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Simple Summary: People using forested parks for recreation often spend most time in grassy paths
or meadows. These transitional zones are referred to as “ecotones”. In this study, we monitored
the seasonal dynamics of questing ticks in forest/path and forest/meadow ecotones in five areas
in Middlesex County, New Jersey. We found anthropophilic species such as Ixodes scapularis,
Amblyomma americanum, and Dermacentor variabilis coexisting with Haemaphysalis longicornis, an
invasive tick species first detected in NJ in 2017. Surveillance was conducted weekly from March
to November 2020, and collected ticks were identified. The most abundant tick species was H.
longicornis. The presence of anthropophilic ticks suggests the need for specific control approaches
to target these habitats. In addition, the extraordinarily high numbers of H. longicornis collected in
ecotones highlight the importance of monitoring its expansion due to its potential as a vector of
animal and human diseases.

Abstract: People often use parks and other forested areas for outdoor activities such as hiking and
walking their dogs. Areas of primary use are paths or grassy meadows on the edges of the forests
that constitute transitional areas between different plant communities (aka ecotones). In this study,
we monitored the seasonal dynamics of questing ticks in forest/meadow and forest/path ecotones
in five areas in Middlesex County, New Jersey (NJ). We found anthropophilic species such as
Ixodes scapularis, Amblyomma americanum, and Dermacentor variabilis coexisting with Haemaphysalis
longicornis, an invasive tick species first detected in NJ in 2017. Surveillance was conducted weekly
from March to November 2020, and collected ticks were identified. The most abundant tick species
was H. longicornis (83%), followed by A. americanum (9%), I. scapularis (7%), and D. variabilis (<1%).
The seasonal dynamics of A. americanum and I. scapularis in the ecotone were similar to previous
surveys in forest habitats. The presence of anthropophilic ticks, particularly I. scapularis, suggests
the need for specific control approaches to target these habitats. In addition, the extraordinarily
high numbers of H. longicornis collected in ecotones (1.70 ticks/m2) and frequent reports of this
species on dogs highlight the importance of monitoring its expansion due to its potential as a
vector of animal and human diseases.

Keywords: ticks; ecotone; Haemaphysalis; Ixodes; Amblyomma; Dermacentor

1. Introduction

Tick-borne diseases continue to be a public health concern in the USA as the
number of cases has increased in recent years [1,2]. The ongoing expansion of Ixodes
scapularis Say and the increase in abundance of Amblyomma americanum (L.) throughout
the Northeast and upper Midwest, as well as the recent detection of the invasive tick,
Haemaphysalis longicornis Neumann, underscores the risk of tick-borne diseases in the
northeastern USA [1,3,4]. Integrated tick management requires a good understanding
of tick ecology [5], in particular, seasonal tick dynamics and habitat range, which can
change due to multiple parameters, including the effects of climate, host communities’
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movements, and human alteration of the landscape [6]. Tick surveillance estimates
the density of host-seeking ticks [7] and is critical for monitoring temporal shifts and
habitat ranges [5].

Different tick species can be found in different habitats (forests, grasslands, and
meadows) depending on their host’s preference and ability to cope with temperature
and humidity, which are impacted by canopy, shrub, and leaf litter composition [8–11].
For example, Ixodes scapularis is often most abundant in hardwood forests, while A.
americanum is active in drier and warmer conditions than those tolerated by sympatric I.
scapularis populations [9,10].

Ecotones are transitional areas between two environments that harbor specific arthro-
pod communities [12,13]. While in New Jersey (NJ) A. americanum is also associated with
forests and woodlands, this species as well as D. variabilis can thrive in open habitats, such
as meadows and ecotones [10]. These areas have higher temperatures and lower relative
humidity than forests due to the lack of trees and leaf litter that buffer extreme temperature
and moisture conditions in forested areas [14].

Forest–grass ecotones, particularly those modified or originated by human activity,
such as public parks and recreational areas, play an essential role in the enzootic cycle
of infectious diseases, including zoonotic and vector-borne diseases, and have been
associated with their re-emergence [15–17]. New Jersey has a high incidence of tick-
borne diseases [18]; however, it lacks statewide surveillance to monitor tick species
distribution and abundance, which are critical to implementing tick control strategies.
This study aims to fill this gap by examining the abundance and seasonality of tick
species in the ecotone of public parks and recreational areas to examine the likelihood of
tick-risk encounters for humans and pets.

