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Abstract: Low-cost sensors (LCS) have been increasingly deployed to monitor PM2.5 concentrations.
More than 1500 LCS have been installed in Thailand to increase public awareness of air quality.
However, performance of these sensors has not been systematically investigated. In this study,
PM2.5 LCS were co-located next to a PM2.5 federal equivalent method (FEM) reference instrument
at three Thai locations—in the north, center and northeast. We evaluated the performance of a
PM2.5 LCS (PMS7003, Plantower) to understand the key factors affecting performance, including
emission sources, relative humidity, temperature and PM2.5 concentration. Low PM concentration
and high humidity levels had a significant impact on performance. Sensors in a high traffic emission
area showed low correlation. The unadjusted PM2.5 LCS performance varied with locations. Errors
were mainly observed at low concentrations. They significantly underestimated concentrations in
congested urban environments. After calibration, accuracy was improved with multiple regression
models. The performance of sensors only at Chiang Mai (CM) during the dry season and Ubon
Ratchathani (URT) during the dry and wet seasons were acceptable with coefficient of variation:
5.8 ± 4.7–6.8 ± 5.0%, slope: 0.829–0.945, intercept: 1.12–5.49 µg/m3, R2: 0.880–0.934 and RMSE:
4.3–5.1 µg/m3. In the congested area in Bangkok (BKK), they underestimated concentrations of
small particles.

Keywords: low-cost PM2.5 sensors; Southeast Asia; emission sources; long-term study

1. Introduction

Air pollutants in many countries in Southeast Asia are influenced from diverse sources.
In Thailand, the major sources are vehicles, industry, long-range transport, secondary
aerosol formation as well as open biomass burning [1–11]. Traffic is the most influential
factor on air quality in the capital city of Bangkok, though some studies indicated that
biomass burning was the major cause of atmospheric aerosols during the dry period [6,7,12].
Air quality in northern Thailand was annually affected by domestic and transboundary
sources as a result of forest fires and agriculture waste burning during the dry season [1,3,9].
Agricultural area in Thailand covers 24 M ha or 46.5% of the total land [13]. The northeastern
region is the largest agricultural area (~10 M ha), followed by the northern and central
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regions [14]. Normally, agricultural waste has been burned in the open for clearing and
preparing for the next crop [15]: January to April is the biomass intensive burning period,
not only in Thailand, but also in other countries in the Mekong Subregion, including Laos,
Cambodia, Vietnam and Myanmar [2]. All these events cause Thailand serious and long-
term air pollution problems, particularly fine particles or PM2.5. Though the standard for
PM2.5 in Thailand has been enforced since 2010, it was not until recently that there has been
strong public awareness: the advent and widespread use of low-cost and easily acquired
PM2.5 sensors contributed to this.

Air quality monitoring networks in Thailand have been established by the Pollution
Control Department (PCD) to monitor the air pollutants, including PM10, PM2.5 and noxious
gases (CO, NO2, SO2 and O3). PCD started to monitor ambient PM2.5 concentrations in 2011
with only three monitoring stations in three Thai megacities—Rayong, Chiang Mai and
Bangkok. National allowable ambient PM2.5 concentrations in Thailand were set on 28 Jan
2010, with the average 24-h concentration not to exceed 50 µg/m3 [16]. Currently, ambient
PM2.5 concentrations monitoring stations have been expanded to more than 77 stations in
45 cities [16]. However, the FEM instruments [17], such as the tapered element oscillating
microbalance (TEOM) and the beta attenuation monitor (BAM), are still relatively expensive
and they are only deployed at central monitoring sites in each province. One monitors
station cannot represent the correct spatial PM2.5 concentrations [18–21].

Low-cost sensors (LCS) for air quality monitoring have been widely used in recent
years to fill gaps in the existing air quality monitoring networks and provide the public
with locally relevant particle concentrations, especially PM2.5, in real time, at much higher
spatial and temporal resolutions. At present, LCS have been deployed to monitor PM2.5
concentrations, with more than 1500 monitoring stations installed in Thailand [22]. In
general, the performance of the PM2.5 LCS showed a high correlation relative to FEM in-
struments (R2 > 0.85) in the laboratory under controlled conditions [19,21,23–25]. However,
typically, they were less accurate in the field, where correlations were found in the range
0.36 ≤ R2 ≤ 0.99 [20,21,26–29], with variations due to sources, particle sizes and shapes,
compositions and concentrations [30]. The different meteorological conditions, including
temperature and relative humidity (RH), also influenced LCS performance (20). Therefore,
a PM2.5 LCS calibrated under laboratory condition may not be suitable for direct field
measurements [21,27,31].

Calibration of LCS is necessary due to both the physical and chemical characteristics of
aerosols [32] and meteorological conditions [28,33]. Levy Zamora et al. [32] evaluated three
Plantower PMSA003 sensors exposed to eight PM sources, including incense, oleic acid,
NaCl, talcum powder, cooking emissions and monodispersed polystyrene latex spheres,
under controlled laboratory conditions. The accuracy ranged from 13% to >90% compared
with reference instruments; hence, PM sources influenced LCS performance. The LCS
were most accurate for sizes < 1 µm. Additionally, meteorological conditions, including
temperature and RH, significantly influenced LCS performance [28,33]. Levy Zamora
et al. [32] showed that the LCS error increased at higher RH levels (greater than 80%) in
the field. Jayarathne et al. [33] also found that the LCS mass concentrations were at least
80% higher than the FEM values at high RH levels (78–89%). Additionally, Levy Zamora
et al. [32] showed that an RH level > 50% deceased the accuracy of the LCS. Therefore,
they need to be calibrated under realistic ambient conditions before deployed for ambient
PM2.5 monitoring.

