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 18 

Abstract 19 

 We show useful seasonal deterministic and probabilistic prediction skill of 20 

streamflow and nutrient loading over watersheds in the Southeastern United States 21 

(SEUS) for the winter and spring seasons. The study accounts for forecast 22 

uncertainties stemming from the meteorological forcing and hydrological model 23 

uncertainty. Multi-model estimation from three hydrological models, each forced 24 

with an ensemble of forcing derived by matching observed analogues of forecasted 25 

quartile rainfall anomalies from a seasonal climate forecast is used. The attained 26 

useful hydrological prediction skill is despite the climate model overestimating 27 

rainfall by over 23% over these SEUS watersheds in December-May period. The 28 

prediction skill in the month of April-and May is deteriorated as compared to the 29 

period from December-March (zero lead forecast). 30 

 A nutrient streamflow rating curve is developed using a log-linear tool for this 31 

purpose. The, skill in prediction of seasonal nutrient loading is nearly identical to the skill 32 

in predicting the seasonal streamflow.  33 

 34 

Keywords:  Rainfall-runoff model, Seasonal Hydrologic Forecasting, Southeastern 35 

United States, Water Quality, Seasonal Predictability 36 
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1. Introduction 41 

The Southeastern United States (SEUS) region receives considerable amounts of  42 

rainfall ranging spatially between 30 and 100 inches annually relative to the rest of the 43 

United States (http://www.nc-climate.ncsu.edu/edu/k12/.SEPrecip). However, the water 44 

sector remains vulnerable because the region is exposed to significant climate variability 45 

including relatively frequent climate and weather extremes like droughts and landfalling 46 

tropical cyclones. There are several studies, which have suggested the benefit of 47 

streamflow predictions in managing and regulating water resources (e.g., Broad 2007; 48 

Yao and Grergakakos 2001; Obeysekera et al. 1999). For example, Obeysekera et al. 49 

(1999) noted the benefit of long-range hydrological forecasts for the complex water 50 

management system in South Florida, consisting of large reservoirs, lakes, and water 51 

regulating structures. However, Bolson et al. (2013) reported that only about 25% of the 52 

water managers use seasonal climate forecasts. Many studies have attributed this 53 

infrequent use to lack of awareness and difficulty in understanding, trusting, and applying 54 

the forecasts (e.g., Carbone and Dow 2005; Pagano et al. 2001).   55 

 56 

     The reliability of streamflow forecasts depends on, among other factors, the 57 

fidelity of the climate forecast, the reliability of the hydrological models, and the quality 58 

of the initial hydrologic conditions used.  Over the years considerable progress has been 59 

made in improving dynamical seasonal prediction (Kumar et al. 1996; Krishnamurti et al. 60 

1999; Palmer et al. 2004; Zhang et al. 2007; Yang et al. 2009; Kirtman and Min 2009; 61 

Saha et al. 2010; Gent et al. 2011; Misra et al. 2013; Li and Misra 2013; Kirtman et al. 62 

2014).  Furthermore, Maurer et al. (2004) claim that a better understanding of the 63 
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teleconnections between large-scale climate features and the hydroclimatology of the 64 

region can improve the streamflow forecast for longer lead times. In the SEUS, the El 65 

Niño–Southern Oscillation (ENSO) teleconnections are relatively strong, especially 66 

during the boreal winter and spring seasons (Ropelewski and Halpert 1987, 1986; Kiladis 67 

and Diaz 1989). In a typical El Niño (La Niña) year, the SEUS experiences a cold and 68 

wet (warm and dry) winter season. Such robust teleconnections provide an opportunity to 69 

improve water resource management at the seasonal to interannual time scales. 70 

 71 

 To provide predictions of streamflow at long lead times, empirical methods (e.g., 72 

multiple linear regression) have long been used in the United States (e.g., Rosenberg et 73 

al. 2011; Pagano et al. 2009). These methods use initial conditions and information on 74 

future climate condition as predictors. However, ensemble streamflow prediction (ESP; 75 

Day 1985) is also being widely considered as an alternative to multiple linear regressions 76 

(e.g., Connelly et al. 1999; Franz et al. 2003; Wood et al. 2005; Wood and Schaake 2008; 77 

Bohn et al. 2010) and is adopted in this study as well. In the ESP method, multiple 78 

realizations of future streamflow are simulated. These realizations are usually generated 79 

by independently running multiple calibrated hydrological models forced with multiple 80 

realizations of surface meteorological forcing (discussed further in section 3). ESP has 81 

some notable advantages over empirical models: ESP makes predictions on physical and 82 

conceptual basis, provides an estimate of the forecast uncertainty and offers flexibility in 83 

using forcing data from different sources (e.g., climate model, subjective climate 84 

outlooks).  85 

 86 
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     A study from NRC (2000) recognized that nutrient loading is the main cause of 87 

eutrophication of freshwater bodies and coastal estuaries. The stream nutrient loads 88 

depend upon, among other factors, precipitation, temperature, soil, geology, nutrient fate 89 

and transport; however, urban and agriculture landscape have the greatest impact (Preston 90 

et al. 2011). These sources of nutrient loading can be broadly classified as point source 91 

and nonpoint source. Managing and controlling these excessive nutrients relies on 92 

instream nutrient concentration data that are only sparsely available. Therefore, 93 

mathematical models are widely used in aiding local nutrient management and control. A 94 

broad array of models ranging from empirical models such as simple export coefficient to 95 

