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Seasonal change in the incidence of infectious diseases is a common phenomenon in both temperate and

tropical climates. However, the mechanisms responsible for seasonal disease incidence, and the

epidemiological consequences of seasonality, are poorly understood with rare exception. Standard

epidemiological theory and concepts such as the basic reproductive number R0 no longer apply, and the

implications for interventions that themselves may be periodic, such as pulse vaccination, have not been

formally examined. This paper examines the causes and consequences of seasonality, and in so doing

derives several new results concerning vaccination strategy and the interpretation of disease outbreak data.

It begins with a brief review of published scientific studies in support of different causes of seasonality in

infectious diseases of humans, identifying four principal mechanisms and their association with different

routes of transmission. It then describes the consequences of seasonality for R0, disease outbreaks,

endemic dynamics and persistence. Finally, a mathematical analysis of routine and pulse vaccination

programmes for seasonal infections is presented. The synthesis of seasonal infectious disease epidemiology

attempted by this paper highlights the need for further empirical and theoretical work.
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1. INTRODUCTION
Seasonal infections of humans range from childhood

diseases, such as measles, diphtheria and chickenpox, to

faecal–oral infections, such as cholera and rotavirus,

vector-borne diseases including malaria and even sexually

transmitted gonorrhoea (Hethcote & Yorke 1984).

Despite the near ubiquity of this phenomenon, the causes

and consequences of seasonal patterns of incidence are

poorly understood.

This paper examines these causes and consequences,

providing an overview of seasonal infectious disease

epidemiology. It is divided into three sections. In the

first section, the causes of seasonal patterns of human

infectious disease incidence and their association with

different modes of transmission are briefly reviewed. The

second section provides an overview of seasonal infectious

disease epidemiology, examining the consequences of

seasonality for threshold parameters, such as R0, disease

outbreaks, endemic dynamics and persistence. The third

section deals with the implications of seasonality for

disease control by routine and pulse vaccination pro-

grammes. In the second and third sections, several new

results are obtained concerning the expected size distri-

bution of disease outbreaks and pulse vaccination

strategies for seasonal infections. These results are

discussed and areas for further empirical and theoretical

work identified.
2. CAUSES OF SEASONALITY
The causes of seasonal and longer period cycles in the

incidence of infectious diseases have long puzzled

epidemiologists (e.g. Ransome 1880). Careful mathemat-

ical analysis in the early twentieth century led to the

description of the ‘law’ of mass action, which states that
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the number of new infections depends on the product of

the number of infected individuals, the number suscep-

tible and a transmission parameter (called variously a

‘contact rate’, ‘coefficient of infectivity’, etc.; for a history,

see Heesterbeek 2005). If infection results in protective

immunity or death, the law of mass action predicts cycles

in disease incidence. Soper (1929), however, made it clear

that, at least in the case of measles, significant seasonal

variation in the transmission parameter must also occur.

One proposed cause of this seasonal variation was the

congregation of children during school terms. This was

confirmed about 50 years later by detailed analysis of

weekly measles case reports from England and Wales,

which demonstrated a decline in the transmission

parameter during school holidays (Fine &Clarkson 1982).

Although significant progress has been made towards

understanding the basis of measles seasonality in temper-

ate regions, the causes of seasonal patterns of incidence for

most other infections remain unclear. We reviewed the

scientific literature and citations therein using the search

term ‘season�’ AND (‘infect�’ OR ‘disease�’) in ISI Web

of Science, PubMed and Google Scholar. This revealed a

limited evidence base supporting the role of several

different mechanisms in driving seasonal transmission of

human infectious diseases. These can be grouped under

four main headings. A similar exercise was recently

conducted by Altizer et al. (2006), where infectious

diseases of wildlife are also considered and the importance

of seasonal reproduction of the host discussed.
(a) Survival of pathogen outside host

The survival of the pathogenic organism outside a host

depends on the characteristics of the environment,

particularly temperature, humidity, exposure to sunlight,

pH and salinity. Annual variation in climate can therefore

result in annual or more complex peaks in disease

incidence, depending on the influence of climatic
q 2006 The Royal Society
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variables, such as rainfall or cloud cover on the

environment. This relationship depends on the type of

environment (e.g. sewage, aerosol, droplets, etc.), and

hence route of transmission.

The most studied examples of environmentally driven

seasonality are for pathogens whose predominant route of

transmission is faecal–oral. The enhanced survival of

rotavirus and norovirus at low temperatures is responsible

for the typically observed winter peaks in gastroenteritis

(Cook et al. 1990; Mounts et al. 2000). Similarly, seasonal

increases in cholera incidence occur when the micro-

environment favours growth of the bacterium (Pascual

et al. 2000, 2002). There is, however, a complex

relationship between the micro-environment and bacterial

growth, which depends on temperature, salinity and

overall levels of water in the environment. The incidence

of cholera is therefore difficult to predict from data on

climate, and may peak once or twice a year depending on

the local environment (Pascual et al. 2002).