A common approach for field calibration of the LCS is to collocate the LCS with
an FEM/federal reference method (FRM) instrument and use mathematical models to
adjust the LCS data to reference data [34,35]. Regression model is one of the earliest
methods for LCS calibration [28,31,35]. Moreover, the machine learning (ML) methods
were recently applied to improve the accuracy of the linear regression [34,36]. However,
regression models including linear regression (LR), multi-linear regression (MLR) and
nonlinear regression (NLR) are still widely used to calibrate the LCS, because of their
simplicity and ease of implementation [35]. Zheng et al. [28] developed calibration models
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to improve the LCS performance against an FEM by using the LR, MLR and NLR based on
PM2.5 concentration, temperature and RH in India. Zusman et al. [31] also developed an
MLR calibration model based on the same parameters. The model showed the moderate
accuracy for LCS versus the reference with R2 values in the range 0.67–0.84. Hong et al. [21]
developed a set of models based on LR, MLR and NLR to correct the PM2.5 concentration
from LCS in Taiwan: they found that NLR methods were superior to LR. Barkjohn et al. [37]
proposed an MLR calibration model, based on PM2.5 concentration and RH, to be used
as a US-wide correction model for the Purple Air sensors. Though the LCS performance
has been studied in many countries, including India [28], Korea [38], Taiwan [21] and the
USA [37], the studies of performance of PM2.5 LCS for field measurements in Thailand are
limited and not well understood, especially related to locations and seasonal conditions.

This study adds new insights to understanding the key factors affecting the perfor-
mance of LCS, including relative humidity, temperature and PM2.5 concentration. The
tested sensors had been operating for a long-term period, 15–16 months, at different loca-
tions in Thailand. In addition, LCS calibration based on reference concentrations, RH and
temperature levels by using linear regression (LR) and multiple linear regression (MLR)
models were also investigated to improve the PM2.5 LCS performance so that it became an
acceptable suppletory means for public monitoring of PM2.5 concentration. This will help
to increase public awareness on air quality, which directly affects their health.

2. Materials and Methods
2.1. The Low-Cost PM2.5 Sensors

In the present study, the particulate matter low-cost sensors used for field calibra-
tion were made by Plantower (model PMS7003) equipped with custom-designed elec-
tric circuit and a housing as shown in Figure 1. The PMS7003 used a light-scattering
technique to measure real-time PM mass concentrations [26]. The PM2.5 measurement
range was 0–1000 µg/m3, with a resolution of ±1 µg/m3 and response time 1–10 s,
provided by the manufacturer [39]. The dimension of the miniature sensor used was
48 mm × 37 mm × 12 mm. The manufacturer reported that maximum errors were rela-
tively low (±10 µg/m3 for <100 µg/m3 concentrations and ±10% for 100–500 µg/m3 con-
centrations). The RH and temperature for calibration were measured by thermo-hygrometer
(LSI LASTEM, DMA875) at each monitoring site. The primary sensor reported data include
PM1, PM2.5, and PM10 concentrations with a factory-specified correction factor for ambient
measurement concentrations (CF = atm), as recommended by the manufacturer. The de-
scription of the selected low-cost PM2.5 sensors (LCS) in the present study was mentioned
in a field evaluation study of PM2.5 [40].

In the PMS low-cost sensor, the raw PM2.5 mass concentration was obtained by con-
verting particle number concentrations from different particle size bins. The effect of
number-to-mass conversion on the performance of the PMS5003 was studied by Hong
et al. [21]. A good correlation between the measured number concentration and the raw
PM2.5 mass concentration (R2 = 0.99) was found, but a high conversion ratio was needed.
This indicated that using the measured number concentrations from different size bins for
calibration can provide similar results to the use of raw PM2.5 concentrations. In this study,
we used the PMS7003, which is expected to perform similarly to the PMS5003 because
it has the same particle size bins [39,41]. Additionally, a field test confirmed the similar
performance of the two sensors compared to the PM2.5 FEM monitor [42]. Therefore, the
effects of the measured number concentrations from different size bins on the performance
of the PMS7003 can be considered negligible.
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Figure 1. (a) Custom designed printed circuit board and its components for the Plantower PMS7003 
sensor package; (b) closed louver box housing all components for outdoor monitoring. 
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The low-cost PM2.5 sensors were placed at three PCD monitoring stations in Chiang 
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the PM2.5 FEM instrument sampling probe on the rooftop of each PCD station (~3 m above 
ground). The FEM instruments were a BAM-1020 (Met One, Grants Pass, OR, USA) at the 
CM site, an MP101M (ENVEA, Poissy, France) at the BKK site and a T640 (Teledyne, Thou-
sand Oaks, CA, USA) at the URT site. Key specifications of these instruments and the test 
periods are in Table 1: brief descriptions of the FEMs are in [21]. The FEM instrument at 
URT was calibrated to the FRM by the National Institute of Metrology (Thailand) [43]; the 
correlation between FEM and FRM was acceptable with regression equation: y = 1.084x + 
4.093 (R2 = 0.94). The data from FEM instruments were collected and provided by PCD. 
The LCS data were transmitted in real time to our server. The PM2.5 FEM instruments also 
monitor meteorological parameters, including ambient temperature and relative humid-
ity, and they were used in our LCS calibration. Weather in Thailand is influenced by two 
monsoon seasons: the northeast monsoon from December to March and the southwest 
monsoon from May to October [44] and is usually described as falling into two seasons 
according to the rainfall: the dry season (November to April) and wet season (May to Oc-
tober) [45]. The location characteristics at each sampling site in all these regions is de-
scribed below.  

