
Summary Understanding seasonal changes in photosyn-
thetic characteristics of canopy leaves is indispensable for
modeling the carbon balance in forests. We studied seasonal
changes in gas exchange characteristics that are related to the
temperature dependence of photosynthesis in canopy leaves of
Quercus crispula Blume, one of the most abundant species in
cool-temperate forests in Japan. Photosynthetic rate and ribu-
lose-1,5-bisphosphate (RuBP) carboxylation capacity (Vcmax)
at 20 °C increased from June to August and then decreased in
September. The activation energy of Vcmax, a measure of the
temperature dependence of Vcmax, was highest in summer, indi-
cating that Vcmax was most sensitive to leaf temperature at this
time. The activation energy of Vcmax was significantly corre-
lated with growth temperature. Other parameters related to the
temperature dependence of photosynthesis, such as intercell-
ular CO2 partial pressure and temperature dependence of RuBP
regeneration capacity, showed no clear seasonal trend. It was
suggested that leaf senescence affected the balance between
carboxylation and regeneration of RuBP. The model simula-
tion showed that photosynthetic rate and its optimal tempera-
ture were highest in summer.

Keywords: activation energy, Jmax, temperature acclimation,
temperature dependence of photosynthesis, Vcmax.

Introduction

Photosynthesis by canopy leaves is a major determinant of the
carbon cycle in forests (Baldocchi and Meyers 1998, Wilson et
al. 2001). Understanding seasonal changes in photosynthetic
characteristics of canopy leaves is indispensable for predicting
responses of carbon flow in ecosystems to climate change. Be-
cause of increasing concern about global warming, the tem-
perature response of photosynthesis has become an important
focus of study (Medlyn et al. 2002a, 2002b, Hikosaka et al.
2006).

In the field, leaves are subjected to changes in air tempera-
ture at various time scales. As a short-term response (seconds
to minutes) to leaf temperature, the light-saturated rate of pho-

tosynthesis (Pmax) is reduced at the low and high temperature
extremes and has an optimum at intermediate temperature
(Berry and Björkman 1980). As a long-term response (days to
months) to growth temperature, the temperature dependence
of photosynthesis changes. In many plants, the optimal tem-
perature for Pmax increases with growth temperature (Berry
and Björkman 1980, Hikosaka et al. 2006).

According to the biochemical model of Farquhar et al.
(1980), photosynthetic rate is limited either by RuBP (ribu-
lose-1,5-bisphosphate) carboxylation or by the rate of RuBP
regeneration. Thus, changes in the temperature dependence of
photosynthesis are attributable to changes in four traits: (1)
CO2 partial pressure at the site of carboxylation; (2) tempera-
ture dependence of the maximum rate of RuBP carboxylation
(Vcmax); (3) temperature dependence of the maximum rate of
RuBP regeneration, expressed as the rate of electron transport
(Jmax); and (4) the balance between Vcmax and Jmax (Hikosaka
1997, Hikosaka et al. 1999, 2006). Responses of these traits to
growth temperature, however, seem to differ among species
(Hikosaka et al. 2006). For example, some species alter the
Jmax to Vcmax ratio in response to growth temperature (Hikosaka
et al. 1999, Hikosaka 2005, Onoda et al. 2005a, Yamori et al.
2005), but others do not (Bunce 2000, Medlyn et al. 2002a,
Onoda et al. 2005b). Some species alter the temperature de-
pendence of Jmax (Hikosaka et al. 1999, Bunce 2000), but oth-
ers do not (Borjigidai et al. 2006). Several studies have re-
ported that Vcmax is more sensitive to temperature when the leaf
is acclimated to higher temperatures (Hikosaka et al. 1999,
Bunce 2000, Yamori et al. 2005, Borjigidai et al. 2006). Fac-
tors other than growth temperature may alter the traits related
to temperature dependence of photosynthesis. For example,
Onoda et al. (2005b) found that the Jmax to Vcmax ratio in leaves
of Fagus crenata Blume seedlings decreased from summer to
autumn, which may be a result of leaf senescence rather than
an environmental acclimation.

