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The seasonal dependence of Weather Research and Forecasting (WRF) model
surface temperature biases and sensitivity to PBL schemes are jointly explored.
For this purpose, the year 2001 was simulated using three different PBL
schemes in a domain covering all Europe. The simulations were compared
with gridded observations, upper air data and high-frequency station data.
Seasonal and daily cycles were analysed, aiming at providing a link between
long term biases and restricted case studies. The results show that the model
mean bias significantly depends on the season, being warm in winter and cold
in summer. The winter warm bias is related to misrepresented cold extremes,
while a systematic cold bias dominates the whole temperature range in summer.
Regarding PBL schemes, an overall underestimation of the entrainment is
found, with the non-local YSU scheme producing systematically warmer
temperatures. It is shown that the opposite seasonal biases and the systematic
behaviour of the PBL schemes along the year lead to a different best-performing
scheme in winter and summer. Moreover, the best-performing PBL scheme in
an average sense is a result of the compensation of errors. The average summer
results can be partially explained by a detailed case study. It is concluded that
short term studies should be used with caution to decide on the parametrizations
to be used in long term simulations. Copyright c© 2011 Royal Meteorological
Society
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1. Introduction

Parametrization of sub-grid scale phenomena persists as one

of the most challenging problems in numerical modelling

of the atmosphere. Parametrization schemes describe the

contribution of unresolved atmospheric phenomena in terms

of variables resolved at the model discrete grid. These

schemes rely on the detailed observation of variables which

are seldom observed (e.g. very high-frequency winds, heat

fluxes, detailed vertical profiles of the atmosphere, size

distribution of microphysical species, etc.) and need specific

field campaigns in order to acquire the data to validate

the physically-plausible model and adjust its parameters.

Field campaigns are expensive and, thus, they are usually

available for short time periods and over small areas.

This low availability (in time and space) of adequate

observations to validate the inner assumptions of physical

parametrizations, contrasts with their global application

scope (Stensrud 2007). As a result of this duality, the

comparison of different parametrization approaches for
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the same sub-grid phenomenon gives rise to, at least,
two different kind of studies: (1) those devoted to assess
the validity of the assumptions involved in the physical
schemes, determining the role of the different components
of the physical model and their adequacy to represent the
observed reality (see e.g. Alapaty et al. 1997; Braun and Tao
2000; Kotroni and Lagouvardos 2001; Bright and Mullen
2002; Stensrud and Weiss 2002; Zhang and Zheng 2004;
Deng and Stauffer 2006; Hong et al. 2006; Otkin and
Greenwald 2008; Hu et al. 2010; Shin and Hong 2011;
Steeneveld et al. 2011, among others) and (2) those devoted
to the comparison of the parametrization schemes in a
more general way, beyond specific events or meteorological
situations (see e.g. Fernández et al. 2007; Flaounas et al.

2011; Argüeso et al. 2011; Awan et al. 2011; Jerez et al.

2012; Jerez 2011; Evans et al. 2011, among others). The
studies of the first kind, aim at contributing to the advance
of parametrization schemes by (among many others):
detecting missing or under-represented processes, obtaining
more accurate parameters or distinguishing situations where
regimes change and a different model or parameter set
is required. These “case studies” require accurate, high-
frequency, low-available data. On the other hand, studies
of the second kind have a more pragmatic approach and
usually aim at selecting the best scheme for a given
purpose (weather forecast, regional climate studies, etc.)
or at combining multiple schemes in order to provide a
probabilistic forecast. These studies usually focus on their
target variables of interest (most commonly screen level
variables) and make use of averaged values to summarize
the skill of the different schemes across space and/or
time. Thus, these “statistical studies” rely on well observed
variables over relatively long periods and large areas. Model
validation in terms of average surface variables suffers from
several drawbacks, though. The main one is the chance
that the model may provide the right average value for
the wrong reason, as a result of a compensation of errors.
A recent example is provided by Nikulin et al. (2012),
where an ensemble of regional climate models is shown to
represent daily average precipitation relatively well, while
the daily precipitation cycle (i.e. trigger time and rainfall
duration) is badly captured by most models. In the present
work, we perform a “statistical study”, characterizing the
differences introduced by different planetary boundary layer
(PBL) schemes on the average behaviour of a mesoscale
atmospheric model over a large region (Europe) and an
extended period of time (1 year). However, in order to
overcome some of the limitations of these kind of studies,
we analyse not only average standard surface variables
(such as 2-meter temperature), but also additional variables
(such as specific humidity) in terms of process-related
statistics, such as average daily cycles and vertical profiles.
Finally, a focus is made over a short period of time at a
specific site (a ”case study”), in order to compare the general
conclusions from averaged results with those related to a
particular meteorological situation (clear-sky summer days
over flat terrain).

Planetary Boundary Layer (PBL) schemes deal with the
problem of parametrizing the turbulent layer that develops
over earth surface due to surface heating, wind shear and
friction. Vertical transport of heat, moisture, momentum
and other physical properties of the lower troposphere
are driven by PBL processes, and also low level clouds.
Therefore, a correct parametrization of this layer is essential
to achieve realistic simulations, especially regarding surface

variables. For example, a low turbulent mixing at the
capping inversion layer leads to PBLs which are too cold,
moist and shallow. This, in turn, produces incorrect values
of important parameters like convective available energy
(Bright and Mullen 2002). Excessive turbulent mixing leads
to too warm, dry and thick PBLs, and this has large effects
on the simulation of important meteorological systems, such
as hurricanes (Braun and Tao 2000).

