed using the function ε(n), which evaluates to
zero if n is the goal, and the cost of the cheapest operator
applicable to n otherwise. The second caching technique
is called optimal path caching, where the goal node is fast-
tracked onto the open list if an optimal path is known for the
node whose heuristic is being computed.

The third caching technique is P-g caching. Let P be
the cost of an optimal path to the goal. Then for any n,
P ≤ g(n) + h∗(n). This can be rearranged to derive the
admissible heuristic P − g(n). Using P − g(n), the cached
value of each node that was expanded during the search can
then possibly be increased.1 (Note that for nodes along an
optimal path to the goal, P − g(n) = h∗(n).) Until the
true cost-to-goal h∗(n) is known, nmay be expanded during
multiple searches at its abstraction level.

Hierarchical IDA* Hierarchical IDA* (HIDA*) is a vari-
ation of HA* that uses iterative deepening A* (Korf 1985) at
each level (Holte, Grajkowski, and Tanner 2005). Like HA*,
HIDA* also uses optimal path caching and P-g caching.
HIDA* also includes full duplicate detection, which only

1Merely backing up the minimum f value of a node’s children
leads to incorrect results in undirected state spaces because the start
state changes.

adds a constant additional memory overhead beyond the
other caching techniques.

Holte, Grajkowski, and Tanner (2005) demonstrated that
HIDA* can solve dozens of instances in the amount of
time required to construct a single high-performance pattern
database. When only a few instances need to be solved or if
the goal state may change between instances, it is more ef-
fective to use hierarchical heuristic search. However, pattern
databases have efficiency advantages over HA* and HIDA*,
because they can be constructed using retrograde analysis,
which expands each node at most once. HA* and HIDA*
may expand nodes multiple times, due to the occurrence of
many forward searches at abstract levels of the hierarchy.

Hierarchical Cooperative A* Hierarchical Cooperative
A* (HCA*) is a two-level hierarchical heuristic search
algorithm for multi-agent grid path planning in dynamic
worlds (Silver 2005). For its abstraction, HCA* allows
agents to pass through each other and assumes they take up
no space.

At its abstract level, HCA* uses Reverse Resumable A*
(RRA*), a variant of A* that searches backward from the
goal node. RRA* is initialized by inserting the abstract goal
node into its open list. When a heuristic value for a node n
at the base level is requested, RRA*’s closed set is checked
for the abstraction of n. If found, its g value is returned.
Otherwise, RRA* resumes its search, expanding nodes in f
order until the abstraction of n is expanded.

Because a consistent heuristic causes A* to expand nodes
in cheapest-path-first order (Nilsson 1980), the first time a
node is expanded by RRA*, the node’s optimal cost to the
goal is known. RRA*’s strategy of checking the closed
list will still result in optimal solutions to the base-level
search. HCA* uses the Manhattan distance heuristic for its
RRA* search, which is admissible and consistent for two-
dimensional grid path planning.

Instance-Specific Pattern Databases Felner and
Adler (2005) describe instance-dependent pattern databases.
Unlike a standard PDB, an instance-dependent pattern
database is generated specifically for a given problem
instance using only a subset of the abstract states that will
be required for an A* search. To accomplish this, RRA*
is used, pausing when the start node is expanded to allow
search at the ground-level to continue. If the forward search
ever reaches a state that has no entry in the PDB, then the
RRA* search is resumed until the desired abstract state is
expanded or a memory limit is reached.

Similar work from Zhou and Hansen (2004) deals with
instance-specific pattern databases, but without the use of
RRA*, instead using focused heuristics (i.e. abstraction
functions) that are computed only for states that are ab-
stractions of states that could be reached in A* in the orig-
inal problem. By using a hierarchy of focused heuristics,
Zhou and Hansen (2004) demonstrated that multiple se-
quence alignment problems can be solved up to 100 times
faster than with the traditional pairwise heuristic.
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Figure 1: An example of the operation of the Switchback
algorithm in a 3-level abstraction hierarchy.

