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RESEARCH

Seasonal patterns in risk factors for Taenia 

solium transmission: a GPS tracking study 
of pigs and open human defecation in northern 
Peru
Ian W. Pray1* , Claudio Muro2, Ricardo Gamboa2, Percy Vilchez2, Wayne Wakeland3, William Pan4, 

William E. Lambert1, Hector H. Garcia2,5, Seth E. O’Neal1,2 and for the Cysticercosis Working Group in Peru

Abstract 

Background: Taenia solium (cysticercosis) is a parasitic cestode that is endemic in rural populations where open 

defecation is common and free-roaming pigs have access to human feces. The purpose of this study was to examine 

the roaming patterns of free-range pigs, and identify areas where T. solium transmission could occur via contact with 

human feces. We did this by using GPS trackers to log the movement of 108 pigs in three villages of northern Peru. 

Pigs were tracked for approximately six days each and tracking was repeated in the rainy and dry seasons. Maps of pig 

ranges were analyzed for size, distance from home, land type and contact with human defecation sites, which were 

assessed in a community-wide defecation survey.

Results: Consistent with prior GPS studies and spatial analyses, we found that the majority of pigs remained close 

to home during the tracking period and had contact with human feces in their home areas: pigs spent a median of 

79% (IQR: 61–90%) of their active roaming time within 50 m of their homes and a median of 60% of their contact with 

open defecation within 100 m of home. Extended away-from-home roaming was predominately observed during the 

rainy season; overall, home range areas were 61% larger during the rainy season compared to the dry season (95% 

CI: 41–73%). Both home range size and contact with open defecation sites showed substantial variation between vil-

lages, and contact with open defecation sites was more frequent among pigs with larger home ranges and pigs living 

in higher density areas of their village.

Conclusions: Our study builds upon prior work showing that pigs predominately roam and have contact with 

human feces within 50–100 m of the home, and that T. solium transmission is most likely to occur in these concen-

trated areas of contact. This finding, therefore, supports control strategies that target treatment resources to these 

areas of increased transmission. Our finding of a seasonal trend in roaming ranges may be useful for control programs 

relying on pig interventions, and in the field of transmission modeling, which require precise estimates of pig behav-

ior and risk.
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Background

Cysticercosis, caused by the pork tapeworm (Taenia 

solium), imposes a major health and economic burden 

on rural populations in Latin America, Africa and east-

ern Asia [1, 2]. Humans acquire the intestinal tapeworm 

infection (taeniasis) by consuming larval cysts that may 

be present in raw or undercooked pork. Adult tape-

worms reside in the human intestine, and may expel tens 

of thousands of infectious eggs each day in the host’s 

feces [3, 4], which contaminate the environment in areas 

where open human defecation is common. The wide-

spread practice of free-range pig-raising in endemic areas 

allows pigs to consume T. solium eggs in human feces and 

develop larval cyst infections in their muscle tissue, thus 

perpetuating the life-cycle.

The movement patterns of free-roaming pigs within 

endemic communities and their contact with potentially 

infectious human feces are key factors that influence 

transmission patterns. Prior studies have found that pigs 

raised in the same household or within 50 meters of a 

human with taeniasis have substantially higher rates of 

cyst infection [5–7] and antibody reactivity [8] compared 

to more distant pigs. This knowledge of locally acquired 

T. solium infection has led to important advancements in 

control in recent years. In Peru, “Ring Strategy” has led 

to significant disease control by offering screening and 

treatment for human taeniasis to people living within 100 

meters of an infected pig [9].

Although the evidence for focal transmission of T. 

solium is convincing, there are significant gaps in our 

knowledge of transmission that have been highlighted by 

prior spatial studies. Namely, past studies have routinely 

found infected pigs living far from known tapeworm car-

riers [5, 6], and ring interventions have not completely 

eliminated the disease [9], as would be expected if trans-

mission were purely focal. An improved understanding of 

T. solium transmission dynamics, including elucidation of 

these unexplained patterns of pig infection, would have 

a few key impacts on the prospects for T. solium control. 