In this decade, the photosynthetic parameters of canopy
leaves in forests, including the temperature dependence of
Vcmax and Jmax, have been investigated (Harley and Baldocchi
1995, Walcroft et al. 1997, Kosugi et al. 2003, Kosugi and
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Matsuo 2006). Medlyn et al. (2002a) and Han et al. (2004) re-
ported that the temperature dependence of Vcmax and Jmax

changed seasonally in leaves of Pinus species. However, it is
still unclear if the change is related to environmental acclima-
tion or to ontogeny. We studied canopy leaves of Quercus
crispula Blume, one of the most abundant deciduous trees in
cool-temperate forests in Japan, to determine CO2- and tem-
perature-dependence of photosynthetic rates in spring, sum-
mer and autumn of two years. We sought answers to two ques-
tions. First, which of the four traits (intercellular CO2 partial
pressure, temperature dependence of Vcmax, temperature de-
pendence of Jmax and the Jmax to Vcmax ratio) is involved in the
seasonal response of leaf photosynthesis in Q. crispula? Sec-
ond, is the seasonal response of leaf photosynthesis deter-
mined by growth temperature?

Materials and methods

We studied a mature, deciduous broad-leaved forest stand in
the Tomakomai Experimental Forest (TOEF; 42°40′ N,
141°36′ E). Annual precipitation at TOEF is 1304 mm, most
of which occurs in summer, and the mean summer temperature
is 18 °C. The dominant species are Acer mono Maxim., Acer
palmatum Thunb. var. amoenum Ohwi, Cercidiphyllum
japonicum Siebold et Zucc., Ostrya japonica Sarg., Prunus
ssiori Friedr. Schmidt and Quercus crispula (Hiura et al.
1998). We selected a canopy tree of Q. crispula (22.4 m in
height and 76.3 cm in diameter at breast height) at the canopy
crane site in TOEF. Meteorological data were collected at a
flux tower 1 km from the canopy crane.

In the TOEF forest, Q. crispula leaves complete their expan-
sion by the end of May and senesce in late October. Photo-
synthetic measurements were made on June 6–11, August
6–10 and September 25–29 in 2001 and June 26–29, July
25–29 and September 25–28 in 2002. We used attached un-
shaded leaves. Photosynthetic rates were measured with open
gas exchange systems (Model LI-6400, Li-Cor, Lincoln, NE)
with an LED light source (Li-Cor LI-6400-02B) and a dual
Peltier device to regulate photosynthetic photon flux (PPF)
and temperature in the chamber (3 × 2 cm). The CO2-response
curves of photosynthesis were obtained at various leaf temper-
atures and a PPF of 1000 µmol m– 2 s–1. Vapor pressure deficit
was unregulated. For each CO2-response curve, photosynthe-
sis was measured from low (10 Pa) to high CO2 partial pres-
sures (100 or 150 Pa). Dark respiration rate was measured at
ambient CO2 partial pressure (36 Pa). In some cases, stomatal
conductance showed a large decrease during determination of
the CO2 dependence of photosynthesis and we obtained insuf-
ficient data points at high CO2 partial pressures. In July and
September 2002, we conducted photosynthetic measurements
for some leaves only at high CO2 partial pressures. After the
measurements, four leaf discs of 1 cm diameter were punched
from one leaf, oven-dried and analyzed with an NC-analyzer
(NC-80, Shimadzu, Kyoto).

The CO2-dependence curve of photosynthesis was fitted
with the biochemical model of Farquhar et al. (1980). At lower

CO2 partial pressures, the following curve was applied, assum-
ing that RuBP carboxylation is the limiting step of photosyn-
thesis:
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where Pc is the carboxylation-limited photosynthetic rate, Kc

and Ko are the Michaelis-Menten constants of rubisco (RuBP
carboxylase/oxygenase) for CO2 and O2, respectively, Ci and
O are the intercellular partial pressures of CO2 and O2, respec-
tively, Γ* is the CO2 compensation point in the absence of day
respiration and Rd is the rate of day respiration. At higher CO2

partial pressures, the following curve was applied assuming
that the photosynthetic rate is limited by RuBP regeneration:
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where Pr is the regeneration-limited rate of photosynthesis. We
assumed that photosynthesis at high CO2 partial pressure was
limited only by RuBP regeneration, and limitation by triose-
phosphate utilization (Sharkey 1985) was ignored.

Temperature dependence of parameter values was fitted us-
ing the Arrhenius model:

( ) ( )
f f

E T

RT
=









25

298

298
exp

–a k

k

(3)

where f(25) is the value of f at 25 °C, Ea is the activation energy
of f, R is the universal gas constant (8.314 J mol–1 K–1) and Tk

is leaf temperature in °K.
We calculated values of Kc, Ko and Γ* with Equation 3,

where their values at 25 °C and Ea were derived from Harley
and Tenhunen (1991). Values of Vcmax and Rd were obtained by
fitting Equation 1 to the CO2-dependence curves at low CO2

partial pressures (< 30 Pa). Then, using the Rd value, Jmax was
obtained by fitting Equation 2 to the CO2-dependence curves
at high CO2 partial pressures (> 50 Pa). Curve fitting was per-
formed with Kaleida graph (Synergy Software, Reading, PA).