In the northern part of Thailand, LCS were placed at Chiang Mai municipal center, 
Chiang Mai (PCD station#35/CM). Chiang Mai is one of the largest and most famous cities 
in Upper Southeast Asia (SEA): the geography consists of high mountains along the 
north–south corridor, covered with forest (69.7%) and agricultural areas (23.7%) [46]. Its 
air pollution is normally influenced by domestic and transboundary sources, particularly 
forest fires, as well as agriculture waste burning during the dry season [2,9]. Temperature 
inversions in the winter enhance accumulation of the pollutants near the ground [9]. In 
central Thailand, LCS were placed at the National Housing Authority Public Community, 
Din Daeng District, Bangkok (PCD station#54/BKK): it is a business center, where traffic 
is among the worst in Bangkok, from normal to slow speed vehicles. In the northeast, LCS 
were placed in Ubon Ratchathani (PCD station#83/URT), a large province in northeast 
Thailand, bordering with Cambodia. It is an agricultural-based province, where rice 
paddy fields cover the major portion of the land [47]. The burned area from agricultural 
residue in Thailand was mainly found in the northeast [12,47]. Rice and sugarcane residue 
burning in the northeast contributes to 50% and 40% of total agricultural waste burned in 

Figure 1. (a) Custom designed printed circuit board and its components for the Plantower PMS7003
sensor package; (b) closed louver box housing all components for outdoor monitoring.

2.2. Sampling Locations and Periods

The low-cost PM2.5 sensors were placed at three PCD monitoring stations in Chi-
ang Mai (CM) in the north, Bangkok (BKK) in central and Ubon Ratchathani (URT) in
the northeast of Thailand—see Table 1 and Figure 2. Three identical LCS were located
next to the PM2.5 FEM instrument sampling probe on the rooftop of each PCD station
(~3 m above ground). The FEM instruments were a BAM-1020 (Met One, Grants Pass, OR,
USA) at the CM site, an MP101M (ENVEA, Poissy, France) at the BKK site and a T640
(Teledyne, Thousand Oaks, CA, USA) at the URT site. Key specifications of these instru-
ments and the test periods are in Table 1: brief descriptions of the FEMs are in [21]. The
FEM instrument at URT was calibrated to the FRM by the National Institute of Metrology
(Thailand) [43]; the correlation between FEM and FRM was acceptable with regression
equation: y = 1.084x + 4.093 (R2 = 0.94). The data from FEM instruments were collected
and provided by PCD. The LCS data were transmitted in real time to our server. The PM2.5
FEM instruments also monitor meteorological parameters, including ambient temperature
and relative humidity, and they were used in our LCS calibration. Weather in Thailand is
influenced by two monsoon seasons: the northeast monsoon from December to March and
the southwest monsoon from May to October [44] and is usually described as falling into
two seasons according to the rainfall: the dry season (November to April) and wet season
(May to October) [45]. The location characteristics at each sampling site in all these regions
is described below.

In the northern part of Thailand, LCS were placed at Chiang Mai municipal center,
Chiang Mai (PCD station#35/CM). Chiang Mai is one of the largest and most famous
cities in Upper Southeast Asia (SEA): the geography consists of high mountains along the
north–south corridor, covered with forest (69.7%) and agricultural areas (23.7%) [46]. Its
air pollution is normally influenced by domestic and transboundary sources, particularly
forest fires, as well as agriculture waste burning during the dry season [2,9]. Temperature
inversions in the winter enhance accumulation of the pollutants near the ground [9]. In
central Thailand, LCS were placed at the National Housing Authority Public Community,
Din Daeng District, Bangkok (PCD station#54/BKK): it is a business center, where traffic is
among the worst in Bangkok, from normal to slow speed vehicles. In the northeast, LCS
were placed in Ubon Ratchathani (PCD station#83/URT), a large province in northeast
Thailand, bordering with Cambodia. It is an agricultural-based province, where rice
paddy fields cover the major portion of the land [47]. The burned area from agricultural
residue in Thailand was mainly found in the northeast [12,47]. Rice and sugarcane residue
burning in the northeast contributes to 50% and 40% of total agricultural waste burned in
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Thailand [15,48]. Open burning of the agricultural waste, as well as transboundary haze
from neighboring countries, leads to a high level of air pollution there.

Table 1. Sampling locations, periods, and FEM instruments at three monitoring stations.

Regions Station Name Locations
Instruments

(U.S. EPA FEM
Approved)

Measurement
Technique Duration Dry Season Wet Season

Northern
Thailand:
Chiang Mai
(CM site)

Chiang Mai
municipal center
(PCD station #35)

Lat:18.83737,
Lon:98.97132

BAM1020,
MetOne, USA

Beta
attenuation

1 Dec 2020–31
Mar 2022
(16 months)

Dec 2020–Apr
2021 & Nov
2021–Mar 2022
(n = 7043)

May–Oct 2021
(n = 4005)

Central
Thailand:
Bangkok
(BKK site)

National
Housing
Authority Public
Community Din
Daeng
(PCD station#54)

Lat:13.76470,
Lon:100.55195

MP101M,
ENVEA, France

Beta
attenuation

1 Jan 2021–31
Mar 2022
(15 months)

Jan 2021–Apr
2021 & Nov
2021–Mar 2022
(n = 6022)

May–Oct 2021
(n = 4042)

Northeast
Thailand:
Ubon
Ratchathani
(URT site)

Ubon
Ratchathani
Provincial
Administrative
Organization
(PCD station#83)