2. Materials and Methods
2.1. Study Area

This study was conducted in five New Brunswick and Piscataway public parks and
recreational areas within the Rutgers School of Biological and Environmental Sciences
and the NJ Agricultural Experiment Station (Figure 1 [19]). The sites included deciduous
forests dominated by oak and maple trees and huckleberry and blueberry shrubs [20].
Site 1 was within a botanical garden composed of small forest patches near the Raritan
river; site 2 was located in one of Rutgers’ horticultural research farms; site 3 was
composed of small forest fragments and grass meadows used for experimental goat
and sheep rearing; site 4 was a meadow and wooded park associated with a conference
center; and site 5 was an ecological forest preserve with a network of trails. At each site,
we sampled three 20 m transects delimitated by permanent flags and arranged along
the ecotone border. The vegetation between the mowed lawn or paths and the forest
comprised low brushes and mixed grasses.

All sites were in Middlesex County (NJ), where the annual average temperature
is 13 ◦C (minimum 8 ◦C and maximum 19 ◦C), and the annual total precipitation is
49 inches [21].
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Cover [19].

2.2. Tick Surveillance

Tick sampling was conducted weekly from mid-March until the end of November
2020. Although Ixodes scapularis adults were still active in December–February, based
on preliminary surveys, the period chosen is when overall tick abundance was highest.
Sampling was performed between 0900 h and 1600 h using a white crib flannel sweep
measuring 50 × 100 cm with a PVC pipe handle [22]. Each transect was sampled in
2 m intervals because H. longicornis does not attach firmly to the flannel and often drops
off over longer intervals [23]. Ticks were collected from both sides of the sweep and
morphologically identified in the laboratory to species using a stereomicroscope (Leica S8
APO, Leica Microsystems) following appropriate taxonomical keys [24–26]. Tick numbers
by life stage and species were recorded for each site. In addition, temperature and relative
humidity data from a close-by weather station (Society Hill, NJ) were registered for each
site right before sampling to determine the potential effects of environmental conditions
on tick abundance. The observation of extreme shifts in local measures of temperature
and relative humidity depending on where the measuring device was placed (for example,
wind direction, recent rain event, patches of sun, etc.) led us to use data from the weather
station instead of direct measurements using hand-held devices.

2.3. Data Analyses

We calculated relative abundance of ticks as the number of ticks collected per meter.
We used non-parametric Kruskal–Wallis test and Dunn’s multiple comparisons tests to
evaluate differences in abundance between sites. We correlated the periods of maximum
tick abundance or peaks by species and life stage with temperature and relative humidity
using non-parametric Spearman rank correlations. The correlation between tick abundance
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and saturation deficit (SD) was also examined. Saturation deficit is the atmosphere’s drying
power and combines temperature and relative humidity data according to the formula [27]:

SD = (1 − RH/100) × 4.9463eˆ0.0621T

Finally, a linear regression was used to define the relationship between those correlated
variables (maximums of relative tick abundance and temperature, relative humidity, or
SD). For all tests, the level of statistical significance was p = 0.05. All statistical tests were
performed using GraphPad Prism version 8 [28].

3. Results

We collected a total of 10,884 ticks of 4 different species, including H. longicornis, A.
americanum, I. scapularis, and D. variabilis. The most abundant tick species was H. longicornis
(83.1%), followed by A. americanum (9.5%), I. scapularis (7.3%), and D. variabilis (0.1%)
(Table 1). All life stages were collected for all identified species except for D. variabilis,
for which adults were the only stage found. Larvae were the most abundant stage for H.
longicornis, A. americanum, and I. scapularis, representing 89%, 86%, and 81% of the total
number of species, respectively. Nymphs and adults represented 9% and 2% of the total tick
number for H. longicornis, 9% and 5% for A. americanum, and 5% and 13% for I. scapularis
(Table 1).

Table 1. Number of ticks per stage and species collected in ecotone areas from five sites in New
Brunswick, NJ. Total proportion of each life stage is shown between parentheses for each tick species.