A PBL scheme appears naturally in numerical models
when a continuous variable is discretized by considering
a grid-point averaged value plus a perturbation (Reynolds
decomposition) in the Navier-Stokes equations. Unresolved
perturbation terms appear in the set of differential equations,
which becomes incomplete. The problem of closing this
equation system is called the turbulence closure problem
(Stull 1988), and is the main issue a PBL scheme must face.

PBL parametrizations can be classified depending on
how they approach the turbulence closure problem. Local
closure schemes use variables and parameters that are
defined at each model level or its neighbours (e.g
local gradients), while non-local closure schemes use
parameters that can depend on the whole vertical profile,
or on relationships between separated levels (e.g diffusion
coefficients dependent on the PBL thickness). This is often
summarized by refering to them as local and non-local
schemes.

Since they are not able to directly represent transport
between non-consecutive levels, local schemes are not
expected to behave correctly under fully developed
turbulence (Stull 1991), but they still can compete with non-
local schemes by adding higher order terms. As the top
of the PBL is usually statically stable, non-local transport
is important to represent the entrainment of air from
the free atmosphere into the mixed layer. Entrainment,
as the surface fluxes, is the factor dominating the main
characteristics of the diurnal PBL. Local schemes using a
Turbulent Kinetic Energy (TKE) closure, based on Mellor
and Yamada (1982), have become popular, since they
can represent the entrainment with the diffusion of the
TKE and the so-called counter-gradient terms, that allow
diffusion against the local gradients (Deardorff 1966). This
is, in fact, an indirect way to represent non-local transport,
so the notion of “local scheme” can be argued to have
an unclear physical interpretation. Nevertheless, previous
works show that, in general, local schemes tend to produce
unrealistically shallow and moist boundary layers (Alapaty
et al. 1997; Bright and Mullen 2002; Stensrud and Weiss
2002; Hong et al. 2006). This is directly related to their
inability to directly represent large-scale turbulence and
the underestimation of entrainment. Other works show that
non-local schemes are not always more skillful (Deng and
Stauffer 2006), and that they can produce too deep boundary
layers in windy conditions (Braun and Tao 2000; Persson
et al. 2001). It is worth to note that the results of the PBL
schemes are also affected by the development of boundary
layer clouds by other physical parametrization schemes
(microphysics or convection), as these play also a relevant
role in the budgets at the inversion layer. The present
study compares both local (TKE closure), and non-local
approaches over Europe (i.e. a large region encompassing
a great variety of climatic conditions) using a state-of-the-
art numerical modelling system.

The Weather Research and Forecasting (WRF) model
(Skamarock et al. 2008) is a limited area model widely
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used in many fields, such as local weather forecasting, air-

quality studies, regional climate research, and others. The

reason behind this popularity is that it is an open source

model that can be freely used and modified by the user and

also because of the modularity of its components. WRF

components (dynamical core, parametrization schemes

for the different sub-grid processes, nudging options,

etc) can be combined to create many different model

configurations. This flexibility makes choosing the optimal

configuration for each particular study a commonly found

problem. There is no consensus about the set of schemes

that performs better for each application. Frequently, the

performance depends on the variables, season or time of

the day considered and one cannot identify a best model

configuration in a general sense, even for a particular region

(Zhang and Zheng 2004; Fernández et al. 2007; Awan

et al. 2011; Jerez et al. 2012). The usual approach to deal

with this problem is to carry out ”statistical studies” over

a sensible set of model configurations and look for the

one that reproduces better the observations in an average

sense. A number of sensitivity studies to PBL schemes have

been carried out with WRF, and with its predecessor MM5

(Bright and Mullen 2002; Zhang and Zheng 2004; Deng and

Stauffer 2006; Hong et al. 2006; Weisman et al. 2008; Shin

and Hong 2011). Most of them focus on short periods of few

days or weeks, and relatively small domains, mostly flat and

homogeneous (Stensrud 2007). Since models are used over

many different domains and meteorological conditions, this

kind of restricted experiments may not be representative

enough.

Awan et al. (2011) performed an analysis over a

broad set of parametrization schemes, including cumulus,

microphysics and also PBL schemes. Their analysis spans

an annual cycle but they focus on a very specific and

complex region, the Alps. They found that the different

schemes interact non-linearly with each other, i.e. the

resulting biases are not combinations of the biases caused

by each individual parametrization. This makes the problem

of evaluating scheme performance even harder.

Hu et al. (2010) analysed the performance of 3 PBL

schemes in a summer season over Texas (US). Their study

has some similarities with the present one, including the

three PBL schemes chosen and most of the experimental

setup (Section 2.1). Thus, their results can be directly

compared with our work. They found that the non-local

scheme showed significantly less bias than the other two

(one local and the other one a combination of local and

non local). Our work extends that of Hu et al. (2010)

by analysing the seasonal dependence of the biases and

performing an analysis over a larger region including many

different meteorological conditions.

In this work, we explicitly sacrifice the advantages of

detailed “case studies” in favour of testing whether the most

important results found in previous (case) studies do hold in

a large domain, over a full seasonal cycle. In particular, we

mainly focus on temperatures and the main goals pursued

are:

1. Assess model biases in the reproduction of the

observed seasonal cycle, daily cycle and probability

distribution.