The Switchback Algorithm
Switchback is a new hierarchical heuristic search algorithm
that addresses the node re-expansion shortcomings of HA*
and HIDA*. It does this by alternating forward and back-
ward searches from one level to the next, which is analo-
gous to switchbacks on a mountain path. Figure 1 illustrates
a simple example of a three-level abstraction hierarchy—the
base level and two abstract levels. The task is to find an
optimal path from node S to node G. At the initialization
phase, node S is inserted into the open list at the base level;
node G′, the abstraction of the base-level goal node, is in-
serted into the open list at level 1; and S′′, the second-level
abstraction of the base-level start node, is inserted into the
open list at level 2.2

Switchback uses A* at each level of the abstraction hier-
archy. Suppose the search at the base level is progressing,
but a path to the goal has not yet been found. (The gray
ovals represent the closed list at each level.) To generate
node Q, we need to compute its heuristic estimate, h(Q,G).
To do this, we abstract the node, giving Q′. We then look at
the next abstraction level in the hierarchy—level one—and
continue the search there until Q′ is found in the level one
closed list. Note that the search at level one proceeds in the
opposite direction from the base level, from G′ towards S′.
Once Q′ is expanded at level one, its g value, g(G′, Q′), is
used as the heuristic estimate for Q at the base level. That
is, h(Q,G) = g(G′, Q′).

During the search at abstraction level one, suppose the
search encounters a node R′ for which it needs to compute
the heuristic estimate, h(R′, S′). To compute this, the node
R′ is abstracted, yielding R′′, and another search is invoked
at the next level in the hierarchy from S′′ to G′′. When R′′
makes it into the closed list of the search at level two, its g
value is used as the heuristic estimate at level one. That is,
h(R′, S′) = g(S′′, R′′). In this example, abstraction level
two is the highest level of abstraction, and so there we use

2In the case that the goal at a level is an easily enumerable set
of nodes rather than a single node, the abstractions of all the goal
nodes would be inserted into the open list of the next higher level.

SWITCHBACK()
01. open ←array of length heightφ of empty open lists
02. closed ←array of length heightφ of empty closed lists
03. for i←0 up to heightφ − 1 do
04. if i is even then
05. g(sstart)← 0; h(sstart)← 0
06. insert φ(i, sstart) into openi
07. else g(sgoal)← 0; h(sgoal)← 0
08. insert φ(i, sgoal) into openi
09. result ←RESUME(0, open , closed , sgoal )
10. if result 6= NULL then return EXTRACT-PATH(result)
11. return NULL

RESUME(i, open , closed , s)
12. if s is in closed i then return s
13. while openi is not empty do
14. n←remove node from openi with lowest f
15. if i is even then children ←succs(n)
16. else children ←preds(n)
17. for each c in children do
18. if c is in closed i then
19. if g(c) < g(n) + cost(n, c) then continue
20. else g(c)←g(n) + cost(n, c)
21. if c is not in openi then insert c onto openi
22. continue
23. h(c)←HEURISTIC(i, open , closed , c)
24. g(c)←g(n) + cost(n, c)
25. insert c into openi and closed i
26. if n = s then return n
27. return NULL

HEURISTIC(i, open , closed , s)
28. if i = heightφ − 1 then return ε(s)
29. n←lookup φ(i+ 1, s) in closed i+1

30. if n 6= NULL then return g(n)
31. r←RESUME(i+ 1, open ,closed , φ(i+ 1, s))
32. if r = NULL then return infinity else return g(r)

Figure 2: Pseudo-code for the Switchback algorithm.

the epsilon heuristic (i.e. ε(n) = 0 if n is a goal, and the cost
of the cheapest operator applicable to n otherwise).

The benefit of Switchback’s alternating direction of
search is that every single expansion at an abstract level
will contain the optimal path length from the expanded node
back to the abstraction of the goal node of the level below. If
this value is ever required it can be simply retrieved by a ta-
ble lookup rather than requiring further search in the abstract
space.