Life
Stages

Amblyomma
americanum

Dermacentor
variabilis

Haemaphysalis
longicornis

Ixodes
scapularis

Total
Ticks

Larvae 887 (86%) 0 8078 (89%) 647 (81%) 9612 (88%)
Nymphs 95 (9%) 0 819 (9%) 41 (5%) 955 (9%)
Adults 50 (5%) 10 (100%) 151 (2%) 106 (13%) 317 (3%)

Total 1032 10 9048 794 10,884

Overall tick abundance and the abundance of A. americanum did not differ among sites;
however, site 5 had a higher abundance of H. longicornis than site 1, and site 4 had a lower
abundance of I. scapularis than site 3 (Table 2). The number of D. variabilis recorded was
not sufficient to assess statistical differences between sites. To increase the statistical power
when analyzing the effect of environmental variables on each tick species and life-stage
abundance, we pooled data from the five sites.

Table 2. Tick abundance in five different ecotone sites in New Brunswick, NJ. Kruskal–Wallis (KW)
tests and ANOVA (F) were used to analyze significant differences between sites in total ticks and
per tick species: p < 0.05 (*). Different letters represent significant differences using Dunn’s multiple
comparisons tests (p < 0.05).

Site Amblyomma
americanum

Haemaphysalis
longicornis

Ixodes
scapularis

Total
Ticks

1 0.022 0.039 a 0.176 ab 0.236
2 0.147 0.361 ab 0.070 ab 0.579
3 0.196 0.845 ab 0.113 a 1.154
4 0.101 0.459 ab 0.004 b 0.564
5 0.010 2.198 b 0.026 ab 2.238

Statistic
p-value

3.90 (KW)
0.4196

10.45 (KW)
0.0335 *

10.43 (KW)
0.0338 *

1.79 (F)
0.1537

Data of total ticks were transformed (Log (Y + 0.1)) to normalize the distribution.
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Haemaphysalis longicornis was the dominant species in the ecotone from late March to
late October (Figure 2), except in July when coinciding with their respective peaks of larval
activity, I. scapularis and A. americanum were the most abundant species. After the end of
October, only I. scapularis adults were found (Figure 2).
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Figure 2. Seasonal dynamic of each life stage and tick species collected. Samplings with zero ticks
collected are not represented. (a) Haemaphysalis longicornis; (b) Amblyomma americanum; (c) Ixodes
scapularis; (d) Dermacentor variabilis. Notice the difference in scale (5× higher) for H. longicornis.

Nymphs of H. longicornis were the first stage detected in the ecotone of deciduous
forests in Middlesex (NJ) and were present from 18 March to 6 October. Adults were present
in the ecotone from mid-May to the beginning of September, overlapping with nymphs and
larvae in summer (Figure 2a). Larvae were collected in small numbers between 12 April
and 9 June, but their activity peaked from mid-August until the end of October. The peak
of nymphal activity ranged from mid-April to the first week of June when the temperature
increased (Figure 3a). Moreover, the highest SD values were registered between June and
August (Figure 3b), when adult activity peaked, and the number of nymphs decreased
(Figure 2a). Indeed, the abundance of adults was correlated with temperature, relative
humidity, and saturation deficit (Table 3). Temperature and SD were linearly related to H.
longicornis adult abundance in a positive tendency (Figure 4 and Table 4), while relative
humidity was negatively correlated with adult abundance and positively related to the
nymphal peak (Tables 3 and 4 and Figure 4). In contrast, larval activity did not correlate
with any environmental variable (p > 0.05; Table 3).
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Table 3. Spearman rank (rs coefficient) correlations between the relative abundance of tick activity peaks and environmental variables. Life stages: larvae (L),
nymphs (N), and adults (A). Asterisks represent a significant correlation (p < 0.05 (*), p < 0.01 (**)).

