
Introduction

Seasonal changes in reproductive performance of cows are
known to occur. These changes have been attributed to
variation in temperature, humidity, photoperiod and nutrition
(Thatcher, 1973; Tucker, 1982). Several reports have shown
that fertility of dairy cows is negatively related to exposure of
the female to high ambient temperature and humidity (Stott
and Williams, 1962; Ingraham, 1974). Ron et al. (1984)
reported that fertility in Israeli Holstein cattle followed a
seasonal pattern, peaking in the winter (December–February)
and decreasing in the summer (July–September). The authors
explained these findings as attributable to the effects of high
environmental temperatures on the endocrine system
(Rosenberg et al., 1982), the ovaries and uterus (Wolfenson
et al., 1995), and the embryo (Putney et al., 1989).

High ambient temperatures affect the duration and
intensity of expression of oestrus and, in addition, increase
the duration of anoestrus and silent ovulation (Gwazdauskas
et al., 1981). Bovine oestrous cycles are characterized by
2–3 waves of follicular development (Roche, 1996).
Follicular dynamics in the ovary and corpus luteum change
under conditions of heat stress (Wolfenson et al., 1995).
Several reports have shown that there is a decrease in the
number of small (3–5 mm in diameter) and medium (6–9
mm in diameter) follicles after exposure to heat stress
(Wolfenson et al., 1995; Wilson et al., 1998). In contrast,
Badinga et al. (1993) found that exposure of cows to high
ambient temperature had no detectable effects on the overall
pattern of growth of the first wave of follicular development
but may alter the efficiency of ovarian follicular selection
and dominance in later waves of follicle development. 

Embryonic loss associated with maternal heat stress is a
major cause of decreased fertility (Stott and Willliams,
1962; Putney et al., 1989). Oocytes subjected to heat stress
during meiotic maturation and ovulation had increased
numbers of abnormal forms in mice (Baumgartner and
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Follicle dynamics and oocyte viability in Holstein
primiparous and multiparous cows and the relationships
between fertility and the biochemical and physical
properties of oocyte membranes with season were
examined. The conception rates of primiparous (n = 70 885)
and multiparous (n = 143 490) cows differed, peaking in
the winter and decreasing in the summer. The number of
follicles 3–8 mm in diameter per ovary was higher in
winter (19.6) compared with summer (12.0). However, in
winter the percentage of ovaries with fewer than ten
follicles per ovary was 16%, in contrast to 50% in
summer. After aspiration of follicles, 7.5 oocytes per ovary
were found in winter and 5.0 oocytes per ovary in summer.
Cleavage to the two- to four-cell stage after chemical
activation was greater in winter than in summer; this was
enhanced at the morula stage and embryo development to

the blastocyst stage was significantly higher in winter than
in summer. Determination of the lipid phase transition in
oocyte membranes revealed a shift of 68C between
summer and winter. Fatty acid composition of phospho-
lipids from follicular fluid, granulosa cells and oocytes
indicated that there was a higher percentage of saturated
fatty acids during the summer and that the percentages of
mono-unsaturated and polyunsaturated fatty acids were
higher in oocytes and granulosa cells during the winter.
Oocytes and granulosa cells had similar fatty acid
compositions, in contrast to follicular fluid. These results
may explain the differences in the ability of oocytes to
develop to the blastocyst stage at different seasons. Thus,
temperature changes may lead to changes in membrane
properties, which, in turn, can influence oocyte function
and fertility. 
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Chrisman, 1981) and cows (Putney et al., 1989). Rocha et
al. (1998) reported that the quality and developmental
capabilities of bovine (Bos taurus) oocytes after in vitro
fertilization decreased during the hot season (August versus
May–June). In Holstein cows there was a decrease in the
viability of in vitro (Ryan et al., 1992) and in vivo (Ryan
et al., 1993) embryos from day 7 to day 14 in the hot season
but not during the cold season. 

A possible explanation for the effect of ambient
temperature on embryonic development is modifications of
the physical and chemical properties of the biomembranes.
Temperature modulates the physical properties of the lipids
in biological membranes, together with changes in the lipid
composition of the membrane (Quinn, 1985). Accordingly,
ambient temperatures regulate transitions from the liquid
crystalline to the gel phase (termed lipid phase transition;
Crowe et al., 1989). In addition, unsaturation of the acyl
chains of membrane phospholipids increases during cold
acclimation (Cossins and Raynard, 1987), which presumably
depresses the midpoint (Tm) of the lipid phase transition.
Injury to oocytes occurred close to the lipid phase transition
(Arav et al., 1996) and was maximal at a Tm of 168C (Zeron et
al., 1999). This finding led to the hypothesis that changes in
temperature might be the primary signal for regulation of fatty
acid composition of membranes, which can affect membrane
functionality and oocyte viability.