Lat:15.245169,
Lon:104.84680

T640, Teledyne,
USA

Light
Scattering

1 Mar 2020–31
May 2021
(15 months)

Mar–Apr 2020
& Nov
2020–Mar 2021
(n = 5198)

May–Oct 2020
& May 2021
(n = 4671)
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2.3. Sensor Calibration

The parameters used in the calibrations of the low-cost PM2.5 sensors in the present
study include the reference monitors, RH and temperature. First, hourly moving averaged
PM2.5 concentrations from the LCS and the accompanying FEM, along with RH, and tem-
perature were collected in a single dataset for each location; the number of data records are
shown in Table 1. The LR and MLR terms were developed to improve the PM2.5 LCS—listed
in Table 2. In those equations, PM2.5-FEM represents is the hourly PM2.5 concentration of
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the FEM measurement, Raw PM2.5-LCS represents the PM2.5 concentration provided by the
LCS and aj to ij are the fitted model coefficients and intercepts. Model#1 is the simple LR
model based on only the PM2.5 concentration. Model#2–Model#4 are the MLR models
with addition of T, RH and both T and RH. MLR models with additional product terms
are Model#5 (add RH and RH and PM2.5 product), Model#6 (add T and RH and product
of RH and PM2.5), Model#7 (add T and product of T and PM2.5), Model#8 (add T and RH
and product of T and PM2.5) and Model#9 (addition of T and RH and multiplication of T,
RH and PM2.5). We used the linear RH model because it had better performance than the
nonlinear RH model [37]. However, we also included the nonlinear RH term, RH2/(1−RH),
in the model for comparison. Details of the calculation were described by [28].

Table 2. Developed calibration models by LR and MLR to improve LCS accuracy.

#Model Type Equations

1 LR PM2.5-FEM = a1 + a2(Raw PM2.5-LCS)
2 MLR PM2.5-FEM = b1 + b2(Raw PM2.5-LCS) + b3(T)
3 MLR PM2.5-FEM = c1 + c2(Raw PM2.5-LCS) + c3(RH)
4 MLR PM2.5-FEM = d1 + d2(Raw PM2.5-LCS) + d3(T) + d4(RH)
5 MLR PM2.5-FEM = e1 + e2(Raw PM2.5-LCS) + e4(RH) + e4(Raw PM2.5-LCS × RH)
6 MLR PM2.5-FEM = f1 + f2(Raw PM2.5-LCS) + f3(T) + f4(RH) + f5(Raw PM2.5-LCS × RH)
7 MLR PM2.5-FEM = g1 + g2(Raw PM2.5-LCS) + g3(T) + g4(Raw PM2.5-LCS × T)
8 MLR PM2.5-FEM = h1 + h2(Raw PM2.5-LCS) + h3(T) + h4(RH) + h5(Raw PM2.5-LCS × T)

9 MLR PM2.5-FEM = i1 + i2(Raw PM2.5-LCS) + i3(T) + i4(RH) +
i5(Raw PM2.5-LCS × T) + i6(Raw PM2.5-LCS × T × RH )

PM2.5-FEM = PM2.5 concentration from FEM; Raw PM2.5-LCS = PM2.5 concentration from LCS; T = Temperature
and RH = Relative humidity.

2.4. Performance Metrics

The performance of the LCS and FEM at each site were examined based on the
U.S. EPA guidelines [43], including precision: coefficient of variation, CV ≤ 30%, bias:
slope (1.0 ± 0.35) and intercept of 0 ± 5 µg/m3, linearity: coefficient of determination,
R2 ≥ 0.7 and error: root mean square error, RMSE ≤ 7 µg/m3. A linear regression for LCS
measurements compared to the reference instrument calculated the slope, intercept and R2

to represent the LCS accuracy.
Precision between identical sensors was characterized by coefficient of variation,

calculated every hour by:

CV =
SD
x

× 100

The root means square error, RMSE, was used to help understand the error associated
with sensors for PM2.5 concentration measurements:

RMSE =

√√√√ 1
N × M

M

∑
j=1

[
N

∑
t=1

(
xt,j − yt

)2
]

where SD is the standard deviation of averaged PM2.5 LCS concentration, x is the mean
PM2.5 LCS concentration (µg/m3), N is the number of samples, M is number of identical
LCS, xt,j is the PM2.5 LCS concentration of sample #j at time t (µg/m3) and yt is the PM2.5

FEM concentration at the same time (µg/m3).
Akaike’s information criterion (AIC) was used to determine the significance of the RH

and temperature term in the MRL models [28]. The AIC values were used to select the best
model and avoid parameter overfitting. A lower value between any comparative pair of
models was preferred. The AIC was calculated from:

AIC =

[
N × ln(

Residual Sum of Squares
N

)]
+ (2 × k)
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where k is the number of parameters.

3. Results and Discussion
3.1. Source Characteristics of PM2.5 in Different Areas

The overall-averaged PM2.5 concentrations from FEM instruments, at all three sites,
obtained from PCD during the year 2020–2022 are listed in Table 3. In general, the ambient
conditions at all stations across Thailand were quite similar. The PM2.5 concentrations and
characteristics could be different from season to season and site to site.

Table 3. Summaries of average PM2.5 FEM concentrations, ratios of LCS to FEM, RH and temperature
(±standard deviation).