First, it may lead to improved intervention strategies that 

more effectively target treatment resources to areas of 

transmission risk. Secondly, it would provide key infor-

mation for the emerging field of transmission modeling. 

Existing models of T. solium transmission have been used 

to compare the effectiveness of available control strate-

gies [10, 11], but have not yet had sufficient data to incor-

porate spatial aspects of transmission. Addressing this 

knowledge gap requires that we investigate the behavio-

ral and environmental factors that produce the observed 

spatial patterns in transmission; chief among these 

are the roaming patterns of pigs and their contact with 

human feces present in the environment due to open def-

ecation practices.

Having previously identified these goals, we first inves-

tigated the roaming patterns of pigs in a pilot study con-

ducted in 2015 [12]. In that study, we used GPS trackers 

to map the roaming ranges and contact with human 

feces for 37 pigs in two small villages of northern Peru. 

That study helped to validate the size of 100-meter rings 

used in Ring Strategy, but was limited by a short tracking 

period (48 hours), a small sample of pigs from only two 

villages, and tracking during the rainy season only, all fac-

tors that could have led to biased or imprecise estimates.

In the present study, we set out to further investigate 

the roaming patterns of pigs in this region with the goal 

of improving upon the limitations of our pilot study. 

Specifically, this study expanded to three new villages 

in northern Peru, included more pigs (n = 108), a longer 

tracking period (up to six days), and tracking in both the 

rainy and dry seasons.

Methods

Selection of study villages and tracking seasons

Three villages in the northern Peruvian region of Piura 

participated in this study. We selected these villages 

(herein referred to as villages “A”, “B” and “C”) because 

they were generally representative of rural villages in 

the region, had an adequate number of households that 

raised free-roaming pigs, and were participating in a con-

current cysticercosis control study that provided up-to-

date census information [13]. Four other villages located 

in the region and also participating in the over-arching 

study were excluded because our logistical capacity was 

limited to three villages, and the excluded villages had 

fewer households that reported raising free-roaming 

pigs. The period of GPS tracking referred to as “rainy-

season” tracking took place in the study villages in April 

2018, which corresponds to the end of the rainy season 

(December-April) and is characterized by intermittent 

rain and abundant wild fruits and foliage. “Dry-season” 

tracking took place in the same villages in August 2018, 

a period characterized by cool and dry weather with very 

little green foliage.

Sample size

The sample size of pigs for this study was designed to 

explore differences between home-range areas by season 

(two-sided, α= 0.05). Our chosen sample size of 120 pigs 

(20 pigs per village per season) corresponded to an 80% 

power to detect a 35% difference in median home range 

by season in the full sample and 54% seasonal difference 

within each village stratum. Calculations were based on 

mean and variance results from our pilot study in this 

region [12].
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Selection of pigs

All households in participating villages were approached 

for inclusion in the study and were eligible if they 

reported raising free-roaming pigs. At consenting house-

holds, pigs were eligible for GPS tracking if they were 

not regularly tied or enclosed in a corral, were at least 

two months old, were not pregnant or sick, and were 

not planned for slaughter in the next seven days. We 

attempted to enroll one pig from each consenting house-

hold. If multiple pigs could be captured from one house-

hold, we enrolled the pig that fulfilled an age-stratified 

sampling scheme. For dry season tracking, we enrolled 

the same pigs that participated in the rainy season when 

possible. If this pig had been sold or slaughtered, we 

selected a pig from the same household with preference 

towards pigs that were the same age as the previously 

tracked pig.

GPS tracking of pigs

The GPS loggers we used for this study (“i-GotU 

GT-120”; MobileAction Technology, New Taipei City, 

Taiwan) were programmed to record the GPS coordi-

nates of a pig’s location every 60 s. In order to last the 

planned 6-day roaming period at this logging frequency, 

we replaced the original 230 mAh batteries with 3.7 V, 

2000 mAh lithium-ion batteries (AdaFruit, New York, 

NY, USA) in all devices used. After each pig was captured, 

the modified GPS logger was placed in a waterproof case 

(HPRC 1100; Plaber, Vicenza, Italy) and secured to the 

nape of the pig using a custom harness made of nylon 

webbing (Fig.  1). All study pigs from each village were 

tracked over the same 6-day period. During this period, 

study staff returned to each enrolled household daily to 

check on pigs and adjust harnesses if necessary. At the 

end of the 6-day period, the GPS devices were removed 

and the spatial data were downloaded for analysis.