The aims of the present study were to examine the effect
of season on follicle dynamics and oocyte viability, and 
the possible relationship with biochemical and physical
properties of their membranes.

Materials and Methods

Chemicals

Unless otherwise stated, all chemicals were from Sigma
Chemical Co (St Louis, MO).

Temperature humidity index and conception rate in Israel

During 1999 monthly temperature and humidity data
were obtained from the Israeli National Meteorological
Centre, which were calculated into the temperature
humidity index (THI) as follows: 

THI = DBT – (0.55–0.55 3 relative humidity) 3 (DBT – 58)

where DBT = dry bulb temperature (F).
Accumulated data of conception rates were obtained

from the Israeli Herd Book database. Data for Holstein
primiparous and multiparous cows were plotted. A total of
70 885 primiparous and 143 490 multiparous cows were
palpated between day 45 and day 50 after insemination and
conception rates were recorded.

Collection of ovaries, classification and in vitro
maturation of oocytes

Ovaries were obtained from a local abattoir from
primiparous and multiparous Holstein cows and were

placed in an insulated vessel containing physiological
saline (0.9% (w/v) NaCl) with 1 3 106 iu penicillin ml–1 and
1 3 106 iu streptomycin ml–1 at 32–368C. The ovaries were
transferred to the laboratory within 60–90 min after
collection and washed with 0.9% (w/v) NaCl at 30–338C.
The ovaries were cut through the centre and located over
centred illumination where all the follicles were visible
(transillumination aspiration ovary (TAO), IMT, Merchavia).
The number of follicles (3–8 mm in diameter) per ovary
were counted and the ovaries were classified into the
following categories: small (< 10 follicles per ovary),
medium (11–20 follicles per ovary) and large (21–35
follicles per ovary). Cumulus–oocyte complexes (COCs)
were aspirated from the follicles using an 18 g needle on a
10 ml syringe. COCs were counted and washed three times
in Hepes–TALP. Oocytes with three or more layers of
cumulus cells surrounding a homogeneous cytoplasm were
transferred into 500 µl maturation medium (Leibfried and
First, 1979; 40–60 COCs per well, in a four-well culture
multi-dish (Nunc, Roskilde)): TCM-199 supplemented with
25 mmol Hepes l–1, supplemented with 10% (v/v) heat-
inactivated fetal calf serum (FCS) (Bio-lab, Jerusalem),
0.2 mmol sodium pyruvate l–1, 5 µg gentamicin l–1, 10 µg
ovine LH ml–1 (NIADDK-NIH-26, AFP5551B, Bethesda,
MD), 1 µg ovine FSH ml–1 (NIADDK-NIH-20, AFP7028D,
Bethesda) and 1 µg oestradiol ml–1. The COCs were then
incubated for 24 h at 38.58C in a humidified atmosphere of
5% CO2 in air.

Oocyte activation and development

After maturation, the oocytes were examined for their
ability to develop to the blastocyst stage after chemical
activation and culture for 8–10 days (Loi et al., 1998). COCs
were denuded from cumulus cells in the maturation wells
and placed for 5 min in ionomycin medium: 10 ml TCM-
199 supplemented with 25 mmol Hepes l–1, 10% (v/v) 
heat-inactivated FCS, 0.2 mmol sodium pyruvate l–1, 5 µg
gentamicin l–1 and 5 µmol ionomycin l–1. Oocytes were
transferred to 6-dimethylaminopurine (6-DMAP) medium
(10 ml TCM 199 supplemented with 2 mmol 6-DMAP l–1)
for 4.5 h. The oocytes were washed three times in a
cleavage medium (IVF Cleavage Medium, Cook, Sydney)
and transferred in groups of ten into 50 µl drops of cleavage
medium under mineral oil. Embryos were developed in an
incubator under conditions of 38.58C, 5% CO2, 5% O2 and
95% humidity. Cleaved embryos were counted on day 4
(activation day = day 0) and transferred to 50 µl drops of
blastocyst medium (IVF Blastocyst Medium, Cook, Sydney)
under mineral oil. The blastocysts were counted after 8–10
days. 