2. Assess the average skill of 3 different PBL schemes in

reproducing the above features in different European

regions and seasons.

3. Bridge the gap with ”case study” works by comparing
the statistical results with a single site over a short
period, in order to check the consistency of point and
averaged results.

The layout of the paper is as follows. Section 2 describes
the experimental design and the observational datasets used.
The results (Section 3) analyze the biases found when
comparing with surface and upper-air observations and
also focuses on a summer clear-sky case study. Section 4
summarizes the main conclusions found.

2. Data and model configuration.

2.1. Model configuration

The domain used covers all Europe with a horizontal
resolution of 15 km (Figure 1) and 39 vertical levels. The
model has been used in reforecast mode, performing 42-
hour simulations, started daily at 6 UTC. The approach
is similar to that followed in Lenderink et al. (2009)
or Hu et al. (2010). This leads to a total of 1095
(365×3) individual simulations. Such a large number of
simulations was handled by using WRF4G (Fernández-
Quiruelas et al. 2010), a framework that allows to
manage the WRF workflow easily in multi-parametric
experiments. The initial and boundary data are taken 6-
hourly from the ERA-Interim reanalysis (Simmons et al.

2007). Daily simulations were concatenated to create a
pseudo-continuous simulation, leaving the first 12 hours out
as spin-up. This method reduces the bias, keeping the model
close to the forcing fields but still free enough to generate
mesoscale features. This methodology enables the hour-by-
hour comparison shown in Section 3.6.

Advanced research WRF (WRF-ARW) version 3.1.1 has
been used. The common set of parametrizations chosen is
the following: Microphysics, WRF Single Moment 5-class
scheme (Hong and Lim 2006); cumulus, Grell-Devenyi
ensemble scheme (Grell and Devenyi 2002); long wave
radiation scheme, Rapid and accurate Radiative Transfer
Model (RRTM) (Mlawer et al. 1997); short wave radiation
scheme by Dudhia (1989). The land surface model (LSM)
used was Noah (Chen and Dudhia 2001).

In order to explore the differences between the local and
non-local approach to the PBL modelling, the three schemes
chosen for this work are a non-local one, a local one and
a non-local one that turns to local under stable conditions.
Namely, the schemes used were:

Yonsei University scheme

The Yonsei University PBL scheme (YSU) (Hong et al.

2006) is a first order scheme that uses non-local eddy
diffusivity coefficients to compute the turbulent fluxes. It
is based on the Medium Range Forecast (MRF) model PBL
scheme, and improves it with an explicit treatment of the
entrainment. The turbulent diffusion equations are given by
equation (1), where C is the diagnosed variable, Kc the eddy
diffusivity, and γc a correction to the local flux to account
for the effect of the large eddies. The term on the right is the
entrainment flux, which in the case of sensible heat is taken
proportional to the surface buoyancy flux. For the other
variables, the flux across the inversion layer is considered
proportional to the jump of the variable itself at this layer.
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Figure 1. Domain of the simulations, and limits of the PRUDENCE regions used in the paper. Also shown: SYNOP stations used in Section 3.3 (black
triangles), upper-air soundings used in Section 3.4 (red circles), and the CESAR observatory (star). The projection used is a Lambert Conformal Conic
projection.

The PBL height, h, is diagnosed using a critical Richardson
number.
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Mellor-Yamada-Janjic scheme

The Mellor-Yamada-Janjic PBL scheme is a local closure
scheme of order 1.5 and level 2.5. It is based on Mellor
and Yamada (1982) and its implementation is described
on Janjić (1990), Janjić (1994) and Janjić (2002). It solves
a prognostic equation for the TKE. The equations for the
heat and moisture fluxes include a term that allows them
to go against the local gradient, so counter-gradient fluxes
caused by large eddies can be represented. This, along with
the TKE diffusion outside of the mixed layer, leads to an
improved representation of the entrainment. PBL height is
diagnosed using a TKE threshold. A maximum value, that
depends on the stability, is imposed to the master length
scale.

Asymmetric Convective Model 2

The Asymmetric Convective Model 2 (ACM2) (Pleim
2007a,b) uses a combination of local (first order) and non-
local transport that switches off smoothly to local eddy
diffusion at stable environments. At unstable conditions,
local transport is used for subsidence, while upward fluxes
are modelled combining local eddy diffusion with a non-
local approach that computes the transition probability
between non-consecutive levels. The latter approach, based
on Blackadar (1978); Stull (1984) and Pleim and Chang
(1992), can represent rising thermals much larger that the
grid spacing. The combination between local and transilient
approaches is weighted with a parameter that depends on
stability.

The Surface-Layer (SL) parametrizations are paired
with the PBL parametrizations, and all use similarity

theory (Monin and Obukhov 1954) to compute the surface
turbulent fluxes, though they do not share the same
similarity functions. SL scheme paired with YSU (called
MM5) uses the functions proposed by Paulson (1970),
Dyer and Hicks (1970), and Webb (1970), while SL paired
with MYJ (ETA) uses those proposed by Zilitinkevich
(1995) and Beljaars (1995). ACM2 has its own approach
to similarity functions, proposed by Pleim (2006). It also
should be noted that the PBL schemes themselves do use
different similarity profiles to compute some parameters.
The assumptions made in the different similarity functions
can have relevant effects in the simulated surface variables,
specially under stable environments (Louis 1979; Yagüe
et al. 2006).