In Detail
Pseudocode for Switchback is given in Figure 2. In this al-
gorithm, φ is an abstraction function that takes an integer
i ∈ 0..heightφ − 1 and a search state s, and returns s ab-
stracted to the level i. (Note that φ(0, s) = s.) As the
algorithm executes, it maintains a set of heightφ open and
closed lists, one for each level of the hierarchy. Initially,



the closed lists are all empty, and the open lists each contain
a single node, chosen to coincide with the alternating for-
ward/backward direction of the search (lines 1–8). At level
0 (the base level), Switchback performs a forward A* search
from the start node s to the goal node g.

The RESUME procedure, when searching for a node s,
first checks its closed list for s. If s appears in the closed
list, it is returned without searching further (line 12). Other-
wise, the search is resumed until s is expanded (lines 13–27).
In this latter case, the level at which the search is currently
executing is used to determine whether the successors or the
predecessors of n are generated, again, to coincide with the
alternating forward/backward direction of the search. Be-
cause of the alternating search direction, Switchback is only
appropriate for domains where both the predecessors and the
successors of a node can be easily computed. As we will dis-
cuss later, Switchback needs to expand a node at most once.
Note, however, that we check for duplicates at node gener-
ation time, so it may be necessary to update the best known
path to a node on open (lines 19–22).

The HEURISTIC procedure implements the heuristic es-
timate used during the search. If the search is occurring at
the highest level of the abstraction hierarchy, the ε heuristic
is used (line 28). If the search is occurring at a level other
than the highest, the closed list for the next level is checked
for the next abstraction of the given node. If it is found in
the closed list, its g value is used for the heuristic estimate
(line 30). (In other words, this is a cache hit.) Otherwise, the
search is continued at the next higher level, and the result of
that search is used as the heuristic estimate (lines 31–32).

It is important to note that goal testing (line 26) is done in
RESUME only after a node has been expanded (lines 15–22).
This is necessary to ensure completeness of the algorithm.
It is necessary to expand a node before testing whether it
is the goal node because it is possible that further search
at an abstract level may be required after the goal of any
individual RESUME invocation has been expanded. If goal
testing were done before expansion, then when expanding a
node, it could be closed before its successors or predecessors
(depending on the direction of the search) are generated, and
hence, those nodes might be lost.

Optimality and Efficiency
Here we show how the alternating direction of search at each
level of the Switchback algorithm allows the g value of a
node (i.e., the cost from the root of the current search to
the node) at any level to be used as an admissible heuristic
estimate at the level below.

First, we show in Lemma 1 (modified from Holte et
al. (1996)) that homomorphic abstractions can be used to
derive consistent heuristics.

Lemma 1 If distances between nodes in a ground space
are no smaller than distances between corresponding nodes
in an abstract space (i.e., given an abstraction), a heuris-
tic estimate derived by optimal search in the abstract space
will be a consistent and admissible heuristic estimate in the
ground space.

Proof: Consistency requires h(a)− h(b) ≤ c∗(a, b), where

c∗(a, b) is the cheapest path from a to b. If φ(x) = x′,
this can be rewritten as c∗(a′, g′) − c∗(b′, g′) ≤ c∗(a, b) or
equivalently as c∗(a′, g′) ≤ c∗(a, b) + c∗(b′, g′). To show
this, note that c∗(a′, g′) ≤ c∗(a′, b′) + c∗(b′, g′) because
they are shortest paths. Because the abstraction does not in-
flate distance, c∗(a′, b′) ≤ c∗(a, b) and we have c∗(a′, g′) ≤
c∗(a, b) + c∗(b′, g′) as desired. �

Theorem 1 The heuristic used by Switchback is consistent
and admissible at every level of the abstraction hierarchy.