Household defecation survey

In addition to tracking pigs, we conducted household 

surveys to assess human defecation practices in the study 

villages. For this, we visited all households during the 

rainy season and asked available adult residents whether 

their family owned a latrine/indoor bathroom or mem-

bers of their family practiced open outdoor defecation. If 

an outdoor area was indicated, we searched for evidence 

of recent defecation (e.g. feces or soiled paper) and used 

a handheld GPS receiver (GeoExplorer II; Trimble, Sun-

nyvale, CA, USA) to record a GPS point at that location. 

For both latrines and outdoor defecation areas, house-

hold respondents were asked to rate their family’s fre-

quency of use between “never”, “sometimes” or “always”. 

Finally, study teams logged the locations of roads, paths 

and streams in the community and inspected each for 

evidence of open human defecation. Study personnel 

were assisted in this effort by local community leaders 

who guided teams to known communal defecation sites 

in each village.

Mapping and statistical analysis

All data were analyzed using R v.3.2 (R Foundation for 

Statistical Computing, http://www.r-proje ct.org), QGIS 

v.2.18 (Open Source Geospatial Foundation Project, 

http://qgis.osgeo .org) and Stata v.13.1 (StataCorp, Col-

lege Station, TX, USA). For spatial analyses, all spatial 

layers were projected with a Universal Transverse Merca-

tor Zone 17S projection. Because obstruction of the sat-

ellite signal occurred intermittently during pig tracking, it 

was necessary to remove outlying points in post-process-

ing. To do this, we removed points that were delayed > 10 

s (suggesting signal obstruction), points for which the 

detected speed was greater than 3 m/s and points with 

less than a 20° angle between the prior and succeeding 

GPS locations, features unlikely to be produced by natu-

ral pig movement. On average, we removed 3.1% of the 

total points logged for each pig due to suspected error. 

Additionally, in order to avoid bias due to the stress of the 

chase and capture of pigs, we removed the first hour and 

final 15 min of tracking time, as well as points that were 

recorded before, during, and after any necessary harness 

adjustments.

In order to create maps that represented the active 

foraging time for pigs, when they are most likely to 

consume human feces, we further restricted the GPS 

points included in the analysis by two factors. First, 

we excluded points taken between 22:00 and 4:00 h, a 

time in which most range maps showed inactivity for 

pigs, and secondly, we excluded points for which the 

GPS coordinates did not change from the preceding 

point, suggesting inactivity. We validated this method 
Fig. 1 GPS devices placed in waterproof cases and secured to 

harnesses for tracking

http://www.r-project.org
http://qgis.osgeo.org
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of selecting for active foraging time by directly observ-

ing the behaviors of a subset of study pigs (n = 9) in the 

field. For these pigs, which were each observed for 12 

daytime hours, we found that removing repeat points 

successfully eliminated non-foraging rest-time with a 

sensitivity of 38% and specificity of 96%. Overall, these 

additional filters reduced the total number of GPS 

points used for each pig from an average of 7727 total 

points to 4569 active points, a 37% reduction.

After obtaining final datasets for each pig, we ana-

lyzed roaming ranges using the “LoCoH” (localized 

convex hulls) Homerange Analysis Algorithm for R [14, 

15]. A detailed description of the LoCoH algorithm can 

be found elsewhere [16]. Briefly, we used the a-nearest-

neighbors LoCoH method (a for adaptive), which is a 

non-parametric mapping algorithm that creates convex 

polygon hulls around each GPS point based on a flex-

ible number of nearest-neighbor points. The a-method 

uses fewer nearest-neighbor points to constructs hulls 

in less dense areas of the range, thus avoiding the prob-

lem of large polygons forming in sparsely occupied 

areas. We found that the algorithm produced optimal 

roaming areas when the “auto-a” function required a 

minimum of 95% of points to form polygons with 30 

nearest neighbors. The output of the LoCoH algorithm 

produced maps of each pig’s range that identified three 

areas based on specified isopleth cut-off values. As 

suggested by the algorithm developers [16], the “core 

range” represents the densest 50% of a pig’s range, the 

“home range” is the densest 90% and the “maximum 

range” is the area that contained 100% of the convex 

hulls (Fig. 2).