Sites
Dry Season Wet Season

PM2.5 LCS
(µg/m3)

PM2.5 FEM
(µg/m3)

Ratio
LCS/FEM

Temperature
(◦C)

RH
(%)

PM2.5 LCS
(µg/m3)

PM2.5 FEM
(µg/m3)

Ratio
LCS/FEM

Temperature
(◦C)

RH
(%)

CM 41.3 ± 29.3 38.3±23.0 1.1 ± 0.3 24.4 ± 5.4 61.1 ± 20.3 10.5 ± 7.5 16.1 ± 5.5 0.6 ± 0.3 27.5 ± 3.3 74.5 ± 16.0
BKK 26.5 ± 17.5 40.5 ± 18.4 0.7 ± 0.3 29.0 ± 2.7 66.4 ± 11.9 14.0 ± 10.8 23.6 ± 9.4 0.6 ± 0.4 29.9 ± 2.9 72.0 ± 12.3
URT 39.2 ± 27.3 43.4 ± 37.3 0.9 ± 0.3 26.9 ± 5.4 59.9 ± 14.9 18.1 ± 15.5 15.4 ± 10.6 1.2 ± 0.5 28.1 ± 3.8 74.6 ± 15.1

Hourly PM2.5 mass concentration from FEM measurement at CM during the dry
season was as high as 246 µg/m3

. The average concentration during the dry season was
38.3 ± 23.0, about two times as high as that during the wet season (16.0 ± 5.5 µg/m3).
Northern Thailand is typically influenced by transboundary and domestic aerosols. Do-
mestic sources of ambient PM in northern Thailand were mostly forest fires (>90% of total
burned area in northern Thailand), especially during the dry season. They occurred mostly
in deciduous dipterocarp forest national parks [9]. Aerosol transport from open biomass
burning area in some parts of Myanmar and Laos also affected air quality in northern
Thailand [1,3,9]. Moreover, temperature inversion plays an important role, leading to high
accumulation of air pollutants during the winter months (November to March) in northern
Thailand [2].

In BKK, the average PM2.5 concentration during the dry season was also approximately
two times as high as that during the wet season. Average PM2.5 concentrations during the
wet season were about 1.5 times higher than those at CM and URT. This is because the
local emission sources, especially vehicle emissions, were uniformly high due to traffic
congestion [8]. As well as vehicle and industrial emissions, local biomass burning and
long-range transport from other countries also contributed to the PM2.5 concentrations
during the dry season which were 2–4 times as high as those in background [6,7]. Hence,
fine particles in Bangkok came from diverse sources, including vehicle emissions, biomass
burning, industrial, construction activities and secondary aerosols [6].

PM levels at URT were significantly enhanced by agricultural waste burning, especially
rice and sugarcane, during the dry season. The northeastern region is the largest agricultural
area (~10 M ha or 42% of the total). Most agricultural waste was burned in the open, for land
clearing and preparing for the next crop, during January to April [15]. PM2.5 concentrations
during the dry season (as high as 322 µg/m3) were higher than those in CM and BKK.

3.2. Time Series of PM2.5 Concentrations, Ratio of LCS and FEM, RH and Temperature

Figure 3 shows the seasonal variation of 1-h PM2.5 concentration from LCS and FEM,
ratio of LCS to FEM, RH and temperature at all three sites. Overall, the uncalibrated LCS
measurements mostly followed the trend in PM2.5 FEM measurements and responded
well to most sudden spikes of mass concentrations. LCS to FEM ratios and meteorological
factors (RH and temperature) are also summarized in Table 3. The LCS/FEM ratio during
the dry season at CM and URT were close to 1, whereas it was lower at BKK. This indicated
that the 1-h averaged ambient PM2.5 levels of uncalibrated LCS at CM and URT matched
well, in general, to those obtained from the FEM instruments. However, PM2.5 LCS
concentrations at URT during the dry season were lower than those from the T640. This
agrees with Hagler et al. [49], who reported that the PM2.5 concentrations from a T640,
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an optically based FEM, closely matched those from a BAM-1020 instrument at lower
concentrations, but overestimated concentrations above ~80 µg/m3. Average RH and
temperature during the dry season ranged from 60 ± 15 to 66 ± 12% and 24.4 ± 5.4 to
29.0 ± 2.7 ◦C, respectively. Average RH during the wet season was significantly higher
than those during the dry season (RH increased 9–24%), while temperature was also slightly
higher. Average temperatures at CM and URT in the dry season were lower, because it
included the winter months (Nov–Feb).
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However, the LCS measurements also followed the FEM instruments during the wet
season, except at BKK. The ratio of LCS/FEM using the beta ray technique, during the
wet season at CM and BKK, were strongly lower than 1. Zheng et al. [28] showed that the
LCS performance decreased with low PM2.5 concentration and high RH. This indicated
that the LCS were highly sensitive to RH but in varying directions [50]. At BKK, the
ratios of LCS/FEM were lower than 1 during both periods. This could be because the
LCS at this site were located close to major roads in a highly congested area. Most of
the particles from fresh traffic emissions were smaller than the LCS minimum detectable
size (see detail in Section 3.5). This is consistent with Castell et al. [30], who reported that
the LCS measurements, where traffic emission was low, were better correlated with the
reference measurements. In contrast, the mean ratio of LCS/FEM during the wet season at
URT was higher than 1 (1.2 ± 0.5). The ratio of LCS to FEM higher than 1.2 during the wet
season, accounting for 53%, was found at high RH level (79 ± 12%). Moreover, we found
that increased LCS errors (>1.7 ± 0.5) mostly occurred at the extreme RH level (84 ± 10%).
This agrees with Zamora et al. (2019), who reported that the accuracy of LCS (Plantower
PMSA003) decreased for RH > 50% [51,52]. Similarly, Jayarathne et al. [33] noted that the
error of LCS increased for RH > 80%, in field monitoring. For the temperature effect, the
temperature differential between dry and wet seasons at CM was as high as ~3 ◦C, while at
BKK and URT it was closer to 1 ◦C—an insignificant change. Some reports have claimed
that neither temperature or RH affected LCS errors [53,54]. However, others have noted
that calibration to correct a temperature effect improved LCS, and our results (see later)
show that temperature correction did improve accuracy [54].