In the following, the three 1-year simulations resulting
from the use of these PBL schemes will be referred to as:
YSU, MYJ and ACM2.

2.2. Data

2.2.1. The E-OBS dataset

The E-OBS dataset (Haylock et al. 2008) is a daily
high resolution grid derived from observed precipitation,
maximum, minimum and mean 2-meter temperatures.
It was developed within the ENSEMBLES EU-project
(Hewitt and Griggs 2004), and covers Europe with different
spatial resolutions, intended to match those used by the
RCMs of the project, for the period 1950-2006. In the
present study the 0.25◦ regular lon-lat grid, version 4.0,
has been used. Data from about 2000 stations were used
for developing this grid, and the series are available through
the European Climate Assessment and Data set (ECA&D;
http://eca.knmi.nl). To enable comparison, WRF data has
been interpolated to this grid using bilinear interpolation.

In spite of being the best European observation-based
dataset available, E-OBS presents several problems, and
it should be used with caution for RCM validation.
Comparisons with regional datasets elaborated with much
denser station networks reveal important regional biases
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in the E-OBS dataset (Hofstra et al. 2009; Herrera et al.

2010; Kysely and Plavcova 2010). This especially affects
areas with sparse station data and complex orography,
where the stations entering the interpolation might not
be representative of their surrounding region. The bias
was also found to be larger for extreme values. The
interpolation process smooths the data, and this leads to an
important underestimation of the extremes, especially for
precipitation. A grid of standard errors is provided with the
dataset, but they are generally smaller than the real errors,
as they do not take into account the previously mentioned
issues (Hofstra et al. 2009). Therefore, the results of the
validation of a limited area model against this dataset should
be interpreted with caution, and possibly even discarded
over some areas with very poor station density, like north
Africa or eastern Turkey. On the other hand, there are many
areas where E-OBS has a good coverage, like Benelux,
England, and Germany.

In order to analyze the spatial variability of the skill,
the domain has been divided into regions, following those
defined in the PRUDENCE Christensen and Christensen
(2007) project. These are shown in Figure 1. Table I shows
the limits for each region, their area, station density (as a
measure of quality of the dataset) and standard deviation of
the terrain height (as a measure of orographic complexity).

2.2.2. Atmospheric soundings

The soundings of the Earth System Research Laboratory
(ESRL) Radiosonde Database have been used to check
the model behaviour on levels other than the surface. The
quality of the data, the levels available and the frequency
depends on the station considered. Most stations only
provide two daily soundings, taken at 00 and 12 UTC, and
a few also at 6 UTC and 18 UTC. The variables used in
this work are temperature and dew point depression. The
specific humidity used in Section 3.4 has been derived
from temperature, pressure and dew point using the Magnus
formula (Lawrence 2005).

In general, sounding data suffers from several deficien-
cies. The ESRL radiosonde database has not been subjected
to a quality control, and many missing and incorrect data
are present. Thus, only stations with 90% or more data
have been considered (a total of 51 sites, see Figure 1),
and the values departing from the model more than 2.5 the
interquartile range of the full-year series have been rejected
as outliers.

2.2.3. SYNOP data

Surface synoptic observations (SYNOP) are observational
data recorded by a large number of meteorological stations
around the world. This data are encoded and broadcast by
radio, following an international format established by the
World Meteorological Organization (WMO). The frequency
of the data depends on the station, ranging from one hour to
two days or more. For this work hourly European SYNOP
codes of the year 2001 have been compiled, decoded and
filtered from outliers and meaningless values. Only stations
with hourly data and less than 20% missing data has
been used, after filtering values departing from the 2.5 the
interquartile range as outliers (see figure 1 for a map with
the station used). The goal of this process is to compare
the daily cycle produced by WRF with the observed one,
for temperature and specific humidity. The latter has been
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Figure 2. Root mean square difference between simulations, computed for
each forecast time (in hours), for 2 m temperature (top) and for 2 m specific
humidity (bottom). Note that the 0 corresponds to the initial condition,
taken at 06 UTC every day.

computed with the Magnus (Lawrence 2005) formula using
the surface pressure and the screen level standard and dew
point temperatures.

2.2.4. CESAR tower data

Observations from the Cabauw Experimental Site for
Atmospheric Research (CESAR) tower located in the
Netherlands (shown with a star in Figure 1) have been used
to carry out a clear-sky case study. This station provides data
with high temporal resolution and non-standard variables
such as surface turbulent fluxes. Upper-air data have been
taken from the nearby (20 km) De Bilt sounding station.
The characteristic flat and homogeneous terrain of the
Netherlands makes the nearest grid point approximation a
reasonable assumption.

3. Results

3.1. Model sensitivity to forecast time

In order to analyse the impact of the daily reforecast
approach, the root mean square difference (RMSD) between
the simulations is computed for each forecast time, from
0 to 42 hours, for screen level temperature and specific
humidity. The spread associated to the use of different
to PBL schemes is expected to increase as forecast time
increases. For temperature (Figure 2, top) over land grid
points, a strong diurnal cycle can be observed, so the
model is more sensitive to the PBL scheme at night,
when stable conditions are more frequent. Over the sea,
the sensitivity is smaller and there is no diurnal cycle.
This is expected given that the three simulations share the
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Table I. Limits of the PRUDENCE regions used for validation, their area and the number and density of stations used for E-OBS. The area

corresponds only to that occupied by the E-OBS grid points falling inside the region.