The ability to survive outside a host is also likely to be

an important cause of seasonal incidence for infections

transmitted by aerosols, droplets and fomites. For

example, low humidity increases the survival of the

influenza virus in air, and annual variation in indoor

humidity has been proposed as a cause of the winter

seasonality of influenza (Loosli et al. 1943; Hemmes et al.

1960). In the tropics, seasonal peaks in the incidence of

respiratory syncytial virus have also been found to

correlate with low humidity (Chew et al. 1998).

(b) Host behaviour

The congregation of children during school terms has

been clearly demonstrated to influence annual variation in

the weekly incidence of measles in England and Wales

(Fine & Clarkson 1982; Finkenstadt & Grenfell 2000).

Other studies, based on monthly data collected in Europe

and the United States, report a reduction in the estimated

transmission parameter over the summer months for

measles and other childhood infections, including mumps,

chickenpox, diphtheria and pertussis (London & Yorke

1973; Gomes et al. 1999; Deguen et al. 2000). While this is

likely to reflect the long school holiday in the summer, an

explanation based solely on climate cannot be excluded

because of the lack of resolution in the time-scale for

reported cases.

Perhaps because of the seminal work on measles,

changes in host behaviour, particularly patterns of move-

ment and contact, have a strong tradition as explanations

for the seasonality of infectious diseases. However, with

the exception of childhood infections, the evidence base

for this tradition is largely anecdotal. An increased rate of

partner change during the summer vacation is likely to

explain the peaks in gonorrhoea incidence during August

to October in the United States (Hethcote & Yorke 1984).

However, there appear to be no clear examples of annual

variation in contact patterns that explain, in isolation, the

seasonal incidence of other infectious diseases.

(c) Host immune function

Seasonal change in host immune competence, and hence

susceptibility to infection or to symptomatic disease

following an infection, has been proposed as a cause of

seasonal variation in the incidence of some infectious

diseases of humans (Dowell 2001). Several potential
Proc. R. Soc. B (2006)
mechanisms for annual variation in immune competence

have been suggested, including photoperiod effects and

physiological stress. However, although examples exist for

infectious diseases of wildlife, evidence for the importance

of these factors in the seasonal incidence of human

infectious diseases is currently lacking (Nelson & Demas

1996; Altizer et al. 2006). Perhaps the best-supported role

for seasonal changes in human immune competence is the

decline in mucosal integrity during the dry season in

Africa and the associated increase in cases of bacterial

meningitis (Greenwood 1999; Sultan et al. 2005). This is

likely to be due to an increased risk of invasive disease

among infected individuals, rather than increased trans-

mission, since bacterial transmission continues during the

rainy season (Blakebrough 1979).

(d) Abundance of vectors and non-human hosts

Seasonal changes in vector abundance, including mosqui-

toes, ticks, snails, fleas and flies, are well-documented

causes of seasonality for vector-borne infections (Lord

et al. 1996; Chavasse et al. 1999; Emerson et al. 2000;

Sturrock et al. 2001; Randolph 2004; Mabaso et al. 2005).

For example, seasonal variation in mosquito abundance in

response to annual variation in temperature and rainfall

can cause strongly seasonal patterns of disease incidence

in malaria epidemic regions, such as the Kenyan highlands

(Hay et al. 2003). Similarly, seasonal peaks in the

incidence of diarrhoeal disease in Pakistan correlate with

a high density of houseflies, and may be suppressed by

effective fly control (Chavasse et al. 1999). The incidence

of zoonoses may also be influenced by the abundance of

the primary (non-human) host. For example, plague

dynamics in central Asia are influenced by the abundance

of their primary gerbil host (Davis et al. 2004).
3. THE EPIDEMIOLOGY OF SEASONAL
INFECTIONS
(a) The basic reproductive number

The basic reproductive number R0 for a non-seasonal

infection is typically defined as the number of secondary

infections that result from the introduction of a single

infectious individual into an entirely susceptible popu-

lation (Anderson & May 1991). This interpretation is not

possible for seasonal infections, since the number of

secondary infections will depend on the time of year that

the infectious individual is introduced.

In the non-seasonal case, R0 is a threshold parameter,

with R0O1 implying initially exponential growth in the

number of infections. It may be estimated by analysis of

the stability of the system of ordinary differential equations

describing transmission, linearized about the infection-

free equilibrium (e.g. Diekmann et al. 1990). Lineariza-

tion means the impact of the epidemic on the number of

susceptible individuals is ignored. A similar approach can

be used to define threshold parameters for seasonal

infections, and involves linearization over the entire year.