3.3. Influence of Concentration Range, RH and Temperature Levels on Sensor Performance

The distribution of the relative error of unadjusted LCS are shown in Figure 4. The
relative error (%) values were calculated with 1-h averaged data of unadjusted PM2.5 LCS
and FEM concentrations. For the concentration range, the highest relative errors for PM2.5
concentrations were observed below 20 µg/m3, while the maximum error values were up
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to 200%. For the CM and URT sites, between 20–50 µg/m3, the errors were mostly below
100% and they were mostly below 50% when the PM2.5 level went above 50 µg/m3. Values
from LCS at BKK were mostly characterized by rather constant maximum relative errors at
~90% independent of the concentration range, RH or T (average: 40.2% for dry and 51.3%
for wet). The highest relative errors were found during the wet season at all sites at low
concentration (<20 µg/m3), with average PM2.5 concentrations of 16.1 ± 5.5 µg/m3 (CM),
23.6 ± 9.4 µg/m3 (BKK) and 15.4 ± 10.6 µg/m3 (URT). At CM, the relative error during the
dry season was clearly increased at a higher RH level. This is consistent with the previous
studies by Liu et al. [51] and Jayaratne et al. [33]. The relative error of LCS during the wet
season doubled those in dry season at CM and URT. The error during the wet season at
CM and BKK were nearly identical, with constant maximum ~90% at RH greater than 42%.
The relative error of LSC at URT (average: 23.8% in dry season and 40.0% in wet season)
was consistent with most previous studies, which showed that low PM concentration and
RH level significantly impacted low-cost PM sensor performance [20,55–57]. However, it
should be noted that Kosmopoulos et al. [29] reported that the effect of RH on the response
of Plantower PMS5003 sensors for fine PM in southeast Europe was negligible, so the
measurement location is important to consider. The relative errors of PM2.5 in the present
study show no pattern for the influence of temperature levels on sensor performance. It
is noted that beta attenuation monitor consists of the heater system with a controller to
reduce the RH level of samples. It was normally set below a particular point to remove
the hygroscopic and condensation effect of particles on the filter influencing the mass
concentration reading. Hence, a range of RH set point is the critical factor to assess the
performance of beta attenuation measurement [58,59]. Takahashi et al. [59] reported the
PM concentration from BAM was higher than those using the gravimetric method at high
RH (>80%). Kiss et al. [60] suggested that 1-h PM10 measurements must be used carefully,
as water vapor adsorption/desorption from the beta attenuation monitor’s filter material
may cause significant bias at low ambient concentration. Zheng et al. [28] also supported
that the beta-attenuation-based monitors have drawbacks at low concentrations.
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3.4. Responses of the LCS to Emission Sources

The response of the PM2.5 LCS to the different emission sources was interpreted in
the present study (see Figure 5). The different R2 of linear regression results between
PM2.5 concentrations from the LCS and the FEM instruments in locations where major
aerosol sources were different indicated that the LCS had variable responses to types of
aerosols. At BKK site, the LCS were located within a short distance from major roads,
and the traffic emissions were mainly constituted of fresh vehicle exhaust as discussed in
Section 3.1. The results showed that the R2 values of the linear regressions between LCS
and FEM at BKK during the dry season (R2 = 0.561) were quite low, and very poor during
the wet season (R2 = 0.291), in response to fresh vehicle exhaust emissions. However, the
PM2.5 characteristics at BKK during the dry season were annually affected by domestic
and transboundary aerosol transport from open biomass burning [6]. The R2 value of the
linear regression between the LCS and the FEM was higher because of a large contribution
from biomass burning. For CM and URT, R2 values of the regressions were high during
the dry season in response to predominant open biomass burning. Not only does the
emission source play a significant role, but ambient RH levels also had effects on the LCS
performance. The LCS were more responsive to open biomass burning emissions than to
fresh traffic emissions. This is because the particle size from diesel and gasoline engines
were dominant in the range of 60–120 nm and 40–80 nm, respectively [61]. Hence, most
of the particles from fresh traffic emissions were ultrafine particles (<0.1 µm), which are
smaller than the minimum detectable size (0.3 µm) of the LCS. Moreover, the particle size
from biomass burning were predominantly in the range of 0.5–2.5 µm [62]. Hata et al. [63]
also reported that the dominant size of PM from biomass burning was in accumulation
mode (PM0.5–1.0). This is why the linear regression between the PM2.5 LCS and FEM
concentration at CM and URT were better than that at BKK, especially in dry season. This
was confirmed by Sresawasd et al. [9], who reported the PM mass concentration was
distributed mostly in the accumulation mode PM0.5–1 (38–48%) of TSP in Chiang Mai,
Thailand during the haze period (dry season). Additionally, Dejchanchaiwong et al. [6]
found that the PM0.5–1.0 concentrations in the haze period (Dec–Feb) were 2 to 12 times as
high as those in the nonhaze period. However, underestimation of PM2.5 concentration may
partly be a result from the limitation of the Plantower sensor. Kuula et al. [64] found that
the large particle size fraction 1.0–2.5 µm significantly reduce the concentration of PM2.5
when using Plantower PMS5003. The finding of the LCS responses to different aerosol
emission sources provided guidance on future application of LCS monitors, such as the
distance of the deployment sites to major roads.
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3.5. Performance Metrics for Unadjusted PM2.5 Concentration