In order to analyze pig roaming ranges with respect 

to land features and open defecation areas, we created 

detailed vector maps for each study village. For this, 

Google Earth satellite images (Google Satellite Hybrid 

extension for QGIS; last update April 05, 2017; map 

location: 4°38′12.84″S, 79°59′29.87″W) were overlaid 

with manually logged household and road layers to cat-

egorize village land into one of four mutually exclusive 

land types: peri-domestic, roads/paths, farmland and 

vegetation. Peri-domestic areas were formed by gener-

ating 20-m buffers around household coordinates and 

merging the areas surrounding contiguous households 

and common areas (e.g. school, recreational fields, etc), 

roads and paths were manually logged in the field and 

enhanced with a 4-m buffer in post-processing, farm-

land was assigned in post-processing by digitizing visible 

fence-lines that contained discernible rows of crops, and 

all remaining areas not fitting these categories were clas-

sified as vegetated (these remaining areas were composed 

of undeveloped land with sparse tree cover, bushes and 

streams).

We processed LoCoH maps with respect to these base 

layers in order to extract a variety of roaming outcomes. 

These included the total area of core, home and maxi-

mum LoCoH ranges, the proportion of tracking time 

spent in each land type, the number of human defecation 

points within each level of a pig’s range (core, home and 

maximum ranges) and their corresponding land types, 

and distance of each GPS point to the pig’s household, 

which was used to determine the proportion of time 

spent within 50, 100, 150 and 200 m of home.

Roaming outcomes were first analyzed descriptively 

and were then analyzed for associations with pig-, 

household- and village-level predictors. These pre-

dictors included pig age (in months), sex, household 

herd size, household density (number of neighboring 

Fig. 2 a Map of raw GPS points from a single pig (Village B). b Line 

map of the same pig’s roaming pattern with each color representing 

a unique day of movement. c Final LoCoH map of the same pig’s 

range with colors representing core (50%), home (90%) and 

maximum (100%) range levels. Satellite images from Google Satellite 

Hybrid extension for QGIS. Last update April 05, 2017
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households within 100 m), village of residence and 

tracking season. These predictors were used to create 

a variety of multivariable models for pig roaming: ordi-

nary least squares regression models for the log-area 

of core, home and maximum ranges; negative binomial 

models for the number defecation points inside pigs’ 

home and maximum ranges; and a logistic regression 

model for the presence of at least one open defecation 

site within a pigs’ core ranges. Predictors and interac-

tions were retained in either model if they were sig-

nificant (P < 0.05) when added in stepwise procedure. 

Because of similarities in the results of our models for 

core, home and maximum ranges, only the results of 

the two home-range analyses are presented here, but all 

models and corresponding coefficients are provided in 

Additional file 1: Tables S2 and S3.

Results

Village and household characteristics

All three study villages are rural communities where 

small-holder farming is the primary economic activ-

ity and raising free-roaming pigs is common practice. 

Between 53 and 70% of households reported raising 

pigs and only 5–29% of those pig-owners reported 

always corralling their pigs (Table  1). Despite similar 

population sizes (range: 83–95 households), the three 

study villages had important differences. Village A was 

larger, flatter and less densely housed than the other 

two villages, while Villages B and C were smaller and 

built on steep sloping terrain. Village B was the small-

est and densest village characterized by fewer latrines, 

a higher rate of open defecation and significantly more 

open defecation sites.