Measurements of membrane phase transitions

Evaluation of membrane phase transitions was
conducted with a Bruker-Equinox 55 Fourier transform
infrared (FTIR) connected to a Bruker FTIR microscope
A590 (Ettlingen, D-76275) equipped with a liquid nitrogen-
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cooled with mercury cadmium telluride (MCT) detector.
The nominal spectral resolution used was 4 cm–1 and 66
scans were co-added per sample spectrum. Oocytes were
placed in medium and sandwiched between two sapphire
windows. Sample temperatures were regulated by a micro-
processor feedback system, which measures temperature of
a sample by a thermocouple on the face of the windows.
The temperature was adjusted to within 0.18C of the desired
level and allowed to equilibrate for 2 min before the sample
was scanned. The temperature was controlled by two
thermoelectric coolers placed on the microscope using
directional solidification cryo-stage (IMT). Data were
processed to obtain FTIR spectra in the vibrational
frequency of the methylene groups, most of which were in
the hydrocarbon chain stretching region. The centre of the
lipid phase transition curve, from liquid crystalline to gel
phase, is designated Tm. Tm values were calculated from
the frequency–temperature plots by statistical analysis as
described by Crowe et al. (1989).

Evaluation of follicular fluid, granulosa cells and oocytes

COCs were aspirated from the follicles and pooled
together with the follicular fluid in a 50 ml centrifuge tube
(Corning, New York). The COCs and granulosa cells were
aspirated into a 5 ml pipette from the bottom of the
centrifuge tube after centrifugation at 300 g for 10 min. The
follicular fluid was centrifuged at 1000 g for 10 min and
4 ml of the upper fluid was aspirated, frozen at –208C and
lyophilized. Oocytes were denuded from their cumulus
cells by pipetting them into a 95 µl glass pipette. Denuded
oocytes were vitrified in groups (n = 10) as described by
Arav et al. (1993) and stored in liquid nitrogen. Granulosa
cells were aspirated from the 100 mm Petri dish (Corning)
that had contained the oocytes. These cells were washed
three times by centrifugation at 500 g for 6 min with

Hepes–TALP, supplemented with 0.5% (w/v) polyvinyl-
pyrrolidone. A 200 µl sample containing clean granulosa
cells was aspirated, frozen at –208C and lyophilized.

Fatty acid analyses

Lyophilized samples of 100 µg follicular fluid or
granulosa cells (seven replicates in summer or winter) or
250 oocytes (six replicates in summer or winter) were
extracted with 2 ml chloroform–methanol (Folch et al.,
1957). Lipid classes were separated by thin-layer chromato-
graphy on silica gel and fractions were identified by co-
migration of authentic markers (Sklan et al., 1975). Absolute
amounts of lipids were determined after addition of appro-
priate internal standards of heptadecanoyl phosphatidyl-
choline, triheptadecanoin or heptadecanoic acid by gas
chromatography on a DEGS column as described by Sklan
et al. (1975).

Statistical analysis

Mean values were calculated using the General Linear
Model procedure of JMP (SAS Institute, 1994) and
differences between treatments were examined by ANOVA.
The level of significance was P < 0.05 unless stated
otherwise.

Results

The conception rates of all the cows were related to season
(Fig. 1): the lowest conception rates were observed in
August and September (11.3 and 14.2% for multiparous,
and 14.6 and 16.6% for primiparous cows in August and
September, respectively) (P < 0.05), whereas conception
rates were higher in January and February (38.8 and 39.6%
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Fig. 1. The effects of season on the conception rate of primiparous (s) and multiparous
(j) cows, and the temperature humidity index (THI; n). Monthly conception rate was
determined in 5800 6 400 (mean 6 SE) and 11 680 6 290 primiparous and multiparous
cows, respectively. Values are mean 6 SE.
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for multiparous, and 44.4 and 43.7% in primiparous cows
in January and February, respectively) (P < 0.05). These
presumably season-related differences in conception rates
were probably a result of changes in the number of follicles,
oocytes or in oocyte development. Accordingly, ovarian
dynamics were examined in relation to season.

Overall, 44 920 follicles (3–8 mm in diameter) were
aspirated during 1999. The numbers of follicles per ovary
were higher in winter (Fig. 2) (19.6 follicles per ovary in
December–March) than in summer (12.0 follicles per ovary
in July–September) (P < 0.01). Recovery rates (percentage of
oocytes per overall follicles) were not affected by season
and ranged from 36 to 42%; thus, an average of 7.5 oocytes
per ovary was obtained in winter and 5.0 oocytes per ovary
in summer (Fig. 2) (P < 0.01).