Results

Climate conditions before the measurements are shown in Ta-
ble 1. Daily temperature was highest in summer and was simi-
lar between June and September. Irradiance was highest in
June. Relative humidity tended to be high in July and August.

Figure 1 shows seasonal changes in leaf characteristics.
Leaf mass per area (LMA) increased rapidly in June and then
remained virtually unchanged until September (Figure 1a).
Leaf nitrogen concentration per unit mass (Nmass) was stable
from June to September. Leaf nitrogen concentration per unit
area (Narea), the product of LMA and Nmass, showed a similar
seasonal change with LMA (Figure 1c).
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The light-saturated rate of photosynthesis at a leaf tempera-
ture of 20 oC and ambient CO2 partial pressure (Pmax) showed a
parabolic curve against day of year, with highest rates from
July to August (Figure 2a), whereas the dark respiration rate
was highest in June and subsequently decreased during the
course of the summer (Figure 2b). Both Jmax and Vcmax showed
parabolic relationships with day of year (Figures 2c and 2d).
However, the autumnal decrease was greater in Vcmax than in
Jmax, leading to an increase in the Jmax to Vcmax ratio from Au-
gust to September (Figure 2e). Intercellular CO2 partial pres-
sure (Ci) at ambient CO2 partial pressure was similar across the
season (Figure 2f).

Both Jmax and Vcmax increased exponentially with increasing
temperature, without deactivation of either Jmax or Vcmax at high
temperatures, and the Arrhenius model fitted well (Figure 3).
Figure 4 shows the activation energies for respiration (EaR),
Jmax (EaJ) and Vcmax (EaV). Values of EaR increased seasonally,
EaJ values showed no clear seasonal trend and EaV followed a
parabolic course over time, with highest values from July to
August.

Both Pmax and stomatal conductance at 20 °C were signifi-
cantly correlated with mean daily temperature (P < 0.05),
whereas Vcmax at 20 °C showed only a weak correlation
(P < 0.1; Table 2). The activation energy of Vcmax was signifi-
cantly correlated with mean daily temperature (Figure 5),
whereas those of respiration and Jmax were not (Table 2).

Stomatal conductance was highly sensitive to changes in va-
por pressure deficit (VPD) (data not shown). Because we did
not control water vapor concentration during the measure-
ments, VPD in the measurement chamber tended to increase
with increasing leaf temperature, especially when the air tem-
perature was low. Consequently, Ci decreased with increasing
leaf temperature (data not shown) and affected the temperature
dependence of photosynthetic rate. To avoid this artifact, we
calculated photosynthetic rates assuming that Ci was constant
at 22.6 Pa (mean value at 20 °C throughout the experiment,
Figure 2f). Figure 6 shows the calculated photosynthetic rate
plotted against leaf temperature. In all curves, Pc was lower
than Pr at any temperature, i.e., photosynthetic rates were al-
ways limited by RuBP carboxylation. The optimal tempera-
ture was higher in summer than in spring and autumn.

Discussion

Throughout the measurement period, Pmax was always limited
by RuBP carboxylation because Jmax was relatively high and Ci

did not change greatly (Figure 2f). Therefore, Vcmax was the
factor responsible for the seasonal change in Pmax. Early in the
season, Vcmax at 20 °C increased, as did Narea (Figures 1 and 2),
suggesting that rubisco concentration increased from June to
July. In late season, on the other hand, Vcmax decreased though
Narea remained constant. Age-dependent decreases in photo-
synthetic nitrogen-use efficiency (PNUE, photosynthetic ca-
pacity per unit leaf nitrogen) have been observed in several
herbaceous (Hikosaka 1996), deciduous (Wilson et al. 2000,
Onoda et al. 2005b) and evergreen species (Kitajima et al.
2002, Escudero and Mediavilla 2003, Miyazawa et al. 2004,
Niinemets et al. 2005). Such a decrease may be explained by:
(1) selective degradation of rubisco; (2) inactivation of ru-
bisco; or (3) decreased CO2 diffusion in old leaves (Hikosaka
et al. 1998, Hikosaka 2004). Hikosaka (1996) found that, in
Ipomoea tricolor Cav. leaves that were grown without shad-
ing, the amounts of rubisco, cytochrome f and photosystem I
and II decreased even though Narea remained constant.
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Table 1. Climate conditions. Mean daily values for the 10 days prior to
the measurements. Abbreviations: PPF, photosynthetic photon flux;
and RH, relative humidity.