The conditions for stability of the infection-free equi-

librium can then be established using Floquet’s theorem

(Heesterbeek & Roberts 1995). However, this approach

often requires numerical solution of the linearized system

over one year. Furthermore, to derive a threshold

parameter that has a similar interpretation to R0 requires

averaging over all possible times of year that an infection
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Figure 1. Estimated average seasonal transmission parameter
(mean centred) for measles in the UK compared to sinusoidal
forcing with sZ0.28. The monthly estimates from Soper
(1929) are averages over 1905–1916 for Glasgow, and the
biweekly estimates from Finkenstadt & Grenfell (2000) are
averages for England and Wales over 1944–1964. School
terms are indicated at the top of the figure by the thick bars.
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may be introduced. It would therefore be helpful if

suitable approximations for threshold parameters analo-

gous to R0 could be derived in the seasonal case.

Work in this direction suggests that for a general class of

functions describing the distribution of the infectious

period, including exponential, the arithmetic mean of the

transmission parameter scaled by the duration of infection

gives the appropriate threshold parameter to a very good

approximation (Williams & Dye 1997). We therefore

define a basic reproductive number for a seasonal,

homogeneous susceptible–infected–recovered (SIR)

model by

�R0 ZD

ð1
0
bðtÞdt; ð3:1Þ

where b(t) is the transmission parameter at time t years and

D the average duration of infection. This may be

interpreted as the average number of secondary cases

arising from the introduction of a single infected person

into a completely susceptible population at a random time of

the year. The condition �R0!1 is not sufficient to prevent a

(potentially large) outbreak, since chains of transmission

canbe establishedduring thehigh season ifDbðtÞO1, but is

sufficient and necessary for long-term disease extinction.

To prove this mathematically, it is sufficient to note that

extinction must be possible in the linearized model where

the fraction of the population susceptible is assumed to be

1. In this case, change in the fraction infected y is given by

D dy=dtZ ðDbðtÞK1Þy, the solution of which shows y/0

as t/0 if and only if �R0!1.This proof can be extended for

certain types of population heterogeneity, where the

amplitude of seasonal forcing is independent of who infects

who, but is surprisingly complex as soon as additional

infection stages are introduced (as is the case for the

susceptible–exposed–infected–recovered (SEIR) model;

see Williams & Dye 1997; Ma & Ma 2006). In case of the

latter, equation (3.1) then only defines a numerically

approximate basic reproductive number.

For mathematical convenience, seasonal transmission

is often assumed to be sinusoidal, such that

bðtÞZbð1Cs cosð2ptÞÞ; ð3:2Þ

where s is the amplitude of seasonal variation in

transmission (typically referred to as the ‘strength of

seasonal forcing’). In this case, �R0ZDb as for non-

seasonal infections (where sZ0).

Of course, sinusoidal forcing of transmission is a crude

assumption for many infectious diseases, where the

appropriate functional form will depend on the major

cause(s) of seasonality. For example, the estimated

transmission parameter for measles in the UK drops

during the school holidays (figure 1). Amechanistic model

for the seasonal transmission of measles is therefore often

based on ‘term-time forcing’, such that

bðtÞZbð1Cs termðtÞÞ; ð3:3Þ

where term(t) is C1 during the term and K1 during the

holidays (Keeling et al. 2001). Simple SEIR models based

on term-time forcing are capable of capturing many of the

observed features of measles dynamics without resorting

to more complex age-structuring (Earn et al. 2000).

However, the step-function (3.3) differs from the annual

variation in the transmission parameter estimated from the

data, which peaks at the beginning of each term

(Finkenstadt & Grenfell 2000; figure 1). These peaks are
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likely to reflect heterogeneity in transmission, with early

saturation of infection among susceptible children with

frequent infectious contacts.
(b) Outbreaks

In the absence of endemic disease transmission with

R0!1, outbreaks of infection may still occur following the

importation of infection due to the stochastic nature of the

transmission process. Surveillance systems that are able to

report the duration and size of these outbreaks can provide

important information about the underlying transmission

parameter and contact patterns in a given population.

Ignoring the impact of the outbreak on the number of

susceptible individuals, an outbreak in a simple non-

seasonal SIR model of infection may be described by a

branching process with a constant probability of infection

R0/(R0C1) and probability of recovery 1/(R0C1) (Bailey

1975; Farrington et al. 2003). The probability of observing

an epidemic of size n following the importation of a single

case is then given by

PðnÞZ
ð2nK2Þ!RnK1

0

n!ðnK1Þ!ðR0 C1Þ2nK1
: ð3:4Þ

This elegant result has been used to estimate R0 for

measles in England and Wales and the United States from

the observed distribution of outbreak sizes ( Jansen et al.