Tick
Species

Life
Stage

Peak
of Tick

Activity
N

Temperature Relative Humidity Saturation Deficit

rs 95% CI p-Value rs 95% CI p-Value rs 95% CI p-Value

Haemaphysalis
longicornis

L 18 August to
21 October 48 −0.092 −0.374 to 0.205 0.5332 −0.040 −0.329 to 0.255 0.785 −0.008 −0.299 to 0.285 0.956

N 6 April to
16 June 40 0.004 −0.316 to 0.324 0.978 0.355 0.0395 to 0.606 0.024 * −0.126 −0.429 to 0.202 0.439

A 15 July to
1 September 40 0.351 0.035 to 0.603 0.026 * −0.339 −0.595 to −0.021 0.032 * 0.369 0.056 to 0.617 0.019 *

Amblyomma
americanum

L 29 July to
1 September 30 0.303 −0.075 to 0.605 0.104 −0.140 −0.485 to 0.242 0.459 0.207 −0.176 to 0.536 0.272

N 3 May to
6 July 41 0.220 −0.103 to 0.502 0.166 0.251 −0.070 to 0.525 0.113 0.155 −0.169 to 0.449 0.332

A 16 May to
2 July 30 −0.121 −0.470 to 0.261 0.525 −0.084 −0.440 to 0.295 0.659 −0.105 −0.457 to 0.275 0.580

Ixodes
scapularis

L 6 July to
1 September 45 0.029 −0.275 to 0.328 0.849 −0.018 −0.318 to 0.285 0.908 0.004 −0.297 to 0.306 0.976

N 3 May to
2 July 36 0.139 −0.208 to 0.455 0.420 0.112 −0.234 to 0.433 0.515 0.068 −0.276 to 0.396 0.693

A 21 Oct to
24 November 30 0.549 0.225 to 0.764 0.002 ** −0.029 −0.395 to 0.345 0.880 0.377 0.008 to 0.655 0.040 *
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Table 4. Simple linear regressions between the relative abundance of tick activity peaks (Y) and
environmental variables (X). Asterisks represent a significant correlation (p < 0.05 (*)).

Environmental
Variables

Haemaphysalis longicornis
(N = 40)

Ixodes scapularis
(N = 30)

Nymphs Adults Adults

Temperature

Slope 0.007 0.005
Std. Error 0.003 0.002

R2 0.11 0.19
F (DFn, DFd) 4.632 (1, 38) 6.686 (1, 28)

p-value 0.038 * 0.015 *

Relative
humidity

Slope 0.012 −0.002
Std. Error 0.005 0.001

R2 0.14 0.13
F (DFn, DFd) 6.132 (1, 38) 5.759 (1, 38)

p-value 0.018 * 0.021 *

Saturation
deficit

Slope 0.005 0.010
Std. Error 0.002 0.004

R2 0.14 0.17
F (DFn, DFd) 6.283 (1, 38) 5.565 (1, 28)

p-value 0.017 * 0.025 *

Adults of A. americanum were occasionally found from March to the end of July
(Figure 2b). Nymphs were consistently present from April 25 to the end of summer
in September, although their numbers dramatically decreased in mid-July (Figure 2b).
Lastly, larvae were present throughout the summer, from the end of July to the week of
22 September. The activity of the different tick stages of A. americanum did not correlate
with environmental conditions (Table 3).

The majority of I. scapularis adults were collected in the fall on warm days (>10 ◦C), and
occasionally in early spring during a few weeks between March and April (Figures 2c and 3).
Indeed, tick activity positively correlated with temperature and SD but not with relative
humidity (Figure 5 and Table 3). On the other hand, nymphs remained active in the spring
and early summer, from mid-April to the first week of July. However, they were sporad-
ically observed in small numbers until November (Figure 2c), while larvae were active
during the summer season from the first week of July to mid-September. The abundance
of immature stages did not correlate with temperature, relative humidity, or SD (Table 3).
Lastly, between mid-August and October, I. scapularis was rarely found in the ecotone
(Figure 2c).
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Adults of D. variabilis were sporadically found in the early spring and summer
(Figure 2d), while immature stages were never collected. Due to the small num-
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ber of individuals collected, correlation analyses with environmental variables were
not performed.

4. Discussion

We found that ecotone habitats around and inside public parks and recreational areas
in Middlesex (NJ) have a diverse population of ticks and their life stages. Significantly, we
found that the invasive species H. longicornis, a tick identified in the US (NJ) in 2017 [29]
is the dominant species in this habitat. However, other anthropophilic ticks, including I.
scapularis and A. americanum are also present in high numbers. These tick species vector
animal and human diseases and are actively present from the early spring until the fall,
making the ecotone of public parks and recreational areas a high tick encounter risk area
for humans and pets.