ID Description W E S N Area Station density Height S. Dev.

(1000 km2) (St. per 1000 km2) (m)

BI British Isles -10 2 50 59 305 0.53 109
ME Mid Europe 2 16 48 55 600 0.30 196
AL Alps 5 15 44 48 308 0.63 667
FR France -5 5 44 50 345 0.12 237
MD Mediterranean 3 25 36 44 573 0.21 362
EA Eastern Europe 16 30 44 55 1210 0.14 231
IP Iberian Peninsula -10 3 36 44 645 0.11 378

same Sea Surface Temperature (SST). Since the growth
of the sensitivity as forecast time increases is small
(especially when disregarding the initial 12h), we conclude
that the pseudo-continuous simulations are temporally
homogeneous enough for the analysis.

The behaviour of specific humidity (Figure 2 bottom) is
different, the RMSD between local (MYJ) and non-local
(YSU, ACM2) schemes is larger over the sea than inland,
and it appears almost instantaneously after the beginning of
the run. This points to a systematic differences in how this
variable is diagnosed over the sea by the schemes.

3.2. Comparison with E-OBS.

A first look at model biases (Figure 3) shows relevant
differences among the different PBL schemes, seasons
and variables (maximum and minimum temperatures). DJF
minimum temperature (Figure 3, first column) shows a
warm bias in most regions, larger in the eastern half of
the domain. The smaller bias is found in areas with good
station density and small orographic complexity (such as
ME, BI or FR). Regions with scarce data (North Africa,
Eastern Turkey) and/or steep orography (Alps, Pyrenees)
can be distinguished in the spatial patterns. The large
spatial variability of winter minimum temperatures, very
dependent on local cloud cover, winds and orography
favourable to inversions, might be affecting the accuracy of
the interpolation used in E-OBS.

Maximum temperature bias (Figure 3, right) shows
smoother spatial patterns, suggesting better data quality
(better performance of the interpolation) due to the smaller
spatial variability of maximum temperatures. A generalized
cold bias is found for the three PBL schemes in JJA, which
also extends to MAM and SON (not shown), reaching
−3◦C in regions with good data quality. This cold bias is
smaller for ACM2, but still important. For DJF maximum
temperature, YSU is close to E-OBS over a large part of
the domain, while MYJ and ACM2 show small cold biases.
Finally, a large area of warm bias, located at the north-
eastern corner of the E-OBS domain, can be observed for
the three schemes. North Africa and Eastern Turkey shows
large biases that are probably related to the to excessive
interpolation of scarce data (see Figure 1 in Hofstra et al.

(2009) for a map of the station network used in E-OBS).

Mean bias for each PRUDENCE region and season has
been plotted in Figure 4. An annual cycle on the bias is
apparent for the three schemes. This bias cycle is always
cold for maximum temperatures and becomes warm in

winter for minimum temperatures in most regions. Regions

with good coverage (BI and ME) show a warm bias of

0.5-2.5◦C for winter minimum temperatures in YSU, while

ACM2 and MYJ stay closer (< 0.5◦C) to E-OBS, except at

northern BI. JJA minimum temperatures show very different

biases, mostly cold, except over Eastern Europe in YSU

and MYJ, where the bias is small with warm areas. ACM2

shows the coldest summer minimum temperatures, with a

general cold bias reaching -2.5◦C even in regions with good

station coverage. MAM and SON biases are generally half

way between those in summer and winter. ACM2 is the

scheme showing less bias for maximum temperatures, but

it is still too cold. For minimum temperatures, ACM2 and

MYJ are closer to observations in winter than YSU, but

the non-local scheme outperforms them in summer and in

other seasons. Mean temperature (not shown), computed

as Tmax+Tmin

2
, is affected by the warm winter minimum

temperature bias in YSU, so the best scheme, and the

best general approach (local or non-local), would reverse

depending on the season, and studies referring only to

shorts periods of time would not hold for the whole year.

This fact is a consequence of the previously addressed

annual cycle in the bias, which is generally greater than

the model sensitivity to the PBL scheme. As this bias is

not necessarily related to the parametrization of the PBL,

following this criteria to determine the best PBL scheme

would be meaningless.

Seasonal dependence of the bias suggests that it is

related to absolute temperatures, i.e., that different biases

exist in different parts of the temperature range. To

check this, quantile-quantile plots (q-q plots) have been

computed for each region and for both maximum and

minimum temperatures (Figure 5). Q-q plots compare the

probability distribution of two variables, by representing on

a Cartesian plane some quantiles of a variable against those

of another variable or a theoretical distribution. In our case,

we compared the distribution of simulated temperatures

(Y-axis) against the observations (X-axis) dividing the

probability range into 40 pieces (i.e. taking a quantile

every 2.5%). These representations allow to easily identify

deviations in the probability distribution (as departures from

a straight diagonal line), biases (as shifts), differences in

the variability (as straight lines with a different slope) or

asymmetries (as curved lines). In order to compute the

quantiles no averaging was carried out, pooling time and

space for a given region and season.