The percentage of ovaries with fewer than ten follicles
per ovary is shown (Fig. 3). In summer, about half of the
ovaries contained fewer than ten follicles per ovary. In
contrast, during the winter the percentage of ovaries
containing fewer than ten oocytes per ovary was 16%, and
most of the ovaries contained > 11 follicles (P < 0.01). The
proportion of ovaries with low numbers of follicles
increased between April and September and then
decreased.

Embryo development to the blastocyst stage was

significantly higher in winter than in summer (Fig. 4)
(P < 0.05). Cleavage to the two- to four-cell stage was
greater in winter than in summer, and this difference was
enhanced at the morula stage. However, the ratio between
the number of morulae found in winter and summer and the
number of blastocysts found in winter and summer was not
significantly different (0.38 and 0.30, respectively). The
morphology of winter and summer oocytes was different
(Fig. 5). Homogeneous dark cytoplasm was visible in almost
all the winter oocytes (approximately 85%), in contrast to
non-homogeneous dark regions in many summer oocytes
(approximately 65%). These differences led us to evaluate
the biochemical and biophysical characteristics of the
oocyte membrane.

Determination of the transition temperatures of lipids in
the biological membranes from the liquid crystalline to the
gel phase revealed a shift of 68C between summer (Tm =
19.58C) and winter (Tm = 13.58C) (Fig. 6). Thus, the lipid
profile in the membranes was examined. 

The percentage and concentration of fatty acid
composition of phospholipids (Tables 1 and 2, respectively)
from oocytes, granulosa cells and follicular fluid were
determined. A higher percentage of saturated fatty acids
was found during the summer in oocytes (16:0, P < 0.05),
granulosa cells and follicular fluid (16:0 and 18:0,
P < 0.05). In contrast, the percentages of polyunsaturated
fatty acids (18:2–22:6) were significantly higher in oocytes
and granulosa cells during the winter than in summer
(P < 0.05). Oocytes and granulosa cells had a similar fatty
acid composition, in contrast to follicular fluid, which
showed different proportions of the fatty acids in the
phospholipid fraction. However, arachidonic acid (20:4)
comprised 1.1, 2.1 and 5.6% (w/w) in the phospholipid
fraction in oocytes, granulosa cells and follicular fluid,
respectively in summer, whereas during winter it comprised
0.3, 12.1 and 9.1% (w/w), respectively. Eicosapentaenoic
acid (20:5, EPA) and docosapentaenoic acid (22:6, DHA)
were not detected in oocytes and comprised < 1% (w/w) in
granulosa and follicular fluid in both seasons.
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Fig. 2. Seasonal effects on the number of follicles and oocytes
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Fig. 3. Seasonal effects on the percentage of ovaries with fewer
than ten follicles. The number of follicles 3–8 mm in diameter per
ovary was counted at the same time as oocyte aspiration and data
were pooled monthly. Data are mean 6 SE. abcdValues with
different letters are significantly different (P < 0.05).
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Discussion

Alterations in seasonal fertility are probably a result of
multifactorial processes. A correlation between season and
fertility was reported previously for cows in tropical and
subtropical climates (Ingraham et al., 1974; Ron et al.,
1984). The decrease in conception rate during the summer
is a serious problem because of seasonal demands for milk
and usually an increase in fertility is also required at this
time. Although oocytes are the source of successful
fertilization, only limited research has been carried out on
oocyte parthenogenesis. 

Follicular growth patterns are influenced by changes in
body temperature. Studies of the effects of short term (7–14
days) heat stress showed that follicular dynamics are
affected (Hahn, 1999): exposure to stress during the first
follicular wave reduced the diameter and the volume of the
dominant follicle and modified the hormonal profile
(Badinga et al., 1993). In studies where heat stress was
applied, oestradiol concentrations in the peripheral blood
decreased between days 4–8 (Wolfenson et al., 1995) and
days 11–21 of the cycle (Wilson et al., 1998). This finding
might also explain the reduction in the number of follicles
found in the ovary during the summer that was observed in
the present study. The number of follicles per ovary was
> 30% lower in the summer compared with winter. These
differences were more pronounced when the percentage of
ovaries that contained fewer than ten follicles per ovary was
examined: most ovaries contained fewer than ten follicles
during the summer, whereas in the winter most ovaries
contained > 20 follicles. Wilson et al. (1998) reported
similar findings using high temperatures, whereas the results
of the present study reflect the entire period of high ambient
temperatures. 
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Seasonal effects on follicular dynamics have the
potential to affect all the follicular cells (theca, granulosa,
cumulus cells and oocytes) and significant differences were
observed between winter and summer in the capacity for in
vitro development of parthenogenic oocytes. This finding
may be explained by the effects of heat stress in the summer.
Putney et al. (1989) reported a similar finding after exposure
of heifers to heat stress at the onset of oestrus. However,
these authors observed no effects of heat stress on the rate of
fertilization, although at later developmental stages (morulae
and blastocysts), a decline in the proportion of normal
embryos was found. 