2003; Gay et al. 2004). In England and Wales, this

highlighted the significant increase in R0 between 1995

and 2002 due to a decline in vaccine coverage following

the combined measles–mumps–rubella (MMR) vaccine

scare. Some difficulties in the application of branching

process theory remain however, since population structure

and associated heterogeneity in R0 may undermine the

linearity assumed in (3.4). For example, larger outbreaks

of vaccine-preventable disease are frequently restricted to

communities that refuse vaccination based on religious or

other beliefs and in which saturation effects become

important (Ramsay et al. 2003). Also, failure to link cases

to particular outbreaks can lead to under-reporting of
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Figure 2. The distribution of final outbreak size following the
introduction of a single case in a stochastic SIR model in the
presence (sZ0.5) and absence (sZ0) of seasonal variation in
the transmission parameter for different values of the average
basic reproductive number �R0. Each curve represents the
outcome from 10 000 single case importations occurring on a
randomly distributed day of the year. The expected
distribution based on branching process theory is shown in
grey. We ignore the demographic processes of birth and death
since outbreaks occur over a relatively short period. In this
case, the probability of an infection occurring in a small time
interval dt is b(t)S(t)I(t)dt/N(t) and that of recovery to the
immune class I(t)dt/D, where S(t) and I(t) are the number of
susceptible and infected individuals, respectively, at time t,
the total population size N(t)Z107 is constant over time, b(t)
is the transmission parameter and DZ2 weeks is the mean
infectious period. The asterisked line shows the increase in
larger outbreaks seen for a shorter duration of infection (one
week) when �R0Z0.9 and sZ0.5.
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larger outbreaks and bias estimates of R0 downwards (Gay

et al. 2004), while a tendency to link unconnected cases or

preferentially investigate larger outbreaks could bias

estimates upwards (Ferguson et al. 2004).

In the case of seasonal infectious diseases, including

childhood infections such as measles, annual variation in

the underlying transmission parameter is an important

cause of temporal heterogeneity in R0. This temporal

heterogeneity alters the expected distribution of out-

breaks sizes for a given annual average �R0. The time

dependence of the transition probabilities makes analytic

results difficult to derive (although see Jagers & Nerman

1985; Trapman et al. 2004), and we therefore examine

the effect of seasonal variation in R0 on the distribution

of outbreak sizes numerically using a stochastic SIR

model.

In the absence of seasonal variation, the distribution of

outbreak sizes in the stochastic model agrees with

branching process calculations (figure 2). However,

seasonal variation shifts this distribution towards larger

outbreaks, with the difference dependent on the amplitude

and form of the seasonal variation in transmission. The

effect is most marked when DbðtÞ exceeds 1 during the

high season, in which case epidemics can occur. These

epidemics increase in size with �R0, and for a fixed �R0 with

shorter generation times for the infection (faster recovery

rate). However, even if DbðtÞ never exceeds 1, auto-

correlation in the transmission parameter results in larger
Proc. R. Soc. B (2006)
outbreaks than predicted for non-seasonal infections. This

means that estimates of R0 from observed outbreak size

distributions that ignore seasonal effects may be biased

upwards. However, in the case of realistic term-time

forcing of measles transmission, the extent of this bias is

not large; the probability of an outbreak of more than 100

cases for �R0Z0:9 is not significantly different in the

presence (2.6%) or absence (2.5%) of term-time forcing

of transmission with sZ0.25 and term dates as described

in Keeling et al. (2001).

(c) Endemic dynamics

In contrast to outbreaks, the dynamics of endemic

seasonal infections have been much studied, both

empirically and theoretically (Hamer 1906; Soper 1929;

London & Yorke 1973; Dietz 1976; Aron & Schwartz

1984; Schwartz 1985, 1992; Grenfell et al. 2001; Keeling

et al. 2001; Bauch & Earn 2003; Rohani et al. 2003). The

key features are briefly reviewed here to provide a

background to the subsequent section on vaccination.

Oscillations in disease incidence are frequently

observed, even for non-seasonal infections, where at

least partially protective immunity results in a decline

in the susceptible population during an epidemic.