Proof: The proof is by induction on the level l.
Base case: The search at the top level, l = heightφ − 1,

uses the consistent and admissible epsilon heuristic.
Inductive case: Make the inductive hypothesis that the

heuristic used at level l+1 is both consistent and admissible.
Because A* is used at each level, and because A* using a
consistent and admissible heuristic computes optimal g val-
ues for nodes when they are first expanded (Nilsson 1980),
paths found between the start node and any expanded node
at level l + 1 are optimal.

At level l, to compute the heuristic estimate h(n, t), the
value g(φ(l + 1, t), φ(l + 1, n)) is used. Because the search
at level l + 1 occurs in the opposite direction of the search
at level l, and because g values at level l + 1 are optimal,
we can apply Lemma 1, concluding that the heuristic used
at level l is both consistent and admissible.

By induction, a consistent and admissible heuristic is used
by Switchback at every level of the abstraction hierarchy. �

Corollary 1 Assuming that a solution exists and that all cy-
cles in the search graph have non-negative cost, Switchback
terminates with an optimal solution at every level of the ab-
straction hierarchy.

Proof: This follows from the fact that Switchback uses A*
with an admissible heuristic at each level, using the proof of
A*’s optimality (Nilsson 1980). �

Because the heuristic used in the A* search at each level
is consistent, a node at any level will be expanded at most
once for any single base-level search. The optimal path and
P-g caching techniques required for reasonable performance
of both HA* (Holte et al. 1996) and HIDA* (Holte, Gra-
jkowski, and Tanner 2005) are unnecessary for an efficient
Switchback implementation.

Corollary 2 At any level of the abstraction hierarchy,
Switchback expands a node at most once.

Proof: Because the heuristic is consistent and admissible,
the A* search at every level will first expand a node through
an optimal path (Nilsson 1980), and therefore it will never
reopen a node that was previously expanded. �

Experimental Evaluation
To gain a more concrete sense of the behavior of the Switch-
back algorithm, we implemented Switchback along with
HA*, HIDA*, and A* and tested them on four benchmark
domains: the Macro 15-Puzzle, the Glued 15-Puzzle, the
14-Pancake Puzzle, and the traditional 15-Puzzle. These
are standard test domains or are variants of standard ones,



and have varying characteristics: the 15-Puzzle has deep so-
lutions with low branching factor, the Pancake Puzzle has
shallow solutions with high branching factor, and the Glued
15-Puzzle has asymmetries.

In each domain, the same abstraction hierarchy—derived
using modern homomorphic abstraction techniques—was
used by all three hierarchical algorithms. For the sliding tile
puzzle variants, we used the 9-level instance-specific cus-
tom abstraction hierarchy proposed by Holte, Grajkowski,
and Tanner (2005): the tiles are sorted in increasing order of
how close to their goal positions they are, as measured by
Manhattan distance. At the first abstraction level, the first 7
such tiles have their identities obscured; for the next 7 levels,
an additional tile is obscured. This attempts to preserve the
most relevant information when abstracting the problem.

All experiments were run a dual quad-core Intel Xeon
X5550 machine with 48 GB of memory, using no time limit
and a 47 GB memory limit. All our code was implemented
in single-threaded C++, and built with optimization using
the GNU toolchain.

The results from these experiments are shown in Table 1.
The column labeled “Solved” shows the number of instances
(out of 100) that were solved. The statistics in the remain-
ing columns were all computed over instances that were
solved by every algorithm in a major row. We performed
a Wilcoxon signed-rank test to determine significance; en-
tries in the table that are in bold represent values whose
means were not significantly different (p ≥ 0.05) from the
best value in the column. The next seven columns show the
mean, maximum and median CPU time in seconds, and the
mean, maximum and median number of nodes generated,
followed by the number of nodes generated per second, all
in millions.

The column labeled “Stored (M)” shows the mean peak
number of nodes held in memory, in millions. This column
is indicative of the total memory usage of the algorithm, as
all four algorithms tested cache a copy of every unique node
generated during the search.