The correlation between 1-h PM2.5 concentration from unadjusted (original) LCS and
FEM measurements during the dry and wet seasons are shown in Figure 5. The values
of performance metric including precision (CV), bias (slope and intercept), linearity (R2)
and error (RMSE) for unadjusted LCS at each site are shown in Table 4. Reproducibility
of individual LCS was assessed on the basis of CV. The mean CV for unadjusted LCS at
each site during the dry (8.86 ± 7.30% to 14.47 ± 6.80%) and wet season (5.85 ± 3.86 to
12.53 ± 9.58) were at an acceptable level (CV ≤ 30%) of sensor variations. The R2 values
from correlation between the unadjusted-LCS and the reference PM2.5 were acceptable at
CM during the dry season with R2 = 0.907; however, during the wet season, it was poorer,
with R2 = 0.635, due to larger scattering in the PM2.5 concentration at high RH level. The
R2 values of LCS vs. FEM at URT during the dry (R2 = 0.856) and wet seasons (R2 = 0.815)
were also acceptable with R2 > 0.7, as suggested by U.S. EPA [43]. However, at BKK, the
R2 was only 0.561 during the dry season and 0.291 during the wet season. The RMSE
values of unadjusted LCS vs. FEM at all sites were also higher than the values suggested
by U.S. EPA [43]. Hence, the performance of PM2.5 LCS in Thailand was poor to high
(R2 = 0.291–0.907) as compared with FEM instruments. This is consistent with the study of
Johnson et al. [27], who reported the performance of LCS with BAM was only moderate to
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high (R2 = 0.35–0.81). The low performance of LCS could be attributed to the different PM
emission sources, low concentration and high RH level. Before calibration, the performance
of the LCS only at URT during the wet season was acceptable.

Table 4. Summary of performance metrics for hourly PM2.5 concentrations for unadjusted LCS and
adjusted LCS by LR and MLR calibration models at three sites.

Sites Periods Models CV
(%)

Slope
(-)

Intercept
(µg/m3)

R2

(-)
RMSE
(µg/m3)

CM Dry Unadjusted 14.47 ± 6.80 1.215 −5.184 0.907 11.942
LR 8.46 ± 5.99 0.907 3.553 0.907 7.131
MLR 6.84 ± 4.97 0.945 2.414 0.934 5.102

Wet Unadjusted 21.53 ± 9.58 1.111 −7.73 0.635 7.753
LR 13.76 ± 6.79 0.639 5.549 0.635 5.393
MLR 11.69 ± 5.38 0.681 4.813 0.672 3.304

BKK Dry Unadjusted 9.78 ± 5.77 0.714 −2.398 0.561 17.646
LR 7.32 ± 4.29 0.561 17.772 0.561 13.971
MLR 5.49 ± 3.24 0.701 4.657 0.671 11.156

Wet Unadjusted 5.85 ± 3.86 0.619 −0.543 0.291 13.707
LR 4.32 ± 2.46 0.291 16.709 0.291 10.918
MLR 2.77 ± 1.43 0.322 15.961 0.322 7.773

URT Dry Unadjusted 8.86 ± 7.30 0.679 9.733 0.856 16.486
LR 6.74 ± 5.47 0.855 6.273 0.856 8.383
MLR 5.76 ± 4.67 0.899 5.492 0.880 4.285

Wet Unadjusted 8.77 ± 8.14 0.842 5.087 0.815 7.692
LR 7.41 ± 6.95 0.815 2.864 0.815 6.711
MLR 6.33 ± 5.94 0.829 1.123 0.893 5.378

Note: Performance metrics of MLR model show only the best fitting model with highest R2 and lowest AIC values
(See Section 3.7).

3.6. Calibration by LR Model and Performance Metrics for Adjusted LCS Based on
Reference Concentration

The LR (Model 1 in Table 2) was used to calibrate 1-h PM2.5 concentrations from
LCS against the reference during the dry and wet seasons. Figure 6 shows the correlation
between the adjusted PM2.5 LCS by the LR model and FEM measurements at all sites for
each season. The performances of the LR models are also in Table 4. After calibration by
LR model, the results were improved as compared to the unadjusted PM2.5 LCS with the
reduction of CV values of 42% (dry) and 46% (wet) at CM, 25% (dry) and 26% (wet) at BKK
and 24% (dry) and 16% (wet) at URT. The low CV value (below 30%) was acceptable for LCS
testing studies, indicating high reproducibility [43]. All CV values were well within this
limit. This is consistent with Kelly et al. [26], who reported the good repeatability between
Plantower sensors. Additionally, the results were significantly improved as compared to
unadjusted PM2.5 from LCS with the reduced RSME values of 40.29% (dry) and 30.44%
(wet) at CM, 20.83% (dry) and 20.35% (wet) at BKK and 49.15% (dry) and 12.75% (wet)
at URT. However, the R2 values were not improved at all sites. This agreed with Hong
et al. [21], who interpreted that the datasets were shifted to the 1:1 line without data
correlation improvement.
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3.7. Calibration Using MLR Models to Adjust LCS Based on Reference Concentration, RH and
Temperature Levels

Performance of the linear RH model (model #3) in the present study was compared
with the nonlinear RH model terms [28]. The R2 for model #3 was slightly higher than the
nonlinear model, as shown in Table 5. Based on this analysis, we used the linear RH model
to adjust the models further.

Table 5. Correlation coefficients for linear and nonlinear RH models.