A subsequent period of low incidence follows, while the

susceptible population is replenished, until an epidemic

can occur again. These oscillations are predicted by

stability analysis of the endemic equilibrium of determin-

istic models of disease transmission (e.g. Anderson &May

1991). For example, perturbation of the endemic

equilibrium of the SIR model results in damped

oscillations in incidence with period Tx2p
ffiffiffiffiffiffiffiffi
AD

p
, where

A is the mean age at infection at equilibrium. In the

stochastic SIR model, the random nature of the trans-

mission process continually perturbs the system and

oscillations in incidence are sustained with period T

(figure 3a). For reasonably large population size N, the

distribution of the number of infected individuals in this

quasi-stationary state is approximately normal with

variance s2I zNðR0K1Þ=R2
0 (Nåsell 2002).

The introduction of seasonal forcing of transmission to

these models can result in complex dynamics. If T is

close to one year, then simple resonance results in even

mild seasonal variation in transmission causing large

amplitude oscillations in incidence (Dietz 1976). This

may be one reason why it is difficult to identify the causes

of seasonality for influenza (Dushoff et al. 2004). If T is

significantly larger than one year, then more complex

dynamics may ensue, and stochastically driven switching

occurs between different attractors of the deterministic

system with different periods (figure 3b) (Schwartz 1985;

Rohani et al. 2002). For example, numerical analysis of the

attractors of a seasonal SIR model correctly predicts the

dynamical transitions observed for the periodicity of

measles epidemics in England and Wales and the United

States (Earn et al. 2000). More recently, it has been shown

that the stochastically driven transient behaviour of the

system away from these attractors is also important, and

indeed is necessary to explain the observed dynamics of

rubella and whooping cough (Rohani et al. 2002; Bauch &

Earn 2003).

Increasing the strength of seasonal forcing (s) in simple

SIRmodels of transmission with initially annual epidemics

leads to period doubling bifurcations and eventually chaos
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Figure 3. Endemic dynamics of deterministic and stochastic
SIR models of (a) non-seasonal and (b) seasonal infections,
with the introduction of routine vaccination of 60% of the
population at birth after 20 years. (a) The non-seasonal
deterministic model shows damped oscillation in incidence
following perturbation of the system by vaccination, with the
period Tx2p
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predicted by stability analysis of the

endemic equilibrium. In the stochastic case, these oscillations
are sustained both pre- and post-vaccination, although with
different periods reflecting the change in the mean age at
infection A following vaccination. (b) The change in the
natural period of the system following vaccination in the
seasonal model results in a transition from annual to triennial
epidemics in the deterministic case. In the stochastic model
post-vaccination, more complex dynamics are observed, with
switching between the attractors with annual and triennial
periodicity driven by the stochasticity. These simulations are
for an infection with �R0Z8, an infection period of two weeks,
population size NZ106 and rate of exit from the population
mZ0.1. Vaccination moves individuals from the susceptible to
the recovered compartment. The seasonal model assumes a
sinusoidally varying transmission parameter with sZ0.1. In
the stochastic model, we assume a small rate of import of
infection of 10K5 yrK1 NK1 to avoid extinction of infection.

Seasonality in infectious diseases N. C. Grassly & C. Fraser 2545
(Aron & Schwartz 1984). In the case of measles in

industrialized countries, estimates of the strength of

seasonal forcing suggest chaotic dynamics driven by

seasonality are unlikely (Earn et al. 2000). In fact, it now

appears that the observed patterns of incidence of most

seasonal childhood infections in these countries are

explained by the interplay of stochasticity, nonlinear

dynamics and mild seasonal forcing (Rohani et al. 2002).

(d) Persistence

Seasonal variation in transmission tends to reduce disease

persistence due to the low number of cases between

epidemic peaks and the possibility of stochastic extinction
Proc. R. Soc. B (2006)
of infection. The importance of stochastic extinction or

‘fade-out’ has long been recognized, with Bartlett (1957)

first drawing attention to an apparent ‘critical community

size’ for measles, below which stochastic fade-out became

important.

In the case of structured (meta-) populations, seasonal

forcing of transmission tends to synchronize epidemics in

different places, leading to a greater probability of

stochastic extinction of infection across the entire meta-

population (Grenfell et al. 1995). However, this may not

always be the case, since for certain model structures

complex transient and asynchronous dynamics across the

meta-population can be sustained by seasonality (Allen

et al. 1993; Grenfell et al. 1995).
4. VACCINATION AGAINST SEASONAL
INFECTIONS
(a) Routine vaccination

Routine vaccination of a fraction of the population p at or

soon after birth increases the mean age at infection (by

1/(1Kp) in a homogeneous population), and therefore

increases the natural period T of unforced endemic

dynamics. For a seasonally forced infection, this can

therefore lead to a change from regular annual or biennial

epidemics to more complex patterns of disease incidence

(Earn et al. 2000). In the case of measles in England and

Wales, the more complex dynamics that followed vac-

cination led to a decline in the temporal correlation of

epidemics in different cities (Bolker & Grenfell 1996).