DJF minimum temperatures distributions differ on lower

quantiles, and the differences are larger for lower absolute
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Figure 3. Minimum and maximum temperature bias of WRF compared with E-OBS. Rows are the three PBL schemes used, and columns the seasons,
excluded MAM and SON.
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Figure 4. Maximum (left) and minimum (right) temperature bias for each region, season and PBL scheme in ◦C.

temperatures, being the largest at EA region (note that
the plots do not share the same axes, due to the large
differences between the regional temperature ranges). In
this region the lowest 2.5% quantiles differ by ≃ 7◦C which
is probably caused by deficient simulation of strong surface
temperature inversions. This problem has been addressed
before by Mölders and Kramm (2010), who related it to
the similarity profiles assumed by the Surface Layer (SL)
parametrizations. According to this work, these profiles
would not be suitable for extremely stable situations, and SL
schemes are in fact imposing a lower limit to the stability.

DJF maximum temperature behaviour differs depending
on the region considered. The shape of the q-q plots is
similar to the winter minimum temperatures in the cold
region EA, but similar to summer maximum temperatures
in the warm IP. Again, the deviations between E-OBS and
WRF seem to depend on the temperature. JJA maximum
temperatures are systematically biased. They follow the
same probability distribution both in E-OBS and in WRF,
since the points of the qq-plots follow approximately a
straight line, and all the quantiles of WRF are displaced

1-2◦C to cooler temperatures. JJA minimum temperature
behaviour again largely differs from winter. Lower quantiles
of WRF tend to be cold biased (opposite to winter) in
all regions except for YSU and MYJ at MD. This bias
disappears at the upper quantiles in some regions, when
minimum temperatures reach 20◦C, and the warmer scheme
YSU even shows warm biases in 5 of the 7 regions.

3.3. Daily cycle

To obtain a more detailed view of the behaviour of the
different PBl schemes, average daily cycles have been
computed from SYNOP station data, for both winter and
summer. WRF comparison has been performed by seeking
for the nearest neighbour. As the domain is large, daily
cycles are not synchronized. To address this, they have been
shifted in time, by adding or subtracting one hour for each
15 degrees of displacement from the 0 meridian, so the
time axis corresponds to the local solar time (Note that the
original time of the SYNOP reports is UTC). The difference
reaches 2 hours between Ireland and Poland.
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Figure 5. Quantile-quantile plots computed for the 7 regions and for maximum and minimum temperatures.

Figure 6 shows average daily cycles for both screen

level temperature and specific humidity, and for winter

and summer. As seen with E-OBS, a large cold bias of

around 1.8◦C is observed for JJA maximum temperatures,

being somewhat larger for MYJ. In contrast, summer night

time temperatures are very well reproduced by YSU, and

underestimated by around 0.5◦C by MYJ and by 1◦C by

ACM2. As expected from Section 3.2, winter biases are
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Figure 6. Mean daily cycle of the SYNOP stations compared with WRF for a) winter temperature, b) summer temperature, c) winter specific humidity
and d) summer specific humidity.

different. For DJF maximum temperatures YSU shows the
smaller bias, followed at some distance by ACM2 and
MYJ. But in winter night temperatures, YSU shows a
warm bias of 1◦C, while MYJ and ACM2 are matching
the observations pretty close. Again, results are consistent
with chapter 3.2, this was expected, because SYNOP and E-
OBS are not independent datasets, as they share the records
of many stations, and gives confidence about the additional
results obtained with the SYNOP data.

Temperature daily cycles help to interpret the specific
humidity daily cycles. Figure 6 shows that WRF overesti-
mates diurnal specific humidity in summer. Moisture budget
in the PBL has two main contributions, evapotranspiration,
which is a source, and entrainment, which is a sink. Often
both contributions cancel each other, and the amplitude of
the daily cycle of specific humidity is rather small. This
is consistent with the observed amplitudes in Figure 6, of
around 0.6 g g−1 (JJA) and 0.15 g g−1 (DJF). During the
summer daytime, WRF tends to overestimate the moisture
at the screen level, specially ACM2 and MYJ. This could
be related either to excessive evaporation or to too weak
entrainment flux. As shown in the case study with Cabauw
data (Section 3.6), excessive evaporation seems unlikely,
since WRF is not overestimating the latent heat flux. Apart
from the different amplitude, observed cycle in summer
does not show the peak that the model shows in the evening,
on the contrary, observed humidity peaks at early morning.
Differences found in winter are rather small (≃ 0.1 g g−1),
and fall inside the error of the observations.

The averaging carried out here could be discussed,
because very different stations (coastal, continental, etc.) are

being mixed. Again, it must be stressed that the goal of this
work is to deal with the gap existing between the detailed
analysis of case studies and the generic validation of large
datasets such as ENSEMBLES runs.

3.4. Comparison with atmospheric soundings.

Figure 7 shows the mean and the standard deviation of
the temperature differences between the model and the
soundings for 4 mandatory levels (925, 850, 700 and 500
hPa) and the screen level, in summer and winter. During
both seasons warm biases prevail at high levels, 500 hPa and
700 hPa, while differences are found at lower levels. 925
hPa DJF temperature biases are small, distributed around
zero, but cold biases of around 0.7◦C are found in JJA.
This bias is a little more pronounced in MYJ scheme. This
implies that the model is generating too cold boundary
layers in summer, and it is consistent with the surface
cold bias that was found at JJA when comparing with E-
OBS and SYNOP data, and it’s relationship with the lack
of entrainment. As winter boundary layers are shallower,
925 hPa temperature may not be representative of its true
temperature, or they may not suffer from this bias. Also 850
hPa temperature biases tend to have opposite signs, being
positive in winter and negative in summer. Again, the 850
hPa level is probably falling inside the PBL in many of the
summer soundings, while it is well above the PBL top in
winter.