physically based nutrient modeling tools are available to estimate pollution and identify 96 

the sources at watershed scale (Shrestha et al. 2008; Arnold et al. 1994; EPA 1987; Smith 97 

et al. 1997; Ambrose et al. 1981; Johanson et al. 1981). Most of these studies show strong 98 

empirical evidence that streamflow is the single most important variable for estimating 99 

the pollution load of namely total nitrogen and total phosphorous. These nutrients are 100 

responsible for the impairment of many inland waters as well as coastal bays. Excessive 101 

amounts of these nutrients promote profuse algae growth, resulting in unhealthy inland 102 

and coastal waters.  103 

 104 

     Studying over 6300 water bodies located in Florida using a range of chemical and 105 

biological parameters, the Florida Department of Environmental Protection (FDEP) in the 106 

year 2008 found impairment in 28% of the stream miles, 25% of lake acres, and 59% of 107 

square miles of estuaries. The FDEP has recently imposed a numeric nutrient criteria 108 

water quality standard specifically for nitrogen and phosphorous (FDEP 2012). In 109 
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response to adoption of such water quality standards, water quality credit trading is likely 110 

to emerge as one of the policy tools to preserve water quality in a cost-effective manner 111 

[e.g., pilot water quality credit trading program for the lower St. Johns River (FDEP 112 

2010); establishment of pollutant trading policy advisory committee to assist FDEP in 113 

developing a pollutant trading program (FDEP 2006)]. Nutrient trading is especially 114 

beneficial in avoiding impairment of waterways and water bodies if the cost involved in 115 

controlling pollutants from the various sources within a watershed is considerably 116 

different and water quality goals are firmly established.  117 

    In this study, we analyze a relatively large set of retrospective seasonal 118 

streamflow forecast experiments for the boreal winter and spring months for watersheds 119 

in the SEUS using the seasonal climate forecasts produced by the Florida Climate 120 

Institute (FCI) of the Florida State University (FSU; Misra et al. 2013 and Li and Misra 121 

2013). Li and Misra (2013) demonstrated that the FCI-FSU Seasonal Hindcasts at 50km 122 

grid resolution (FISH50) seasonal mean temperature and precipitation has comparable 123 

skill for boreal winter and spring relative to the operational models of the National Multi-124 

Model Ensemble (NMME; Kirtman et al. 2014). FISH50 also offers the highest spatial 125 

resolution among the existing seasonal climate hindcast data sources (e.g., NMME). 126 

Therefore, through this study, we aim to explore the utility of FISH50 for seasonal 127 

hydrologic forecasts. We follow up this analysis with estimations of retrospective 128 

seasonal forecasts of nutrient loading, which are based on the empirical nutrient 129 

streamflow rating curve and the predicted streamflow. We consider only total nitrogen 130 

and total phosphorous as they are widely regarded as predictors of stream-water quality 131 

(USEPA 2006). 132 
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 It may be noted that this is first of such attempt to apply retrospective multi-model 133 

seasonal hydrological forecast framework for the boreal winter and spring seasons over 134 

these relatively small 28 SEUS watersheds. 135 

 136 

2. Study region and data 137 

     In this study, a total of 28 watersheds from the Model Parameter Estimation 138 

Experiment (MOPEX; Schaake et al. 2006) is selected, which follows from our previous 139 

work on the summer seasonal forecasts (Bastola et al., 2013). These watersheds are 140 

chosen because they are minimally affected by water management (Schaake et al. 2006). 141 

The characteristics of the selected watershed is shown in Table 1. 142 

     FISH50 is initialized in late November through early December of each year and 143 

integrated through May of the subsequent year for 1982–2008. Each of the seasonal 144 

hindscasts of FISH50 has a total of six ensemble members, which are generated by 145 

perturbing the initial conditions of the atmosphere (Li and Misra 2013). The data from 146 

FISH50 is available at daily time scale from December through May of the following 147 

year. It may be mentioned that in this forecast framework of FISH50 December-January-148 

February (DJF) seasonal mean is at zero lead while the March-April-May (MAM) 149 

seasonal mean will be at one season lead. We use the unified daily US precipitation 150 

analysis of the Climate Prediction Center (CPC; Higgins et al. 2000), available at 0.25
0
 151 

grid resolution and from 1948 onward, as the observed rainfall. 152 

 153 

3. Hydrological model forcing 154 
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    Bias correction and the stochastic method are two common approaches that are 155 

widely used to bridge the spatial resolution gap that exists between the hydrological and 156 

the climate models. To correct for systematic biases in rainfall forecasts, the quantile-157 

based bias correction method has been used extensively in hydrological applications (e.g., 158 

Li et al. 2010; Wood et al. 2004). The stochastic method is based on resampling from 159 

historical observations (e.g., the Schaake shuffle in Clark et al. 2004). The resampling 160 

from analogue years is based on categorical climate forecasts (e.g., forecasts based on 161 

tercile or quartile categories of seasonal precipitation anomalies). It preserves the various 162 

moments of a time series (e.g., Efron 1979).  163 

In this study, bias correction based on resampling from historical observation is 164 

used to circumvent the issue of bias in FISH50. The resampling method to generate a 165 

conditioned daily sequence of meteorological forcing for the semi-distributed 166 

hydrological models (which includes sub basin average rainfall, temperature, and 167 

evapotranspiration) is as follows (see Bastola et al. (2014) for further details): 168 