This may have had the perverse outcome of reducing the

likelihood of measles elimination.

(b) Pulse vaccination

Pulse vaccination was developed as a strategy to maximize

vaccine coverage where routine programmes were failing

( John et al. 1983). Disease eradication programmes using

this strategy rely on the administration of large numbers of

vaccine doses on ‘immunization days’, with the aim of

maintaining the number of susceptible individuals below

that sufficient to support endemic transmission. Pulse

vaccination is central to the WHO strategy for the global

eradication of polio (Heymann & Aylward 2004).

Theoretical work has focused on the maximum allowable

inter-pulse interval, which for a homogeneous population

with constant birth rate, in the absence of routine

programmes, is simply p0A, where p0 is the fraction

vaccinated during a single immunization day (Agur et al.

1993; Nokes & Swinton 1995, 1997).

Despite most vaccine preventable infections showing

seasonal variation, the theory in support of pulse

vaccination has not taken this into consideration. Little

thought has been given to the timing of immunization

days, which typically occur during the low season with the

stated aim of interrupting local transmission (Birmingham

et al. 1997). In fact, the interaction of seasonal forcing of

transmission with cycles in the susceptible population

induced by typically annual pulse vaccination is an

important determinant of the annual average reproductive

number and disease dynamics.

To measure the impact of vaccination on disease

transmission, it is useful to define an effective reproductive

number Rv as the number of secondary infections that

results from the introduction of an infectious individual
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into a vaccinated but naive population (i.e. in the absence

of density-dependent effects). In the case of a seasonal

infection, the annual average Rv is given by

�Rv ZD

ð1
0
bðtÞQðtÞdt; ð4:1Þ

where Q(t) is the fraction of the population that is

unvaccinated at time t.

Consider a homogeneous, annual pulse vaccination

programme, such that a fraction (1Kq) of the susceptible

population is successfully vaccinated each immunization

day (and that immunity is an all-or-nothing response). At

time t after vaccination, anyone aged less than t will be

unvaccinated, a proportion q of those aged between t and

tC1 will be unvaccinated, and so on all the way up to

those aged between nK1Ct and n, a proportion qnK1 of

which will be unvaccinated. If we assume the population

size does not change with age, the fraction of the

population aged less than n years old that remain

unvaccinated at time t after the immunization day is

therefore (with some simplification) given by

QðtÞZ ð1KqnÞðtCq=ð1KqÞÞ=n: ð4:2Þ

In a model with sinusoidal forcing of transmission

shifted by d relative to the vaccination schedule, such that

tZ tCd, substituting (3.2) and (4.2) into (4.1) and

integrating over t gives the annual average effective

reproductive number,

�Rv Zb
1Kqn

n

1

2
C

q

1Kq
K

s

2p
sinð2pdÞ

� �
: ð4:3Þ

This function is minimized by vaccinating, such that

dZ0:25 years, in other words three months prior to the

peak in the transmission parameter. The value of d for the

conventional approach of vaccinating during the season of

low incidence will depend on the relative timing of peaks

in incidence compared to peaks in the transmission

parameter. These can differ significantly, depending on

the natural history of the infection and R0 (Dietz 1976).

For many infections, peak incidence will lag peak

transmission by up to about three months (e.g. Yorke

et al. (1979).

The relative change in �Rv that results from vaccinating

at different times of the year depends solely on the strength

of seasonal forcing s and the fraction vaccinated each

round q (figure 4a). For example, for an infection with

peak transmission mid-summer and seasonal forcing sZ
0.3, annual vaccination of 80% of the population in April

would reduce �Rv by 6% compared to vaccinating in

January (or compared to vaccinating at any time of year

when sZ0).

Similar effects can be observed for other forms of

seasonal forcing. For example, in the case of term-time

forcing (3.3), pulse vaccination at the end of the long

summer holiday minimizes �Rv (since the largest values of

Q(t) then occur out of school term). With sZ0.3, annual

pulse vaccination of 80% of children at this time results in

an �Rv that is 28% lower than for vaccination every January.