Temperature PPF RH
(°C) (mol m– 2 day–1) (%)

2001
May 27–June 5 12.3 36.1 81.3
July 27–August 15 16.9 26.0 85.4
September 15–24 13.4 25.6 81.6

2002
June 16–25 12.4 34.4 82.6
July 15–24 18.1 16.8 93.1
September 15–24 12.4 26.7 79.6

Figure 1. Seasonal changes in (a) mean leaf mass per unit area (LMA),
(b) leaf nitrogen concentration per unit mass (Nmass) and (c) leaf nitro-
gen concentration per unit area (Narea) in canopy leaves of Quercus
crispula in 2001 (�) and 2002 (�). Bars are standard deviations.
Polynomial curves are fitted for (a) (r2 = 0.95, P < 0.05) and (c) (r2 =
0.99, P < 0.05).
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Niinemets et al. (2005) showed that the CO2 partial pressure in
chloroplasts decreased with leaf age in several Mediterranean
evergreen broad-leaved species. However, there are several re-
ports showing that photosynthetic capacity or Vcmax decreases
in parallel with Narea in deciduous woody species (Reich et al.
1991, Yasumura et al. 2006). These findings suggest that age
dependence in PNUE differs among deciduous species.

The temperature dependence of Vcmax was responsible for
that of Pmax. According to the model of Farquhar et al. (1980),
as EaV increases, the optimal temperature for Pmax increases at
a rate of 0.54 °C kJ–1 mol–1 EaV (Hikosaka et al. 2006). Be-
cause EaV in Q. crispula leaves was significantly correlated
with mean daily temperature (Table 2, Figure 5), the optimal
temperature for Pmax was predicted to be highest during sum-

mer (Figure 6). This is in accord with previous studies show-
ing higher optimal temperature of Pmax in leaves grown at
higher temperatures (Slatyer 1977, Berry and Björkman 1980,
Badger et al. 1982, Hikosaka et al. 1999, Yamori et al. 2005).
In their literature survey, Hikosaka et al. (2006) suggested that
the increase in EaV with increasing growth temperature is a
general response in C3 plants.

What mechanisms are involved in the change in EaV? It
should be noted that Vcmax obtained with the gas exchange
method is determined not only by rubisco kinetics but also by
the rubisco activation state and the internal conductance for
CO2 diffusion (Salvucci and Crafts-Brandner 2004, Hikosaka
et al. 2006). Yamori et al. (2006) showed that temperature de-
pendence of rubisco activation state in spinach leaves differs
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Figure 3. Temperature depend-
ence of RuBP regeneration capac-
ity expressed as electron transport
rate (Jmax, �) and RuBP carbox-
ylation capacity (Vcmax, �) in can-
opy leaves of Quercus crispula.
Measurements were made in June
(a), August (b) and September (c)
in 2001 and June (d), July (e) and
September (f) in 2002. Arrhenius
curves are fitted (r2 > 0.39,
P < 0.05; see Figure 4 for the acti-
vation energies).

Figure 2. Seasonal changes in gas
exchange characteristics of can-
opy leaves of Quercus crispula
determined at a leaf temperature
of 20 °C. (a) Light-saturated rate
of photosynthesis at 37 Pa CO2

(Pmax), (b) dark respiration rate
(R), (c) RuBP regeneration capac-
ity expressed as the electron trans-
port rate (Jmax), (d) RuBP
carboxylation capacity (Vcmax), (e)
ratio of Jmax to Vcmax and (f) inter-
cellular CO2 partial pressure (Ci).
All values are means obtained in
2001 (�) and 2002 (�). Bars are
standard deviations. Polynomial
curves are fitted if significant
(r2 > 0.76, P < 0.05).
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depending on growth temperature; for example, the activation
state of rubisco in leaves grown at 15 °C was 60% at 30 °C,
whereas that in leaves grown at 30 °C was fully activated until
30 °C. Yamori et al. (2006) also found that the kinetics of
rubisco changed with growth temperature. In our study, tem-
perature dependence of Vcmax was fitted well by the Arrhenius
model and there was no apparent thermal depression in Vcmax,
implying that there was no great change in the activation state
across measurement temperatures.