Pig population

We enrolled a total of 114 pigs for GPS tracking between 

the two seasons. Six pigs were excluded from the analy-

sis because of a combination of device failure (n = 3), 

lost devices (n = 2) and an owner’s decision to corral the 

pig (n = 1). This led to a final sample of 108 pigs tracked: 

53 in the rainy season and 55 in the dry season. Of the 

53 rainy season pigs, we were able to repeat dry season 

tracking for 15 pigs (28%) and track a pig from the same 

household for 37 pigs (70%). There were no significant 

differences in the sex, age or village distribution of pigs 

between the rainy and dry seasons (see Additional file 1: 

Table S1).

Pigs included in the analysis were tracked for an aver-

age of 5.4 days (range: 2.2 to 6.6 days). The targeted 6-day 

tracking period was incomplete for 21 (19%) of the 108 

pigs analyzed. Reasons for incomplete tracking included 

premature battery death or device failure (n = 16), own-

er’s decision to withdraw (n = 4) and pig death (n = 1, 

unrelated to study).

Household distance and defecation contact

We first analyzed the amount of time pigs spent at 

increasing distances from their homes. In both track-

ing seasons, pigs spent the majority of their-active time 

within 50 m of their homes (medians: 74% in rainy, 85% 

in dry, Wilcoxon rank-sum test: Z = − 1.91, P = 0.056; 

Fig. 3a). The proportion of active roaming time spent at 

increasing distances decreased substantially outside of 50 

m in both seasons. The median proportions of active time 

spent in rainy and dry seasons were respectively 8.8% and 

7.8% at 50–100 m, 3.9% and 1.7% at 100–150 m, 2.0% and 

0.5% at 150–200 m, and 2.1% and 0.7% at > 200 m.

Despite spending the majority of total time very close 

to households, distances at which contact with human 

defecation sites occurred followed a different pattern and 

did not differ significantly between seasons (Fig.  3b). In 

both seasons, the majority of contact between pig ranges 

and defecation sites occurred between 50 and 100 m of 

the household (mean number of defecation sites con-

tacted within 50–100 m of home: 1.66 in rainy season, 

1.43 in dry season, t-test: t(106) = 0.55, P = 0.58). The num-

ber of defecation contacts decreased at increasing dis-

tances from the household, but was disproportionately 

large at long distances compared to the total time pigs 

spent at those distances.

Roaming range areas

The areas of core, home and maximum ranges are 

shown for all pigs in Fig.  4. Range sizes were distrib-

uted exponentially, with the majority of pigs having 

maximum range areas of less than 30,000  m2 and home 

Table 1 Characteristics of study villages and defecation survey

a Mean no. of households within 100 m

b Some houses with latrines also reported open defecation

c Corral in “good” condition and owner reports that it is used “always”

Village A Village B Village C

Human population 279 250 372

Households 95 83 83

Household  densitya 6.9 26.1 11.2

Area  (km2) 1.93 0.45 0.58

Participated 77/95 (81%) 70/83 (84%) 79/83 (95%)

 Latrine prevalence 74/77 (96%) 46/70 (66%) 75/79 (95%)

 Open  defecationb 13/77 (17%) 32/70 (46%) 25/79 (32%)

 Total no. of defecation sites 30 (20%) 79 (52%) 42 (28%)

No. of pig owners 41/77 (53%) 45/70 (64%) 55/79 (70%)

 Corral prevalence 31/41 (76%) 17/45 (38%) 18/55 (33%)

 Actual corral  usec 12/41 (29%) 6/45 (13%) 3/55 (5%)



Page 6 of 12Pray et al. Parasites Vectors          (2019) 12:352 

range areas less than 5000  m2. However, a subset of 

pigs had ample roaming ranges that revealed regular 

extended trips to distant areas. In these extreme cases, 

pigs ventured 1–3 km from their homes, and spent 

nights away without returning home. For these pigs, 

maximum ranges reached 500,000  m2 with home range 

areas up to 120,000  m2.

In multivariable regression models, village of resi-

dence and season were the only variables significantly 

associated with log-transformed LoCoH areas. Age, 

household herd size, and household density all had sig-

nificant bivariate associations, but became non-signif-

icant after adjustment for village and season, and pig 

sex was not significant in any model (Table  2). Across 

all villages, home ranges were 61% (95% CI: 47-72%) 

smaller in the dry season, compared to the rainy season, 

and there was significant variation in home range areas 

by village. Figure 5 shows representative maps of 3 pigs 

tracked in both seasons.