The seasonal dynamics of H. longicornis we found are similar to previous reports in a
suburban area in NJ [23,30] and other eastern USA states [31–34]. However, the density of
ticks in the ecotone in our study (1.7 ticks per m2) is higher than in other habitats [33,34]
and like those found in previous studies conducted in ecotone habitats [23,30]. Collectively,
these results indicate that H. longicornis is well adapted to edge habitats, which typically
have drier conditions than forests [35]. This is not surprising since H. longicornis is often
found in open meadows and forests in Asia and Oceania, suggesting that this tick species
thrives in a wide range of temperature and humidity conditions [36–38]. In addition,
biological factors, such as host availability, are critical for tick development and can drive
important differences in tick densities [31,39]. For example, meso-mammals are the primary
host for the immature stages in Asia, while in the USA, opossums and raccoons are the
main potential hosts [40]. In contrast, small rodents do not seem to be important hosts
for the immature stages [41], while deer and livestock can support all life stages [29,40].
Therefore, differences in H. longicornis densities may be driven by differences in the host
communities between different habitats.

Despite the clear succession of H. longicornis stages throughout the year, there was
considerable overlapping between life stages. This phenomenon has been described in
Asia [38,42,43], Oceania [36], and, recently, in the USA [23]. The development stage se-
quence (nymph→ adult→ larva) is observed throughout the year with nymphs (spring)
followed by adults (summer) and larvae (late summer and early fall), which suggests that
the nymphal stage may be the main overwintering stage in NJ, as it was proposed recently
for Virginia populations [44].

While H. longicornis is not an anthropophilic tick species, there are reports of human
bites in the USA [45,46]. Furthermore, the presence of the tick in high numbers in highly
urbanized areas and ecotone habitats suggests that the number of human and pet bites
will likely increase in the following years. The public health impact of H. longicornis in
the USA is still unclear. Vector competence experiments have shown that H. longicornis is
not a competent vector of Borrelia burgdorferi—the agent of Lyme disease [47]; Anaplasma
phagocytophilum—the agent of human granulocytic anaplasmosis [48]; or Francisella tu-
larensis—the agent of tularemia [49]. In contrast, H. longicornis is a competent vector of
Rickettsia rickettsii—the causative agent of Rocky Mountain spotted fever [50] and Heartland
virus [51]. In addition, the Bourbon virus has been detected in field-collected specimens of
H. longicornis [52].

More proximally, H. longicornis represents a novel threat from a veterinary standpoint
as it frequently bites dogs [53,54] and can transmit Babesia gibsoni—one of the causative
agents of canine babesiosis and an emerging pathogen in North America [55,56]. Coy-
otes can serve as hosts of B. gibsoni [57], and H. longicornis could mediate the enzootic
transmission of the parasite between coyotes and stray dogs. Furthermore, the H. longi-
cornis vectors Theileria orientalis Ikeda, an important parasite of cattle in New Zealand,
Australia, and Japan [58]. This parasite has been detected in questing H. longicornis ticks in
Virginia [59] and cattle [60]. Moreover, vector competence experiments have shown that
USA H. longicornis ticks transmit Theileria orientalis Ikeda to calves [61].



Insects 2023, 14, 258 10 of 15

Other tick species, including I. scapularis and A. americanum, were frequently found
in the ecotone. The presence of anthropophilic ticks in edge habitats highlights the risk of
tick encounters and transmission of tick-borne diseases in recreational areas and public
parks. The spatial distribution patterns of I. scapularis have been studied in deciduous and
coniferous woodlands. Some studies have found a greater abundance of I. scapularis in
deciduous forests [62], while others showed a greater abundance in coniferous forests [8].
Nevertheless, it seems that the spatial distribution of I. scapularis is dynamic rather than
dependent on the forest habitat and mediated by animal host movement [63]. Our results
showed that I. scapularis is present in significant numbers in the ecotone. This result aligns
with previous studies that showed that I. scapularis is commonly found in transitional
brushy areas and edge habitats (ecotone) in the Northeast and upper Midwest [63–65].