All three of the hierarchical algorithms potentially per-
form search at the next level when computing the heuristic
for a node. If search is avoided by using a cached value,
we record it as a cache hit. The final two columns report
cache hit information for the hierarchical algorithms, at the
base level, and averaged over the entire abstraction hierar-
chy. The cache hit ratio is an indicator of how many times hi-
erarchical search was required: all other things being equal,
a higher cache hit ratio is better. Table 1 shows that Switch-
back had a substantially higher cache hit ratio than the other
hierarchical heuristic search algorithms.

Macro 15-Puzzle
The macro sliding tile puzzle is like the traditional sliding
tile puzzle except that multiple tiles in the row or column
where the blank is located may be moved in one step. We
used the standard 100 solvable instances due to Korf (1985).

The Manhattan distance heuristic is inadmissible in the
Macro 15-Puzzle domain, as a single step can move up to
three tiles. With A*, we used Manhattan distance heuristic
divided by three as the heuristic. Using this heuristic, A*
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was unable to solve any instance within the 47 GB memory
limit, so we have not included it in the results table. The
heuristics derived through abstraction and used by the hier-
archical algorithms proved to be far more effective.

Table 1 shows these results in the first major row. Here,
we see Switchback using the least mean, median, and max
CPU time, and generating the fewest nodes. HA* was much
slower than either Switchback or HIDA*. HIDA* had the
fastest node generation rate.

Glued 15-Puzzle
The Glued 15-Puzzle is a variation of the traditional 15-
Puzzle in which a random tile is glued to the board in its
goal position. During the search it is not possible to move
this tile; hence, the solution path must work its way around
an extra constraint. While the Manhattan distance heuristic
is admissible for the glued tiles puzzle, it can be less infor-
mative than on the traditional 15-Puzzle.

The instances were generated by randomly selecting a tile
to be glued to the board and then performing a one-million-
step random walk backward from the goal position. The
average solution cost for the 98 instances that were solved is
53.18 with a standard deviation of 9.34. The average differ-
ence between the solution cost and the Manhattan distance
estimate of the initial state is 21.27. In contrast, for the nor-
mal 15-Puzzle, this mean difference is only 16.

Table 1 shows these results in the second major row. Here,
Switchback is superior in all measurements except for node
generation rate and mean peak number of nodes stored. The
CPU time measurements for Switchback are nearly 4 times
faster than HIDA*, the next-fastest hierarchical search algo-
rithm. On average, A* takes longer and requires more search
effort to solve these problems than Switchback does; how-
ever, A*’s performance sits somewhere between HIDA*’s
and HA*’s. In this domain, the mean peak number of nodes
held in memory by the hierarchical algorithms are statisti-
cally indistinguishable, but all much less than the number
retained by A*.

14-Pancake Puzzle
The Pancake Puzzle is a permutation puzzle where a se-
quence of numbers (pancakes) must be arranged in increas-
ing order by reversing prefixes of the sequence. Because
flipping the single top pancake does not change the se-
quence, the branching factor is N − 1, where N is the to-
tal number of pancakes. For the following experiments, we
used N = 14. Since all states in the pancake puzzle are
reachable, the 100 instances used in the following experi-
ments were generated by simply selecting random permuta-
tions of the numbers 1..14.

Table 1 shows the results for the 14-Pancake Puzzle in the
third major row. Switchback was superior in terms of CPU
time and nodes generated. HIDA* held the most nodes in
memory, on average, in this domain.

We used the heuristic h(n) = 0 with A* for this domain
because we did not know of a better admissible heuristic.
A* was unable to solve any of the Pancake Puzzle instances
within the 47 GB memory limit using this heuristic, and so
we did not include its results in the table.

15-Puzzle
We also experimented with the standard 15-puzzle domain.
The hierarchical algorithms all used the same abstraction hi-
erarchy that was used with the previous tiles puzzle variants,
and A* used the Manhattan distance heuristic.