Seasons
CM BKK URT

Nonlinear
RH

Linear RH
(Model #3)

Nonlinear
RH

Linear RH
(Model #3)

Nonlinear
RH

Linear RH
(Model #3)

Dry 0.90 ± 0.01 0.926 0.56 ± 0.02 0.568 0.88 ± 0.01 0.873
Wet 0.63 ± 0.02 0.664 0.29 ± 0.01 0.292 0.83 ± 0.01 0.846

Eight MLR models (Model#2–9 in Table 2) were used to calibrate LCS PM2.5 concentra-
tions from LCS—see Figures A1–A3 in Appendix A. The correlations of the adjusted PM2.5
concentration from LCS were achieved after correction by using the MLR models based
on reference concentration, RH and temperature. The best-fitted model was chosen based
on lowest AIC and highest R2 (see Figure A4). The results showed that Model#6 is best
for CM (wet season), BKK (wet season) and URT (dry season), while Model#9 is best for
the remaining periods at each site (See Figure 7). The performance metrics of MLR model
were examined only for the best fitted model at each site, as also shown in Table 4. After
MLR calibration, the LCS performances were improved as compared to adjusted PM2.5
from LCS by LR model with the R2 increase of 2.98% (dry) and 5.83% (wet) at CM, 19.61%
(dry) and 10.65% (wet) at BKK and 2.80% (dry) and 9.57% (wet) at URT. Additionally, the
results were significantly improved as compared to the adjusted PM2.5 by LR model with
the RSME reduction of 28.45% (dry) and 38.74% (wet) at CM, 20.15% (dry) and 28.81% (wet)
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at BKK and 48.88% (dry) and 19.86% (wet) at URT, and CV reduction of 19.15% (dry) and
15.04% (wet) at CM, 25.00% (dry) and 35.88% (wet) at BKK and 14.54% (dry) and 14.57%
(wet) at URT.

The performance metrics of the LCS and FEM only at CM during the dry season and
URT during the dry and wet season were acceptable with the CV: 5.76 ± 4.67–6.84 ± 4.97%
(CV ≤ 30%), slope: 0.829–0.945 (slope: 1.0 ± 0.35) and intercept 1.123–5.492 µg/m3

(0 ± 5 µg/m3), R2: 0.880–0.934 (R2 ≥ 0.7) and RMSE: 4.285–5.102 µg/m3 (RMSE ≤ 7 µg/m3).
The constants parameters of the best fitting calibration model at CM during the dry season
and URT during both seasons are shown in Table 6. However, the correlations of the
adjusted PM2.5 from LCS at BKK during both periods were not entirely consistent with
the FEM values and the adjusted PM2.5 performances were not acceptable. This discrep-
ancy might occur from variations in aerosol compositions and impacts of particle size
from emission sources as described in the previous section. Moreover, The MLR model
at CM during the wet season was also not suggested to use for calibration. The results
showed that the FRM calibration plays more important role to the accuracy of FEM. At
URT, the results showed that the LCS at URT can be calibrated during both seasons with
the FEM instrument.

Table 6. MLR calibration: constants for the best fitting models.

Method Best Fitting Model Constants Parameters
CM URT

Dry Dry Wet

MLR Model 6 f1 (Intercept) - 5.327 -
f2 (Raw PM2.5-LCS) - 1.853 -
f3 (T) - −0.294 -
f4 (RH) - −0.076 -
f5 (Raw PM2.5-LCS × RH) - −0.009 -

Model 9 i1 (Intercept) 27.192 - 78.664
i2 (Raw PM2.5-LCS) 0.352 - −0.955
i3 (T) −0.397 - −1.847
i4 (RH) −0.15 - −0.367
i5 (Raw PM 2.5-LCS × T) 0.013 - 0.063
i6 (Raw PM2.5-LCS × T × RH) 4.34 × 10−5 - 4.264 × 10−5
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4. Conclusions

The effects of key factors—emission source, relative humidity, temperature and PM2.5
concentration range—on the performance of PM2.5-LCS for long periods at three different
locations in Thailand during both seasons were investigated. Additionally, the calibration
for LCS based on reference concentration, RH and temperature levels using LR and MLR
models were also investigated to improve the performance of PM2.5-LCS in Thailand.
We concluded:

• At PM concentration < 20 µg/m3 and RH > 85%, PM2.5-LCS performance was signifi-
cantly influenced.

• Location of the PM2.5-LCS was crucial to performance: a high traffic emission area
(BKK) showed low correlation with reference monitors due to the effect of small particles.

• Unadjusted PM2.5-LCS performance varied with location, showing low to high corre-
lations with FEM instruments (0.29 < R2 < 0.91).
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• Performances of the adjusted PM2.5-LCS at BKK in both seasons and at CM during the
wet season were not acceptable due to very small particle size from emission sources,
and effect of low concentrations and RH level.

• After MRL calibration, performances of the PM2.5-LCS only at CM during the dry season
and URT site during both seasons were acceptable with the CV: 5.76 ± 4.67%–6.84 ± 4.97%,
slope: 0.829–0.945, intercept: 1.123–5.492 µg/m3, R2: 0.880–0.934 and RMSE: 4.285–5.102 µg/m3.

The present study showed the importance of evaluating the long-term field perfor-
mance of PM2.5-LCS at different ambient conditions and locations. Calibration and valida-
tion of the PM2.5 LCS with FEM instruments in the field test is crucial to high-quality data.
Moreover, understanding the key factors, including emission sources, relative humidity,
temperature and PM2.5 concentration, on PM2.5-LCS performance provides crucial informa-
tion for setting an achievable and reasonable guideline to enhance the quality of PM2.5-LCS
data. Since the calibration of the sensors used the full dataset to develop and test the models
at each station, the calibration results may differ slightly for shorter collocation periods
when different dataset are used. In the future, the PM2.5-LCS performance with higher
performance in low concentrations and high humidity environment are recommended.
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