Regarding specific humidity (Figure 8), as expected, 925
hPa level is found to be too moist, specially in summer
and with the local MYJ scheme, reaching +0.5 g kg−1. On
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Figure 7. Mean bias and standard deviation computed with the instantaneous temperatures of WRF and atmospheric soundings in winter (left), and in
summer (right).
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Figure 8. Mean bias and standard deviation computed with the instantaneous specific humidity biases between WRF and soundings in winter (left), and
in summer (right).

the other hand, no dry bias is found in upper levels, but it
could be hidden between the 850 and 700 hPa levels. As
stated before, too cold and moist PBLs can be caused by an
underestimation of vertical mixing and entrainment, in the
next Section we show that this is probably the case, since
WRF also tends to underestimate the PBL thickness.

The analysis of the soundings is affected by some
inhomogeneities. Mainly the different height of the stations,
and the different solar times for the same UTC time. To
check the impact of this point in the previous results, the
same plots have been computed using only the sounding
stations located in the ME region, and below 200 meters
of elevation, but no significant differences were found (not
shown).

3.5. PBL top height

Boundary layer height is a good indicator of the turbulent
mixing strength and the entrainment Stull (1988). Each
scheme computes the PBL top height in very different ways,
and this makes them to be not comparable. To solve this,
PBL top height has been diagnosed following a simple
method both for WRF and for the De Bilt soundings
(The Netherlands). The method consists in searching for
the first level where potential temperature exceeds the
minimum potential temperature reached in the mixed layer
by more than 1.5 k. This simple algorithm is shown

to have a good skill compared with others in Nielsen-
Gammon et al. (2008), although it may not be well
suited for stable boundary layers. Nevertheless, it enables
a fair comparison of the 3 schemes among themselves and
with observations, at least for well formed mixed layers.
Fig 9 shows scatter-plots (green circles), with quantile-
quantile plots superimposed (white squares), comparing the
PBL tops of WRF and the De Bilt soundings diagnosed
using this method. De Bilt was chosen because it has
4 daily soundings available for the year 2001, excepting
some missing values. The scatter-plots are noisy, which
is expected for a parameter like this, since soundings
are frequently unrepresentative of the average air column
due to being an instantaneous measurement (Stull 1984).
Thus, quantile-quantile plots are again very useful to study
systematic errors in the model. The q-q plots show that
MYJ and ACM2 tend to produce lower PBL tops than
observed, especially when PBL tops exceed 700 m. In
contrast, YSU scheme shows a small overestimation of
the PBL tops lower than 1000 m and, above that it also
underestimates the observed values, but still gets closer
than the other 2 schemes. This supports the hypothesis of
a general underestimation of the entrainment by ACM2
and MYJ, while YSU would only suffer from that problem
for thicker PBLs. Again, different days are being mixed,
and the results could be different, for example, for thick
PBLs driven by strong winds than those driven my strong
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diabatic heating. But the goal of the paper is to see how the
signal of the different biases emerges when applying generic
statistical analysis to large amount of data.

3.6. Cabauw case study

Finally, a few days with stable clear sky are studied with
data from the CESAR observatory. The goal here is to
check how the observed general biases are reproduced by a
single station, and to analyse variables not usually available,
such as the surface turbulent fluxes. Although a profound
analysis is out of the scope of the paper, this could help
to confirm the role of the entrainment in the biases, and
to see if there is any deficiency in the simulation of the
fluxes behind. In Figure 10 (top) simulated and observed
temperatures are plotted in the CESAR tower location the
days 3-7 of July (note that the land surface scheme used
here is the Noah-LSM, as mentioned in Section 2). This
period has been chosen because it was a warm, dry and
stable period, dominated by the presence of a high pressure
system, being a good example of the cold bias that we
want to analyse. At night time YSU scheme stays close to
observed temperatures, while ACM2 and MYJ still show
cold biases. During daytime YSU is slightly warmer than
ACM2 and MYJ, but the three schemes stay well below the
observed temperature. In general, the best match is achieved
by YSU, and the results are similar to those found in Section
3.3 with SYNOP data, and those obtained by Hu et al.

(2010).
Noah LSM is known to cause cold bias in the last versions

of WRF-ARW. According to Manning et al. (2010), this
cold bias is caused by problems with the seasonal variation
of parameters like albedo. Figure 10 (middle) shows the
simulated and observed surface turbulent fluxes in CESAR
for the period of interest. We find that, during daytime,
both fluxes tend to be underestimated by 50-100 W m−2.
This is partly explained because the observed fluxes are in
fact underestimated by ∼ 30% (Braam 2008). Thus, fluxes
do not seem to contribute to the cold bias observed in the
screen level temperature. Other candidates are the radiative
balance and the entrainment. We have seen various results
pointing to an underestimation of the entrainment (Sections
3.4 and 3.3), but a stronger link with surface temperatures is
missing. Fig 10 (bottom) shows the PBL height computed
with the algorithm explained in Section 3.5. Although WRF
underestimates it at noon, YSU produces thicker PBLs than
ACM2 and MYJ, but very similar screen level temperatures.
This can also be observed in Figure 6. Thus, we conclude
than the lack of entrainment is not playing a mayor role
in the observed cold bias. What is left is the radiative
balance, and there are a few works pointing that the impact
of this factor in the mixed layer temperature is important
(Steeneveld et al. 2010; Lemone et al. 2002). A detailed
analysis of this balance is complex, and falls out of the scope
of this paper, but it is recommended for the community of
WRF users.