The activation energy for Jmax showed no seasonal trend or
any correlation with growth temperature. This finding con-
trasts with results obtained from plants growing under con-
trolled conditions, where Jmax of leaves grown at lower temper-
atures tends to have a lower temperature optimum (Badger et
al. 1982, Mitchell and Barber 1986, Yamori et al. 2005) or a
smaller temperature dependence at low leaf temperatures

(Armond et al. 1978, Hikosaka et al. 1999, Yamasaki et al.
2002). However, in the literature survey by Hikosaka et al.
(2006), there was no trend in the response of EaJ to growth tem-
perature, suggesting that it is species-dependent. The Jmax to
Vcmax ratio at 20 °C increased in September (Figure 2e) but was
not correlated with growth temperature (Table 2). This change
may simply reflect the decrease in Vcmax in autumn. If true, this
implies that the seasonal change in the ratio of Jmax to Vcmax in
Q. crispula was an age-dependent change rather than an accli-
mation response (Onoda et al. 2005b). This contrasts with
findings for some perennial herbs and evergreen trees showing
a temperature-dependent change in the Jmax to Vcmax ratio
(Hikosaka et al. 1999, Onoda et al. 2005a, 2005b, Yamori et al.
2005). Atkin et al. (2006) suggested that phenotypic plasticity
to growth temperature is greater in fast-growing species than
in slow-growing species.
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Figure 5. Relationship between the activation energy of RuBP car-
boxylation (EaJ) and daily temperature in canopy leaves of Quercus
crispula. Daily temperature was calculated as the mean daily temper-
ature for the 10 days before measurement. See Table 2 for regression
analysis.

Table 2. Regression analysis for the relationship between model pa-
rameters (dependent variable) and mean daily temperature (°C). Daily
temperature was calculated as the mean of daily temperature for
10 days before measurement. Values of EaR, EaJ and EaV are the activa-
tion energies of dark respiration rate, RuBP regeneration expressed as
the electron transport rate (Jmax) and RuBP carboxylation (Vcmax), re-
spectively. Significance values: ns, P > 0.1; *, P < 0.1; and **, P <
0.05 (n = 6). Abbreviation: Ci, intercellular partial pressure of CO2.

Parameter Intercept Slope r

Value at 20 oC leaf temperature
Photosynthetic rate (µmol m– 2 s–1) –7.07 1.08 0.90**
Respiration rate (µmol m– 2 s–1) 1.99 –0.027 0.14ns
Jmax (µmol m– 2 s–1) 18.4 4.15 0.63ns
Vcmax (µmol m– 2 s–1) 0.69 2.55 0.74*
Jmax/Vcmax 2.57 –0.03 –0.17ns
Ci (Pa) 13.5 0.643 0.54ns

Activation energy
EaR (kJ mol–1) 142.4 0.830 0.12ns
EaJ (kJ mol–1) 23.6 0.248 0.15ns
EaV (kJ mol–1) 27.0 1.079 0.91**

Figure 4. Seasonal changes in the activation energies of (a) dark respi-
ration (EaR), (b) RuBP regeneration expressed as the electron transport
rate (EaJ) and (c) RuBP carboxylation (EaV) in canopy leaves of Quer-
cus crispula. Closed (�) and open (�) circles denote mean values ob-
tained in 2001 and 2002, respectively. Linear (r2 = 0.66, P < 0.05) and
polynomial (r2 = 0.79, P < 0.05) curves are fitted for (a) and (c), re-
spectively.
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We assumed that photosynthesis at high CO2 partial pres-
sures was always limited by RuBP regeneration and ignored
any limitation by triose-phosphate utilization (TPU). How-
ever, TPU may have limited photosynthesis at high CO2 con-
centration, in which case we might have underestimated Jmax.
However, because photosynthetic rates at ambient CO2 partial
pressure were always lower than the rates expected based on
the assumption of TPU limitation (data not shown), ignoring
TPU limitation may not affect our conclusion that photosyn-
thesis at ambient CO2 partial pressure was always limited by
RuBP carboxylation.

In conclusion, the temperature response of photosynthesis
changed in two ways through the season: Pmax and its optimal
temperature both increased with increasing ambient tempera-
ture. Changes in EaV regulated the optimal temperature,
whereas changes in Vcmax regulated Pmax. These changes may
contribute to the increase in photosynthetic production at the
respective growth environment. It was also suggested that
some characteristics related to the temperature-response curve
of photosynthesis were age-dependent, thus temperature de-
pendence of photosynthesis may not be a simple function of
growth temperature. Further studies are needed to obtain a
comprehensive understanding of the temperature response of
photosynthesis in canopy leaves.
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