The shape and appearance of oocytes were modulated
by season. Gross changes in the colour and homogeneity of
the dark regions of the cytoplasm of oocytes were observed
during the summer. One possibility is that lipid composition
and content changed with season. Accordingly, some of
their physical and compositional properties were examined. 

It is known that environmental temperatures induce
modifications in cellular components, including fatty acid
unsaturation (Cossins and Raynard, 1987). The presence of
a single double bond exerts a significant influence on the
physical properties of membranes (Stubbs and Smith, 1984).
An increase in the unsaturation of the fatty acids in
biological membranes, associated with a higher membrane
fluidity, is often a result of decreased temperature (Crowe et
al., 1989). In the present study, examination of the physical
and chemical characteristics of oocyte membranes revealed
that their Tm value, at the germinal vesicle stage, decreased
by 68C between summer (19.58C) and winter (13.58C). Fatty
acid profiles in the membrane phospholipids were then
examined. Compositional differences were observed between
membranes in winter and summer: in winter, the phospho-
lipids of oocyte membranes had 2.2 times more polyun-
saturated fatty acids compared with in summer. Nissen and
Kreysel (1983) reported that polyunsaturated fatty acids are
essential for gamete fertility. The polyunsaturated fatty acid
content of ruminant phospholipids is influenced by hydro-
genation of polyunsaturated fatty acids in the rumen, which
results in lower concentrations of polyunsaturated fatty
acids in membrane phospholipids (Sklan et al., 1971). The
major fatty acid in the membrane phospholipids of bovine
germinal vesicle oocytes during the winter was palmitic
acid, followed by oleic acid. This composition is similar to
reports on the composition of sheep and bovine immature
oocytes (McEvoy et al., 2000). The major differences in the
phospholipid profile of bovine germinal vesicle oocytes
between winter and summer were in the palmitic,
palmitoleic, oleic, linoleic and linolenic acids. These
changes in fatty acid content in oocyte membranes may
explain, in part, the shift in Tm between winter and
summer. Changes in transition temperatures are also related
to fatty acid chain length and, particularly, to the positions
of the double bond (Stubbs and Smith, 1984). Higher
concentrations of oleic acid in the membrane phospholipid
profile during the winter may play a role in the changes in
the lipid phase transition temperature. In addition, linoleic

acid plays a major role in mammalian oocyte growth and
differentiation (Nishizuka, 1988), and stimulates the activity
of adenylate cyclase (Racowsky, 1985) and protein kinase C
(Dell and Severson, 1989). Linoleic acid can also serve as
precursor for prostaglandins and leukotrienes, which have
potent effects as local hormones (Smith, 1989). In addition,
in the present study, the follicular fluid contained 9.1 and
5.6% (w/w) arachidonic acid in winter and summer,
respectively. The same trend was observed in granulosa
cells, in which arachidonic acid comprised 12.1 and 2.1%
(w/w) during winter and summer, respectively. In contrast,
oocytes contained < 1% (w/w) arachidonic acid during all
seasons. This finding may be important, as arachidonic acid
is a major precursor of prostaglandins. However, EPA and
DHA were not present in the profiles of bovine oocytes,
which is a similar finding to other reports in both ovine and
pig oocytes (Homa et al., 1986; Coull et al., 1998; McEvoy
et al., 2000). Interestingly, these two fatty acids were
present at high concentrations (> 30%) in bovine sperm
membranes and play a major role in fluidity (Parks and
Lynch, 1992).

The lipid profile in granulosa cells was very similar to
that of the oocytes. It should be noted that the fatty acids
profile in follicular fluid phospholipid showed smaller
differences between seasons compared with the changes
observed in the phospholipid of granulosa cells and
oocytes. 

Together, these results may explain the influence of
temperature on the ability of oocytes to develop to the
blastocyst stage at different temperatures. Temperature
changes lead to alterations in the biochemical properties of
the membranes and this, in turn, may influence oocyte
functionality and fertility. 
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