1. Based on 6-month averaged (Dec-May) forecast rainfall, derive the quartile 169 

category for each year for a given watershed, 170 

2. Sample 10 sets of model forcing for hydrological model (a block of 6 month (Dec-171 

May) from historical observation of weather data that has same quartile category as 172 

that of forecast seasonal mean (December-May) rainfall. 173 

3. Repeat step 1 and 2 for each of the six-ensemble member of the FISH50. 174 

This procedure generates 10 resamples for each ensemble member and then propagates 175 

them through three hydrological models. We thus obtain 180 (=6 ensemble members 176 
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of FISH50 x 10 observed resamples per ensemble member of FISH50 x 3 hydrological 177 

models) estimates of streamflow for each watershed per season. 178 

 179 

 In this study, the FISH50 seasonal categorical rainfall forecast (based on quartile 180 

rainfall categories) is used to sample from the observed analogue. The resampling of the 181 

past observations is done several (10) times per ensemble member of FISH50 using the 182 

method of block resampling without replacement (Prudhomme and Davies 2009). Here 183 

we define a block as six months of continuous daily rainfall.  Though plausible, 184 

resampling with a block size of a month or three months is likely to affect the seasonal 185 

structure and to introduce biases (Prudhomme and Davies 2009). Furthermore, ten 186 

resamples per ensemble member of FISH50 enables us to attain a good sample of the 187 

observed near analogues of the forecasted meteorological forcing to make a robust 188 

probabilistic streamflow forecast (Fig. 1). It may also be mentioned that this resampling 189 

from historical observed data also temporally disaggregates the seasonal forecast total 190 

into daily values. In this way, the resampling procedure generates multiple time series of 191 

rainfall from a historical record. In addition, semi-lumped [parameters are lumped over 192 

the whole river basin with spatial variation in the model (meteorological) forcing] 193 

hydrological models are implemented for the hydrological predictions conducted in this 194 

study. Therefore, development of a spatially coherent sub-basin average rainfall field is 195 

essential. In this context, resampling from historical observation allows development of 196 

spatially coherent sub-basin average rainfall (see Bastola et al., 2013). 197 

    In this study, we compare the performance of the hydrological forecasts between 198 

those that use the FISH50 meteorological forcing directly without any bias correction 199 



 10

(named hereafter as FISH50) and those that use the resampled observations using quartile 200 

categories of seasonal mean rainfall from FISH50 (FISH50_Resamp). Evaluation of 201 

output from enviornmental modeling using suitable perfromance measure is essential 202 

before they can be confidently used for their practical application. Hydrologists 203 

fundamentally use qualitative (visual) and objective criteria to judge the reliability of 204 

output from hydrological simulation. The quantitative criteria most widely used is the 205 

efficiency criteria derived from summation of error term normalized by the variability in 206 

observation data (Beven and Binley 1992, Bennett et al., 2013). Two commonly used 207 

residual methods namely, persistence index and Nash-Sutcliffee Model effeciency (Table 208 

6 of Bennett et al., 2013) is used to evaluate the seasonal hydrological forecasts in this 209 

study. Furthermore, receiver operating characteristics curves (ROC) is used to evaluate 210 

the probabilistic forecast, again one of the commonly used proabilistic skill metrics 211 

(Wilks 2001).  212 

 213 

4. Experiment design 214 

i) Hydrological forecasts 215 

In this study, the seasonal hydrological forecast experiment, which is carried out 216 

using the FISH50 data for 20 years (1982–2001), is based on ESP methodology (Fig. 1). 217 

The FISH50 dataset is available for a six-month period from December through May of 218 

the subsequent year. The initial conditions for the hydrological models are obtained by 219 

forcing the hydrological models with the observed meteorological forcing up to the start 220 

(or initial) time of the forecast (e.g., Wood and Lettenmaier 2006).  221 
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Though there is consensus on the importance of uncertainty analysis in 222 

hydrological modeling and subsequently on water resource planning and management, 223 

there is an intense debate on the framework needed to quantify uncertainty (e.g., Beven et 224 

al. 2012; Clark et al. 2012; Kuczera, 1997; Beven and Binley 1992; Duan et al. 1992). 225 

The discussion and implementation of different methods is beyond the scope of this 226 

study. In this study, we account for the uncertainty of the hydrological forecasts arising 227 

from model uncertainty and meteorological forcing (Fig. 1). The latter form of 228 

(meteorological) uncertainty is estimated from the 60 ensemble members generated from 229 

10 observed resamples for each of the 6 ensemble members of FISH50 per season (see 230 

Section 3). The model uncertainty is accounted for by combining the retrospective 231 

predictions derived from three conceptual rainfall-runoff (RR) model structures and their 232 

behavioral model parameters. The concept of combining the output from multiple models 233 

is growing in the field of climate and environmental modelling. Combining the output 234 

from multiple models allows for the characterization of structural uncertainties in the 235 

models. Furthermore, multimodel approach may also lead to more skillful 236 

simulation/prediction as it accounts for model uncertainty (e.g., Krishnamurti et al., 1999, 237 

Georgakakos et al., 2004; Kirtman and Min 2009).  238 

 239 

The three RR models used in this study are the Hydrologic MODel (HyMOD; 240 

Boyle 2001), the Nedbør-Afstrømnings Model (NAM; Madsen 2000), and the tank model 241 