This is a domain where hierarchical search—at least us-
ing the custom abstraction hierarchies introduced by Holte,
Grajkowski, and Tanner (2005)—is not a good candidate be-
cause the Manhattan distance heuristic is rather informative
on the 15-Puzzle for how cheaply it is computed. Nonethe-
less, it is a staple in the literature, and so we include its re-
sults here.

The results are found in the last major row of Table 1. A*
performed best, and we were surprised to see that all 100
instances could be solved within the 47 GB memory limit.
Switchback performed better than HIDA* and HA*, and had
the least maximum node generations, but, on average, held
the highest peak number of nodes in memory.

Problem Difficulty
Figure 3 compares the hierarchical algorithms on an
instance-by-instance basis in each domain. The x-axis in
each plot shows the solution length of a given instance,
which is an algorithm-independent proxy for problem dif-
ficulty. The y-axis shows the difference in CPU times be-
tween the plotted algorithms and Switchback, in seconds.
Except for the Macro 15-Puzzle plot, the y-axis is shown in
a logarithmic scale. From this set of plots, we can see that
the Switchback algorithm has an increasing advantage over
HA* and HIDA* as problem difficulty increases. On the
Macro 15-Puzzle, the advantage of Switchback over HIDA*
is less obvious due to the relatively poor performance of
HA*. Although HIDA* was slightly faster on a few in-
stances, Switchback’s advantage generally follows an in-
creasing trend.

Discussion
In our experiments, HA* expanded nodes slower than any of
the other algorithms. To determine the cause, we conducted
experimental runs on a few instances using Naive HA*, i.e.,
HA* with P-g caching and optimal path caching disabled.
We observed a factor of three increase in the node generation
rate. Caching overhead proves to be significant.

To confirm that HA* and HIDA* suffer from re-expansion
of abstract nodes, we modified our implementations of these
two algorithms to keep track of the number of times each
node was expanded. We chose five random instances from
each of the four domains, and ran both algorithms on these
instances. In all but one case, the percentage of expansions
that were re-expansions were well above fifty percent for
both algorithms. Abstract node re-expansion is indeed a
problem for those two algorithms.

Because Switchback essentially computes a pattern
database as needed, traditional pattern database techniques,
such as maximizing over multiple pattern databases (Holte
et al. 1996), using additive state space abstractions (Yang et
al. 2008; Felner, Korf, and Hanan 2004), or exploiting sym-
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Figure 3: The advantage of Switchback as problem difficulty increases.

metry in abstractions (Culberson and Schaeffer 1998), could
be applied to Switchback as well.

HIDA* is able to maintain its cache information between
base-level instances with the same goal (Holte, Grajkowski,
and Tanner 2005). Switchback, in contrast, would only be
able to re-use half its cache information. If the start node
changed, the cache information at each even (i.e. forward)
search level would need to be discarded. Alternatively, if
the goal node changed, the cache information at the odd
(i.e. backward) search levels would need to be discarded.

We have described Switchback as an algorithm that per-
forms a forward search at the base level. This is not strictly
necessary—one could just as well start in the reverse direc-
tion. Kaindl and Kainz (1997) give a method of probing to
determine which search direction appears more promising.
This technique could be used with Switchback to dynami-
cally decide upon the direction of search at the base level.

Conclusion
We have addressed a shortcoming of existing hierarchical
heuristic search algorithms—namely, that abstract nodes can
be expanded many times during one base-level search—
through a novel generalization of backward search to a
multi-level hierarchical setting. The resulting algorithm,
Switchback, is simple to implement, depending upon no so-
phisticated caching techniques such as P-g caching or op-
timal path caching. Furthermore, Switchback outperforms
both HIDA* and HA* on four domains, by up to a factor of
four. In settings where an effective heuristic is not available,
but a natural abstraction suggests itself and backward search
is feasible, Switchback is a good choice due to its fast and
efficient search performance.
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