These sorts of calculation can be extended to include more

realistic demography (changing population size by age),

pulse vaccination with a different frequency, additional

coverage through routine vaccination and different forms

of seasonal forcing appropriate to the infection and

location of interest.
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For example, if mortality occurs at a constant rate m,

that is independent of age (type-I mortality sensu

Anderson & May 1991), then we find the proportion

unvaccinated is given by

QðtÞZ1KeKmt 1Kq

1Kq eKm
; ð4:4Þ

and the average reproduction number is

�Rv Zb 1K
ð1KeKmÞð1KqÞ

mð1Kq eKmÞ

�

! 1Cs
1

1Cm=2p
sinð2pdÞC

m

2p
cosð2pdÞ

� �� ��
:

ð4:5Þ

This results in the optimal time for vaccination being

brought closer to the time of peak transmission, speci-

fically dZ tanK1ð2p=mÞ=2p. In practice, this correction will

be small even in areas of high mortality, so that the

previously derived result, dz0:25, corresponding to

vaccinating three months prior to peak transmission is

still a reasonable approximation.

In the case that routine vaccination is also in place, if it

occurs at or close to birth, then QðtÞ is simply multiplied

by a constant that depends on routine vaccination

coverage and efficacy, and the optimal time for pulse

vaccination remains unchanged. For more complex

routine immunization schedules, analytical expressions

may be derived on a case-by-case basis, but these will be

unwieldy and are not pursued here.

Pulse vaccination at the optimal times described above

minimizes not only �Rv, but also the amplitude of the

variation in Rv over time. Such strategies can be thought of

as effectively reducing the strength of seasonal forcing s.

In the absence of disease, this minimizes the probability of

an outbreak and the size of any outbreaks that do occur

(cf. figure 2). This makes such strategies optimal post-

elimination, for example in the case of polio-free countries.

In the presence of disease, the decrease in �Rv can result in a

lower cumulative incidence of infection. However, persist-

ence propertiesmaybe affected by the effective reduction in

s, since seasonal forcing typically reduces the persistence of

an infection (Grenfell et al. 1995). For infections whose

epidemiology and natural history result in robustly annual

epidemics (e.g. polio in countries with poor sanitation),

numerical simulations of a stochastic, sinusoidal seasonal

SIR model suggest that any increase in persistence due to

the effective reduction in s is more than balanced by the

overall reduction in �Rv, such that both persistence and

cumulative incidence are decreased by vaccinating three

months prior to peak transmission (figure 4b). A similar

result is found for simple meta-population versions of this

model (results not shown).

Pulse vaccination can change the periodic behaviour

of infections through both changes in the natural period

of the system T and through the introduction of an

annual (or other period) forced oscillation in the number

of susceptible individuals. For infections with biennial

or more complex epidemic patterns (e.g. measles), it is

possible for pulse vaccination to drive the oscillations to an

annual periodic attractor (figure 4c). This contrasts with

the impact of routine vaccination against measles in

England and Wales and the USA, where the increase

in T resulted in irregular, decorrelated epidemics

(Bolker & Grenfell 1996; Earn et al. 2000). The impact
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Figure 4. Pulse vaccination and seasonal infectious disease dynamics. (a) A contour plot showing the percentage reduction in �Rv

for annual pulse vaccination three months prior to peak transmission (dZ0.25), compared to six months (dZ0.5), for a seasonal
infection with sinusoidal variation in transmission with strength s and vaccination coverage (1Kq). (b) Numerical simulations of
a stochastic, sinusoidal seasonal SIR model showing the fraction of populations where the infection goes extinct and the
cumulative cases of disease for an infection with robustly annual epidemics and pulse vaccination at six months prior to peak
transmission (dZ0.5; triangles, solid line) and at three months (dZ0.25; diamonds, dashed line). Each point represents 100
simulations for 100 years post-vaccination, with model parameters sZ0.6, mZ0.16,NZ105 andDZ6 weeks. Pulse vaccination
is assumed to successfully immunize 40% of susceptible children (qZ0.6). (c) Prevalence of infection over time for a seasonal
stochastic SIR model where the introduction of pulse vaccination at time 10 years results in a switch from biennial to annual
epidemics. The model parameters are �R0Z6, sZ0.3, NZ106, dZ0.25 years and DZ2 weeks.
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of the introduction of an additional periodic attractor on

persistence of infections with complex dynamics is unclear

and likely to depend on population structure and patterns

of contact. If prior to vaccination the complex epidemic

patterns showed little temporal correlation between cities,

then the synchronicity induced by pulse vaccination can

increase the chance of global extinction (Earn et al. 1998).

Conversely, for well-connected cities, patterns of inci-

dence are likely to be strongly correlated (Grassly et al.