(Sugawara 1995). All three hydrological models are implemented as semi-lumped and are 242 

conceptual in the sense that model calibration is essential for the estimation of model 243 
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parameters. The HyMOD, NAM, and tank have 6, 10, and 16 spatially lumped 244 

parameters, respectively.  245 

 246 

Hydrological modeling literature, in general, agrees that large combinations of 247 

parameters can result in equally acceptable model simulations (Beven 2006). Therefore, 248 

we implement a multimodel and multiparameter approach using the generalized 249 

likelihood uncertainty estimation method (GLUE; Beven and Binley 1992) to account for 250 

uncertainty in hydrological simulation.  In GLUE, the ensemble simulation is obtained by 251 

weighting the model prediction with model's likelihood measure (Beven and Binley, 252 

1992).  253 

This study builds upon our previous study (Bastola and Misra 2013), which 254 

focused on calibration of 28 MOPEX watersheds of the SEUS for the three selected 255 

hydrological models. The authors calibrated the three conceptual models for the period 256 

1948–1968 using CPC rainfall data. The hydrological models were then validated for the 257 

period of 1969–1979. The performance of individual model for the entire watershed is 258 

measured in terms of the three widely used model performance criteria, namely, the Nash 259 

Sutcliffe efficiency index (NSE), Count Effeciency (CE), which is estimated as the 260 

percentage of observation included within the Prediction interval (PI) and width of 261 

prediction interval. For calibration of each of the three hydrological models, they were 262 

used in simulating independently, for each watershed, with 20,000 set of randomly 263 

generated model parameters from a uniform distribution. From among these huge set of 264 

simulations, only behavioural set of model parameters that result in a value of NSE 265 

greater than 0.5 were retained. The model calibration attempt also revealed that the 266 
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combination of output from the different models improved the reliability and 267 

performance of the simulation (not shown). Further details on model calibration and 268 

validation can be found in Bastola and Misra (2013).  269 

 270 

 271 

ii) Simulation of instream water quality 272 

     Fernandez et al. (2006) and Shrestha et al. (2008) used a multiple linear 273 

regression (log-linear model) to model nutrient loading rate. They reported that a simple 274 

log-linear model performs reasonably well in estimating nutrient loadings. A regression 275 

model such as load estimator (LOADEST) is traditionally used to predict water quality 276 

constituent concentration by linearly relating it with the natural log of streamflow, time, 277 

and season (Runkel et al., 2004). Another such regression-based model for modeling 278 

nutrient loading rate is the weighted regression on time, discharge and season (WRTDS; 279 

Hirsch et al. 2010). More recently, Oh and Sankarasubramanian (2012) looked at the 280 

potential application of seasonal forecasts of nutrient loading on a few SEUS watersheds 281 

by applying seasonal climate forecasts and the LOADEST. They looked at the variability 282 

of the nutrient loadings associated with seasonal climate variability in watersheds that are 283 

minimally disturbed. Oh and Sankarasubramanian (2012) conditioned their nutrient 284 

prediction on the basis of precipitation as they found a strong correlation between 285 

simulated loading and precipitation. They first developed the nutrient loading rating 286 

curve by relating nutrient loads with observed streamflow. Then they used empirical 287 

orthogonal function and canonical correlation analysis based on simulated loading and 288 

the gridded winter precipitation to develop a low-level model to predict loadings for each 289 
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watershed on the basis of climate forecasts from a climate model. Their study 290 

demonstrated useful prediction skills of the winter season total nitrogen behavior in the 291 

coastal watersheds of the SEUS.  292 

     The streamflow is selected as the predictand as it has been found to be the most 293 

important variable in predicting nutrients. Except for the two watersheds in south Florida, 294 

all of the watersheds included in this study of nutrient loading forecasts were included in 295 

Oh and Sankarasubramanian (2012) study. Among the 28 watersheds used in this study,  296 

only  seven of these SEUS watersheds have the data on nutrient load. Therefore, water 297 

quality forecast is shown only for these seven SEUS watersheds. 298 

 299 

    Because nutrient measurements are only sparsely available, load estimation using 300 

regression-based models has been widely explored for watershed management, especially 301 

for watershed planning pollution control (Shrestha et al. 2008). LOADEST, a tool for the 302 

estimation of nutrient load based on a number of explanatory variables (e.g., streamflow, 303 

decimal time, concentration, etc.) is used in this study. Further details on the calibration 304 

and load estimation procedure are found in Runkel et al. (2004).  Unlike the watersheds 305 

in Oh and Sankarasubramanian (2012), all watersheds included in the nutrient loading 306 

forecast experiment are calibrated in this study. 307 

2                                                                             )'ln()ln()ln(
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 308 

where, L is the load in kg per day; Q is the streamflow in cubic feet per sec; a0, a1, a2, a3, 309 

are the regression coefficients, T is the time measured in years (decimal) and T‘ is the 310 

coefficient that defines the center of decimal time;  ln(Q)’ is the coefficient that defines 311 

the center of the streamflow. The explanatory variable ln(O) is centered to avoid co-312 
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linearity. Both T‘ and ln(Q)’ are the coefficient estimated from observed data, i.e., load 313 

and streamflow data from the U.S. Geological Survey national stream water-quality 314 

monitoring networks (http://pubs.usgs.gov/dds/wqn96cd/html/wqn/wq/region03.htm) 315 