Vertical profiles at 12 UTC of the July 5th (Figure 11a)
show that the observed boundary layer is warmer and
drier and more mixed that the simulated one. The same
happens at night hours, (Figure 11b) shows the modelled
temperatures together with the De Bilt sounding at 00 UTC
of July 5th. Again, the observed profile is warmer and more
mixed than the simulated one, also in the YSU scheme, that
has a very small bias at surface. This is a good example of
the underestimation of the entrainment found before in this
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Figure 11. Simulated and observed potential temperature (lines on the
right) and specific humidity (lines on the left) profiles in De Bilt, The
Netherlands, at 7-5-2001. At a) 12 UTC with Noah and b) 00 UTC with
Noah.

study. It also shows how a model can precisely reproduce
surface temperatures, but at at the same time give a wrong
vertical profile (YSU).

4. Conclusions

A set of three 1-year simulations varying the PBL scheme
have been carried out over Europe. The regional model has
been restarted daily to keep it close to the driving reanalysis
(ERA-Interim). It has been shown, by comparing with the
gridded, SYNOP and sounding data, that model biases are
dependent on the season, geographical location and time of
the day. Furthermore, this work is an example of how model
biases found in ”statistical studies” (where, often, physical
causes are hard to uncover due to the mixture of different
processes or due to the lack of detailed observations for a
long enough period) can be traced down to their seasonal
and daily timescales, and connected with the results of case
studies.

A systematic cold bias, as compared to the E-OBS
dataset, has been found during the warm season. This bias
affects equally all the range of maximum temperatures.
Contrarily, a warm bias is apparent during the cold season,
as a result of the overestimation of the lowest minimum
temperatures. This warm bias in winter cold extremes
is probably related to unresolved strong temperature
inversions and to the limits imposed to the stability
existing in the surface layer parametrizations. The classical
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Figure 9. Scatter-plots comparing the PBL height observed in the De Bilt soundings with the one simulated by WRF.

similarity functions used in these surface layer schemes
tended to excessive cooling in very stable environments,
and the adjustments made to solve this (e.g. in ACM2;
Pleim 2006) seem to be excessive for the case of strong
winter inversions. The observed dependence of the bias with
absolute temperature and, therefore, with the seasonal cycle,
is not particular to WRF. A similar behaviour has been
reported in other regional models. For example, the RCMs
used in the EU-funded project ENSEMBLES (Christensen
et al. 2008). Plavcová and Kyselỳ (2011) also found this
dependence with the same set of models in a study focused
over the Czech Republic. These common deficiencies are
not surprising, since many models share common building
blocks (Fernández et al. 2009; Knutti 2010), especially
regarding parametrization schemes.

Model biases are usually larger than the spread of
the ensemble of PBL schemes tested. The differences
among the schemes show little change along the year, with
YSU consistently showing warmer temperatures. Thus,
in statistical terms, the scheme performing closer to the
observations depends on the season and is probably a
result of error cancellation. On the other hand, the presence
of the same signatures on the bias of regions with very
different land cover, orography, climate, and observation
density/coverage, indicates that the results concerning to the
model biases and the relative temperature of the different
PBL schemes are robust to these features.

Simulated daily cycles have been compared using
SYNOP data (Section 3.3), and it has been shown that the
most relevant differences among the schemes occur at night.
As reported by Hu et al. (2010), the YSU scheme has been
found to be close to observations during summer nights
but, interestingly, the opposite does occur in winter. This
points to YSU as the best choice for studies focused on
summer periods, but ACM2 or MYJ would be better suited
in winter. Thus, results of “case studies” must be used with
caution when choosing the model configuration for longer
term simulations.

Entrainment has been indirectly studied through the daily
cycle of specific humidity, the comparison with sounding
data and the diagnosis of the PBL top height. Results show
that WRF tends to underestimate the entrainment for thick
PBLs (above 1000 m), as it produces a too large specific
humidity daily cycle, and a too moist and cold 925 hPa level.
However, YSU does produce significantly thicker PBLs
than the other 2 schemes. This lack of entrainment does
not seem to be the cause of the cold bias of summer daily
temperatures because, despite of the increased entrainment,
YSU does show very similar screen level temperatures.

Finally, the Cabauw case study shows that model-
simulated turbulent sensible and latent heat fluxes are
overestimated (see also Steeneveld et al. 2011)), although
observed fluxes suffer from underestimation themselves
(Braam 2008). Given that the overestimation of the surface
fluxes should shift the model results towards warmer
temperatures, errors in the estimation of the fluxes are also
discarded as the cause of the summer cold bias. The only
explanation left is that the errors are coming from the
radiative balance, as proposed by Manning et al. (2010).
More research in this area is encouraged to confirm this
hypothesis, but it is out of the scope of our analyses.

The main conclusion of the present work is that model
systematic errors are very dependent on the seasonal
and daily cycles, and thus on the different atmospheric
conditions that prevail on the different seasons and times
of the day. This must be considered when selecting the
most adequate the model configuration, when improving the
parametrization schemes and when performing statistical
bias correction for regional climate modelling studies.
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Janjić ZI. 1990. The step-mountain coordinate: Physical package. Mon.

Weather Rev. 118: 1429–1443.
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