2005), in which case the unstable, longer period epidemics

prior to the introduction of pulse vaccination would have

been more likely to result in global extinction than the

regular epidemics post-vaccination. The timing of immu-

nization days must therefore be chosen with careful

consideration of the nature of the seasonal forcing and

the likely impact of vaccination on the dynamics of

infection. It is conceivable that vaccination three months

after peak transmission (dZK0.25) to effectively increase

the strength of seasonal forcing s could increase the

likelihood of global eradication for infections prone to

unstable dynamics.
Proc. R. Soc. B (2006)
5. DISCUSSION
Despite early interest in the causes of seasonal variation in

infectious disease incidence (Ransome 1880; Hamer

1906; Soper 1929), they remain poorly understood more

than a century later. There appear to be several reasons for

this. First, the causes of seasonality are many, and their

relative importance depends on the local context. For

example, winter peaks in the incidence of measles in

temperate regions are likely to be caused not only by

school terms, but also by lower indoor humidity, which

favours survival of the virus in the air (de Jong & Winkler

1964). In the tropics, measles incidence peaks during the

dry season and the association with school terms is not

apparent. Instead, increased survival of the virus in the

dryer air may be the key determinant of these dry season

peaks.

Second, peaks in disease incidence can occur at

significantly different times of year to peak transmission,

depending on the characteristics of the infection (Dietz

1976). Infections with the same underlying cause of

seasonal transmission may therefore show different
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patterns of incidence. Furthermore, in many cases, the

interaction of the nonlinear dynamics of the infection with

seasonal forcing of transmission results in more complex

dynamics, including multi-annual cycles with variable

periodicity (figure 3). These nonlinearities act to obscure

correlation between climatic or behavioural factors and

annual variation in disease incidence.

Finally, the dynamics of seasonal infections can be

complicated by the interaction of the pathogens them-

selves, acting either to enhance the spread of one another

through immune suppression (Lello et al. 2004) or

antibody-dependent enhancement (Ferguson et al.

1999), or to inhibit one another through the removal of

susceptible individuals by cross-immunity or mortality

(Rohani et al. 2003; Lello et al. 2004). These interactions

can lead to seasonal dynamics that would not be predicted

by analysis of each infection in isolation (Rohani et al.

2003).

The problems these complications pose to the identifi-

cation and quantifying of the causes of seasonality call for a

comparative approach to analysing infectious disease data.

Comparative analysis of longitudinal surveillance data for

the same infection in different locations will help identify

hypothesized causes of seasonality where these differ by

location. For example, better surveillance of influenza in

the tropics would allow a better understanding of the role

of climate versus human contact patterns in driving

seasonality.

Comparative analysis of different infections from the

same location will also be useful, not only because

infections can directly interact, but because different

disease natural histories will lead to different temporal

dynamics in response to the same seasonal forcing.

Careful analysis of surveillance data can therefore allow

fragile theories about mathematical complexity to be

addressed and the causes of seasonal forcing more robustly

identified.

Central to this work is the need to measure potential

drivers of seasonality. In the case of climate, this may be

relatively straightforward. However, patterns of human

contact are difficult to describe mathematically, and much

theoretical and empirical work remains to be done in this

area.

Although the complex patterns of incidence that can

result from seasonal forcing of transmission have been well

studied, the implications for persistence remain poorly

understood. This probably reflects the importance of

spatial heterogeneities in transmission and migration, and

the resulting patterns of local extinction, re-infection and

global persistence, which are difficult to measure

and analyse. Additional complications arise from the

consideration of pathogen genetic variation. For example,

the repeated ‘bottlenecks’ in the pathogen population

caused by seasonality will restrict pathogen genetic (and

antigenic) diversity, potentially with implications for

disease persistence. Seasonal variation in transmission

also has consequences for the size distribution of disease

outbreaks, which can lead to overestimates of R0 from

surveillance data.

A better understanding of seasonal infectious disease

outbreaks and persistence is likely to result in a better

understanding of the optimal control strategies. However,

it is also important to explicitly consider the interaction of

control strategies themselves with seasonal dynamics.
Proc. R. Soc. B (2006)
In the case of pulse vaccination, we have shown the

importance of considering the timing of immunization

days. These considerations extend to programmes with

periodic mass administration of antibiotics for seasonal

infections, such as ocular Chlamydia trachomatis. In this

case, however, the intervention results in abrupt periodic

changes in the number of infected, rather than susceptible,

individuals, and the optimal time for treatment may differ

from that for vaccination (Lee et al. 2005).

Seasonality has moved from the centre ground of early

infectious disease epidemiology to the periphery; a

distraction often ignored or assumed of minor import-

ance. This is surprising, given its prevalence of occur-

rence, significance for many key epidemiological

parameters and intense interest from the non-specialist,

as to why ‘colds’ occur in the winter when it is cold.

Perhaps the greatest obstacle to progress has been the

absence of sufficient comparative data with which to test

hypotheses about causation and examine the dynamic

consequences of seasonality. This is another reason for the

improvement and expansion of routine surveillance of

infectious diseases.
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