(WQN). The retrospective seasonal forecast of total nitrogen and phosphorous is 316 

computed from (1 & 2). We explored numerous model structure (model option) available 317 

in LOADEST. Amongst all available choices, the option 4 (a four-parameter log linear 318 

model) of LOADTEST was selected based on its relative performance measured in terms 319 

of R
2
.  The calibrated parameters and performance of model for the selected watersheds 320 

is shown in Table 2. 321 

 322 

5. Results and discussion 323 

     Following Bastola et al. (2013) we will compare the seasonal forecast skill to 324 

climatology and one-year lag (persistence) forecast. Furthermore, we will use the Nash 325 

Sutcliffe Efficiency (NSE) and Area under the Relative Operating Characteristic Curve 326 

(AROC; Marzban 2004) as our deterministic and probabilistic metrics for forecast skill 327 

analysis respectively. The NSE derived from the normalized form of root mean square 328 

error (2) is used to evaluate the skill of FISH50 with respect to two simple reference 329 

forecasts: (a) a climatological forecasts (NSE; Eq 3) and (b) a one-year lag (persistence) 330 

forecast (Persistence; Eq 4). The NSE and Persistence are both alternate form of root 331 

mean square error. NSE (which range from -∞ to 1) is the normalized root mean square 332 

error, which measures the relative magnitude of residual variance to observed variance 333 

thereby reflecting how well the simulated value fits observations. An NSE of 1 reflects 334 

perfect model and negative value indicates that the skill of the model is worse than using 335 
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climatology. NSE is one of the most widely used and recommended performance 336 

measures for evaluating hydrological predictions and simulations.  337 

The persistence model efficiency is also a normalized statistic as NSE, but the sum of the 338 

square of the error is normalized differently (i.e. with respect to one lag forecast). Both 339 

NSE and persistence are however biased towards large data values (or high flow period). 340 

However these skill metrics also penalize the prediction if they underestimate the high 341 

flow period. 342 

 343 
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 344 

     The Relative (or sometimes referred as Receiver) Operating Characteristic Curve 345 

(ROC) describes the relation between the probability of correct (hit rate) and incorrect 346 

(false alarm rate) forecasts from a given model. In ROC, models ability to correctly 347 

predict the event is plotted versus models ability to exclude a condition correctly. The 348 

area under the curve reflects the performance of the predictive models. 349 

Unlike NSE, it takes into account the forecast uncertainty as described by the forecast 350 

spread of the individual ensemble members.  In the adopted methodology of using 351 

resampled historical observations for forcing the multiple hydrological models, we 352 

generate a relatively large number of ensemble members (=180; see Section 3) per 353 

season, which provides a robust measure of AROC for the streamflow predictions. It may 354 

be noted that the value of AROC < 0.5 suggests that the skill is no better than observed 355 

climatology. 356 
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 357 

i) Deterministic skill analysis 358 

     In this section, ensemble spreads of the predictions are ignored, and skills are 359 

evaluated on the basis of the ensemble mean. The experiment design explained earlier 360 

produces an ensemble of predicted flows from the FISH50 ensemble and the multiple 361 

calibrated hydrological models (Fig. 1). Hydrological model output simulated with the 362 

observed CPC rainfall data is used as a control, or truth, to verify the fidelity of the 363 

hydrological predictions.  364 

     For the 28 SEUS watersheds included in this study, the spatially averaged daily 365 

rainfall from December through May from FISH50 is significantly higher compared to 366 

rainfall from CPC (Fig. 2), the reference rainfall dataset. Over most of the watersheds, 367 

FISH50 overestimates observed rainfall by nearly 23%. Such a high bias may have a 368 

greater impact on the SEUS watersheds characterized by high precipitation elasticity of 369 

streamflow (e.g., Sankarasubramanian et al. 2001).   370 

    Fig. 3 shows that the bias (i.e., the volume error in simulated flow associated with 371 

the FISH50 forcing), which is high for some watersheds, is significantly reduced with the 372 

use of resampled observations (FISH50_Resamp). Figure 4 shows climatological 373 

streamflow only for the selected six watersheds  that broadly span our study region of the 374 

SEUS. The raw FISH50 forcing data produces significant bias in the seasonal cycle of the 375 

streamflow over the majority of the watersheds shown in Fig. 4.  The resampling from 376 

historical observations based on analogues of the forecasted quartile rainfall category of 377 

the December–May season from FISH50 seems to ameliorate some of this bias in the 378 

seasonal cycle relative to the control flow (Fig. 4).  379 
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  380 

Fig. 5 shows the normalized root mean square errors of the ensemble average 381 

streamflow based on two-reference forecasts: the climatological (the NSE) and the lag 382 

one-year forecast [or persistent forecast, wherein the observed flow anomalies from the 383 

previous year are continued through the following year; persistence efficiency measure 384 

(PEM)]. The predicted flow forced with raw FISH50 and FISH50_Resamp shows some 385 

skill against both reference forecasts. Skills, however, tend to decrease with lead time.  386 

 387 

ii) Probabilistic skill analysis 388 

     It is prudent to examine the probabilistic skill of these forecasts given the non-389 

deterministic nature of these seasonal forecasts (Palmer et al. 2000). The probabilistic 390 

skill score (as measured by AROC) of FISH50 shows some skill in discriminating 391 

different (quartile) categories of rainfall. The FISH50 forecasted monthly mean rainfall 392 

shows superior skill than corresponding climatology on 27, 19, 12, and 11 watersheds for 393 

very wet, wet, dry, and very dry rainfall categories respectively (Fig. 6). In Fig. 6 each 394 

bubble represents an AROC value greater than 0.5 for that watershed, and the size of the 395 

bubble indicates a relative value of the AROC that is larger than 0.5. The watersheds in 396 