Interestingly, the proportion of nymphs of I. scapularis in the ecotone differed from
those observed for H. longicornis and A. americanum. While the proportion of nymphs
of H. longicornis and A. americanum was roughly 10%, the proportion of nymphs of I.
scapularis was 5%. Nymphs dwell in leaf litter and ground-level vegetation and have
been reported to be more abundant in closed-canopy forests than in open habitats [66].
The leaf litter retains moisture, protecting nymphs from desiccation. In addition, leaf
litter protects nymphs from harsh winter conditions, increasing their overwintering
survivorship [67]. However, the leaf litter mass and coverage significantly decrease
in the ecotone compared to the forest [68], which could explain the low proportion of
nymphs compared to other life stages.

Instead, the proportion of adults in the ecotone is high compared to other tick species
and higher than that of nymphs, suggesting that I. scapularis adults are well adapted to
the ecotone. Moreover, the fact that adults are more abundant than nymphs suggests a
tick influx most likely mediated by animals. Overall, the presence of I. scapularis in the
ecotone highlights the importance of implementing tick-control programs in public parks
and residential areas because it is the most important vector of human diseases in the
northeastern USA [4].

The second most prevalent tick species in the ecotone was A. americanum, an aggressive
biter responsible for most human bites in the USA [69,70] and NJ [71]. In a passive
surveillance study conducted in NJ, most nymphs and adults of A. americanum were
submitted during the spring and early summer [71], when these stages are most active in
edge habitats. In the ecotone, larvae were only present in late summer, coinciding with the
peak of larvae reported on hosts [72]. In NJ, all stages of this tick species are well adapted
to different microclimate conditions [9], and therefore, it is not surprising to find them
in ecotone habitats. However, it was less abundant than H. longicornis in our study. It is
plausible that the invasive H. longicornis have displaced A. americanum in terms of relative
abundance in ecotone areas of NJ due to their ability to reproduce asexually. In any case, the
lone star tick is an important vector of human diseases and transmits the agents of human
ehrlichiosis, Ehrlichia chaffeensis and E. ewingii, and tularemia, Francisella tularensis [73,74],
and it is associated with the human alpha-gal “red meat” allergy [75].

Adults of D. variabilis are tolerant to desiccation and quest on open habitats, including
meadows, ecotones, roadsides, and beachgrass [76]; however, only a few adults were
collected in this study. In contrast, immatures were not found, which is expected since
they are nidiculous [76,77]. Although D. variabilis vectors R. rickettsii, the agent of Rocky
Mountain spotted fever, it does not seem to play a significant role in the transmission of
this rickettsiosis in NJ [78]. Nevertheless, the presence of H. longicornis, which vectors R.
rickettsii under laboratory conditions, and their ability to thrive in habitats similar to those
exploited by D. variabilis could facilitate the transmission of R. rickettsii in enzootic cycles
and increase the risk of human transmission.

Interestingly, the abundance of H. longicornis adults correlated with drier conditions,
including higher temperatures, lower humidity, and higher saturation deficit. This result
is remarkable because adults are active during the summer and, therefore, more active
during hot summer days. In contrast, nymph abundance correlated with higher humidity
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and did not seem to be affected by temperature and SD. These results support that adults
are the most drying-tolerant stage in the field. The only other stage for which we found an
association with abiotic factors was I. scapularis adults. There was a correlation between
abundance and temperature and SD. This is not surprising because adults, present in
the fall and warmer days in this season, activate the questing behavior of the remaining
adults in the field. It is well established that temperature and humidity can affect daily tick
activity [79]. We did not look into changes in questing behavior throughout the day in this
study that can be more dramatic than those recorded in this study.

In summary, the ecotone of parks and recreational areas in central New Jersey is
a suitable habitat for important tick vectors of human and animal diseases. Thus, tick
surveillance in public parks and recreational areas is critical to determine the seasonal
dynamics of tick species in edge habitats and inform stakeholders about their potential risk.
Tick surveillance informs the public of the continuous risk that ticks represent for people
and pets throughout the year and the importance of using personal protection measures.
In addition, it can help park officials develop control and prevention plans to minimize
the presence of ticks, including posting signals to alert the public of the presence of ticks,
mowing the edge of trails, or implementing control in tick-infested areas that are heavily
used by pets and people, among other measures. We have included a calendar with the
proportion of each tick species and stage that could be useful for stakeholders in Middlesex
(Figure 6).
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