Florida, especially the St. Johns and the Peace River, show skill over the climatological 397 

forecast in the wet and very wet categories (Fig. 6). Similarly, on the basis of the average 398 

value of AROC across watersheds, the very wet and wet categories are more skillful than 399 

the dry and very dry rainfall categories (Fig. 6). In addition, most of the watersheds in 400 

Georgia and Alabama also show skill in the very wet quartile (Fig. 6). 401 

 402 
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     The probabilistic skill of the hydrological predictions derived from FISH50 is 403 

examined, given the skill of FISH50 in discriminating the different quartile categories of 404 

the seasonal rainfall. The AROC for streamflow is calculated as the probabilistic measure 405 

to evaluate the experimental hydrological forecast using all 180 realizations per season 406 

for each of the 28 watersheds of the SEUS. Fig. 7 shows that on average, very wet and 407 

wet categories show more skill (on the basis of the number of watersheds with AROC 408 

values › 0.5) compared to the other two quartile categories (i.e., very dry and dry). The 409 

AROC values for the forecasted streamflow for each of the 28 watersheds and each 410 

month of the season for all the four quartiles are shown in Figs. 8 and 9. The results 411 

shown in these figures are consistent with similar analysis of FISH50 precipitation (Fig. 412 

6), which shows that the very wet and wet quartile precipitation categories have higher 413 

skill than the other two quartile categories. In other words, the results suggest that for the 414 

majority of the SEUS watersheds, the streamflow is sensitive to the quality of the 415 

precipitation forecasts. In comparison to the FISH50 summer and fall seasonal 416 

hydrological forecasts (Bastola et al., 2013), the winter and spring seasons in Fig. 7 show 417 

significantly higher skill. 418 

 419 

iii) Skill of seasonal nutrient loading simulation 420 

     It is expected that the skill in streamflow will be translated into skill in predicting 421 

nutrient loading as the log-linear model (equation 1) is used to predict the nutrient load 422 

from the flow and the day of the year, The AROC value for the seven watersheds for 423 

which nutrient loading data are available is shown for only two categories, i.e., very wet 424 

and very dry quartiles (Figs. 10 and 11). As the skills of the nutrient loading forecasts are 425 
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identical to the skills in seasonal streamflow prediction, the AROC values for the middle 426 

quartiles are not shown.  Any differences between the skills in streamflow and nutrient 427 

loading can be attributed to the performance of the log linear model during calibration. In 428 

Figs. 10 and 11 the skills for both total Nitrogen and total Phosphorous loading for both 429 

extreme quartile categories are nearly similar to their corresponding streamflow 430 

prediction skills. However, it is apparent from comparing Figs. 10 and 11 that there is 431 

more skill in the seven watersheds in forecasting monthly nutrient loadings for the very 432 

wet quartile (Fig. 10) than for the very dry quartile (Fig. 11), which follows from similar 433 

features observed in streamflows (Figs. 8 and 9).  Only seven watersheds which had 434 

required water quality data were only considered compared to the 28 watersheds used to 435 

evaluate the seasonal predictability of stream flow. This skill in the seasonal forecast of 436 

the monthly nutrient loading can be exploited in revising the total maximum daily load 437 

that waterways can carry without being impaired. In Florida, the FDEP has imposed a 438 

numeric nutrient criteria water quality standard specifically for nitrogen and 439 

phosphorous. The skill in seasonal prediction of nutrient loading is likely to promote 440 

nutrient trading, especially since nutrient trading has been recently proposed as a major 441 

policy to address impairment of waterways and water bodies in Florida.  442 

The simulation of nutrient loading is based on the forecasted streamflow and a 443 

relationship between nutrient load and streamflow calibrated from historical observed 444 

streamflow and nutrient loading data. The nutrient prediction model only accounts for the 445 

influence of the variability in rainfall and streamflow on nutrient dynamics and does not 446 

account for the influence of land use explicitly in the dynamics of nutrient. 447 

 448 
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7. Conclusion 449 

     The seasonal climate retrospective forecasts for the boreal winter and spring 450 

seasons of FISH50 are evaluated over the SEUS region in simulating streamflow across 451 

28 watersheds and nutrient loading for a small subset (6) of these watersheds. A seasonal 452 

hydrological forecast experiment is designed on the basis of an ESP framework, forced 453 

with FISH50 meteorological forcing. Three semi-distributed hydrological models are 454 

adopted for this study.  The experiment setup allows for sampling the hydrological model 455 

uncertainty and the meteorological forcing uncertainty. The first uncertainty is handled 456 

by using a multimodel approach to predict the streamflow. It is found that over the 28 457 

watersheds, FISH50 overestimated the winter and spring rainfall total by nearly 23%. 458 

Therefore, some form of bias correction of rainfall is essential for the application of 459 

FISH50 in hydrology. The selected watersheds are characterized by high precipitation 460 

elasticity of streamflow, which makes bias correction of forecasted rainfall essential.  461 

Bias correction of rainfall from FISH50 is accomplished by resampling the observed 462 

seasonal (December–May) historical record with quartile categories similar to those of 463 

the FISH50 forecast, which also serve in sampling the uncertainty of the meteorological 464 

forcing to the hydrological models.   465 

 The experimental setup, therefore, entails 180 ensemble members per season, 466 

which includes three hydrological models and 10 samples of observed analogues of 467 

meteorological forcing per ensemble member of FISH50 (which has 6 ensemble 468 

members per season). 469 

     In this study, we examine both the deterministic and the probabilistic skill 470 

measures of the meteorological forcing, the predicted streamflow, and the nutrient 471 
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loading. The former skill measure entails examining the ensemble mean, which ignores 472 

the ensemble spread and the forecast uncertainty therein, whereas the latter uses the 473 

forecast from all ensemble members. 474 

     The seasonal hydrologic forecasts based on ensemble average show superior skill 475 

relative to the climatological and lag one-year forecast based on the measures of the NSE. 476 

However, these prediction skills show a clear decrease with lead time. In this study, we 477 

also use AROC value as a measure of the probabilistic skill of the forecast. The 478 

probabilistic skill score of the predicted streamflow is encouraging for the selected 479 

watersheds. Especially for the top and middle top quartiles (i.e., the very wet and wet 480 

quartile categories), the FISH50 rainfall product for December–May shows 481 

comparatively higher skill than the climatology over most of the SEUS watersheds.  482 

 For the subset of seven watersheds selected for studying nutrient loading, the log-483 

linear model appears to perform well in modeling the total nitrogen and total 484 

phosphorous load. The strong relationship between nutrient loading and streamflow 485 

implies that forecast skill in winter streamflow can be potentially exploited in predicting 486 

the nutrient load. This advance information on nutrient loading based on seasonal climate 487 

forecasts will prove to be essential for maintaining the water quality standards in 488 

waterways and water bodies by helping watershed managers plan the total maximum 489 

daily load for the season and promote water quality trading.  490 
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Table 1 General characteristics of the selected watershed 

SN 

Basin 

(USGS 

ID) Lon Lat 

Area (Sq 

mile) 

Annual 

Rain 

(mm) 

Annual 

Ave 

runoff 

(Cumecs) River system 

1 2456500 -87.0 33.7 885 1425 45.6 LOCUST FORK AT SAYRE, AL. 

2 3574500 -86.3 34.6 320 1467 17.3 

PAINT ROCK RIVER NEAR 

WOODVILLE AL 

3 2414500 -85.6 33.1 1675 1425 86.3 TALLAPOOSA RIVER AT WADLEY AL 

4 2296750 -81.9 27.2 1367 1248 44.8 PEACE RIVER AT ARCADIA, FLA. 

5 2329000 -84.4 30.6 1140 1349 49.3 

OCHLOCKONEE RIVER NR HAVANA, 

FLA. 

6 2365500 -85.8 30.8 3499 1425 171.9 

CHOCTAWHATCHEE RIVER AT 

CARYVILLE, FLA. 

7 2375500 -87.2 31.0 3817 1493 201.2 

ESCAMBIA RIVER NEAR CENTURY, 

FL 

8 2236000 -81.4 29.0 3066 1293 97.7 ST. JOHNS RIVER NR DELAND, FLA. 

9 2192000 -82.8 34.0 1430 1333 65.7 BROAD RIVER NEAR BELL, GA. 

10 2202500 -81.4 32.2 2650 1189 85.4 OGEECHEE RIVER NEAR EDEN, GA. 

11 2217500 -83.4 33.9 392 1385 19.9 

MIDDLE OCONEE RIVER NEAR 

ATHENS, GA. 

12 2347500 -84.2 32.7 1850 1317 78 FLINT RIVER NEAR CULLODEN, GA. 

13 2383500 -84.8 34.6 831 1528 48 

COOSAWATTEE RIVER NEAR PINE 

CHAPEL, GA. 

14 2339500 -85.2 32.9 3550 1475 189.3 

CHATTAHOOCHEE RIVER AT WEST 

POINT, GA. 

15 2387000 -84.9 34.7 687 1433 37.2 CONASAUGA RIVER AT TILTON, GA. 

16 2387500 -84.9 34.6 1602 1480 87.6 

OOSTANAULA RIVER AT RESACA, 

GA. 

17 2102000 -79.1 35.6 1434 1171 51 DEEP RIVER AT MONCURE, N.C. 

18 2118000 -80.7 35.8 306 1257 13.9 

SOUTH YADKIN RIVER NEAR 

MOCKSVILLE N C 

19 2126000 -80.2 35.1 1372 1173 48.9 

ROCKY RIVER NEAR NORWOOD, N. 

C. 

20 2138500 -81.9 35.8 67 1436 4 LINVILLE RIVER NEAR NEBO N C 

21 3443000 -82.6 35.3 296 2156 33.5 

FRENCH BROAD RIVER AT 

BLANTYRE N C 

22 3451500 -82.6 35.6 945 1544 70.7 

FRENCH BROAD RIVER AT 

ASHEVILLE, N. C. 

23 3504000 -83.6 35.1 52 1895 4.6 

NANTAHALA RIVER NEAR RAINBOW 

SPRINGS, NC 

24 3512000 -83.4 35.5 184 1720 14 

OCONALUFTEE RIVER AT 

BIRDTOWN, N. C. 

25 3550000 -84.0 35.1 104 1846 8.5 VALLEY RIVER AT TOMOTLA, N. C. 

26 2156500 -81.4 34.6 2790 1319 139.1 BROAD RIVER NEAR CARLISLE, S. C. 

27 2165000 -82.2 34.4 236 1340 10.6 

REEDY RIVER NEAR WARE 

SHOALS,S.C. 

28 3455000 -83.2 36.0 1858 1340 114.5 

FRENCH BROAD RIVER NEAR 

NEWPORT, TN 
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Table 2. Parameters and corresponding performance of nutrient loading rating curve 

developed using LOADEST. 

Sno Nutrient Station 

No of 

data 

points 

T' 
Ln(Q)

' 
a  a1 a2 a3 R

2
 

Mean 

Load 

(Ton/

day) 

SE 

1 

Total 

nitrogen 

2296750 143 1984.77 6.30 7.76 1.04 0.17 0.13 0.90 4.89 0.30 

2 2329000 133 1983.44 6.32 7.34 0.85 0.00 0.00 0.92 5.96 0.37 

3 2365000 118 1983.52 8.82 9.07 0.93 -0.09 0.12 0.83 11.31 0.51 

4 2375500 144 1983.14 8.61 8.87 1.04 0.12 -0.09 0.87 10.25 0.47 

5 2236000 61 1985.65 7.41 8.55 1.11 -0.06 -0.06 0.90 10.69 0.58 

6 2202500 141 1983.95 7.35 7.72 1.07 -0.08 -0.32 0.92 4.77 0.16 

7 2126000 64 1984.76 7.25 8.92 1.08 -0.21 0.08 0.96 19.32 1.68 

8 

Total 

phospho

rous 

2296750 143 1984.77 6.30 7.60 0.75 -0.01 -0.02 0.72 3.09 0.13 

9 2329000 133 1983.44 6.32 5.55 0.73 -0.03 0.03 0.82 0.81 0.07 

10 2365000 118 1983.52 8.82 6.31 1.21 -0.02 0.11 0.82 0.77 0.06 

11 2375500 144 1983.14 8.61 6.17 1.21 0.05 -0.10 0.85 0.80 0.09 

12 2236000 61 1985.65 7.41 5.91 1.06 -0.15 0.22 0.80 0.84 0.11 

13 2202500 141 1983.95 7.35 5.28 0.94 -0.13 -0.29 0.86 0.35 0.01 

14 2126000 64 1984.76 7.25 6.95 1.03 -0.43 0.39 0.88 2.20 0.32 

T' and Ln(Q)' are the centering parameter for time and log of   flow      

 

  

 



 

 

Fig. 1. Schematic of hydrological simulation based on multiple ensembles of climate model 

forecasted meteorological forcing (60 members per seasonal forecast) and multiple hydrological 

models (3 models), for a total of 180 seasonal hydrological simulations per season per watershed. 
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Fig. 2. Climatological rainfall averaged over the 28 watersheds in the Southeastern U.S. 

(identifiers indicated along the x-axis). 

  



 

 

 

Fig. 3. Volume error of the flow predicted with forcing from raw FISH50 data (FISH50), 

resampled from historical observational analogues of Dec-May mean rainfall from FISH50 

(FISH50_Resamp). 

  



 

 

Fig. 4. Predicted monthly mean flow with raw FISH50 (FISH50), resampled from historical 

observational analogues of Dec-May mean rainfall from FISH50 (FISH50_Resamp) forcing. 

  



 

 

Fig. 5. Skill scores of the hydrological prediction based on normalized root mean square errors. 

PEM (persistence efficiency measure) is the Nash Sutcliffe efficiency criteria measured with 

respect to lag one-year as a reference forecast and NSE is the Nash Sutcliffe efficiency measured 

with respect to climatological value as a reference forecast. 

  

 

 

 



 

 

Fig. 6. Area under ROC (AROC) for FISH50 Dec–May mean precipitation averaged over the 

respective watersheds in the Southeastern U.S. (a) AROC value for very wet (blue circle) and 

very dry (red circle) rainfall categories, (b) AROC value for medium wet (blue) and medium dry 

(red) categories. Only AROC values over 0.5 are shown (for watershed with no skill, a dot is 

used to represent the location of the watershed). The size of the bubble indicates the relative 

magnitude of the AROC, which can range from 0.5 to 1.0.  

  



 

 

Fig. 7. Summary of probabilistic assessment of flow predicted with FISH50_Resamp for four 

selected quartile categories of December-May mean rainfall over the various watersheds in the 

Southeastern U.S (Very Dry, Very Wet, Medium Wet, and Medium Dry). An AROC greater 

than 0.5 suggests that the prediction skill is better than the climatology. 

 



 

 

Fig. 8. AROC for the very wet (blue) and very dry (red) categories of streamflow predicted with 

FISH50_Resamp forcing. The size of the bubble indicates the relative magnitude of the AROC, 

which can range from 0.5 to 1.0. Values of AROC below 0.5 are not plotted. 



 

 

Fig. 9. Same as Fig. 9 but for AROC values for the medium wet (blue) and medium dry (red) 

categories of streamflow. 

  



 

 

Fig. 10. AROC value for simulated (a) total nitrogen (upper quartile) and (b) total phosphorous 

(upper quartile). Size of the blue circle represents the skill (AROC) of streamflow and size of the 

red circle represents the skill of nutrient loading. 



 

Figure 11: AROC value for simulated a) total nitrogen (lower quartile) and b) total phosphorous 

(lower quartile). Size of the blue circle represents the skill (AROC) of streamflow and red 

represents the skill of nutrient loading. 

 