The degree of reduction observed between the rainy 

and dry seasons was significantly different in between vil-

lages (likelihood ratio test: χ2= 9.46, df = 2, P = 0.009 for 

village × season interaction). Villages A and B had sig-

nificant reductions of 76 and 71%, respectively, from the 

rainy to dry seasons, and Village C, the village with the 

smallest home ranges overall, had a non-significant 30% 

reduction in home range area. Home range areas by sea-

son and village are shown in Fig. 6, and full tables of all 

regression outputs, including regression models for core 

and maximum ranges can be found in Additional file 1: 

Table S2.

Contact with defecation sites

Overall, 56% of pigs had at least one defecation site in 

their home range and 85% had at least one defecation site 

in their maximum range. The rate of contact with def-

ecation sites was not significantly different between the 

rainy and dry seasons (mean of 2.1 vs 1.5 defecation sites 

in home ranges during the rainy vs dry seasons, t-test: 

t(106) = 1.34, P = 0.18), but did vary significantly between 

villages. Pigs from Village B had an average of 4.0 defeca-

tion areas in their home ranges, compared to averages of 

0.6 and 0.7 in Villages A and C, respectively (ANOVA, 

F(2, 107) = 33.4, P < 0.0001). Of the three study villages, 

Village B was the village with the smallest land area, the 

highest density of households and by far the most defeca-

tion sites found overall.

Fig. 3 a The median proportion of active time pigs spent at increasing distances from their households in rainy (n = 53) and dry (n = 55) seasons. 

b The mean number of defecation points within the maximum LoCoH range of pigs at increasing distances from their households in rainy and dry 

seasons

Fig. 4 Areas of LoCoH core, home and maximum ranges for all 108 

pigs tracked
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In a negative binomial model of contact with defecation 

sites (Table 2), residence in Village B, male sex, increased 

housing density up to 25 households/100-m radius, and 

increased home-range area were significantly associated 

with the rate of contact with defecation sites. Track-

ing season, pig age and herd size were not significantly 

associated with defecation contact (see Additional file 1: 

Table S2).

Pig roaming and land type

We also analyzed the amount of active time pigs spent 

roaming in different land types. Overall, pigs spent the 

majority of active roaming in the peri-domestic habitat, 

while proportionally less time was spent in vegetation 

and roads/paths, and very little time was spent in farm-

land. Season, village, household density and home-range 

size were all significantly associated with roaming land 

Fig. 5 LoCoH home range maps of 6 representative pigs from 3 study villages. a Village A, rainy season. b Village A, dry season, c Village B, rainy 

season. d Village B, dry season. e Village C, rainy season. f Village C, dry season. Adjacent maps are from pigs of the same household in the rainy and 

dry seasons. LoCoH range levels represent densest 50% (core), 90% (home) and 100% (maximum) of roaming area. Satellite images from Google 

Satellite Hybrid extension for QGIS. Last update April 05, 2017
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Table 2 Regression coefficients for home range area and defecation sites in home range. Bivariate and multivariate linear regression 

models for log-area of home range, and negative binomial models for the number of open defecation sites within home ranges

*P < 0.05, **P < 0.01

a Number of households within 100 m radius, linear spline at 25 households/100 m

b Significant statistical interactions (by village) not shown (see Additional file 1, Tables S2 and S3 for full model associations)

Home range area, eβ coefficients (95% CI) Defecation sites in home range, incidence rate 
ratio (95% CI)

Bivariate Multivariate Bivariate Multivariate

Village

 Village A Ref. Ref. Ref. Ref.

 Village B 0.48 (0.30–0.76)** b0.47 (0.31, 0.70)** 7.06 (3.83–13.01)** b7.94 (4.28–14.7)**

 Village C 0.24 (0.15–0.39)** b0.23 (0.16, 0.35)** 1.25 (0.63–2.49) b1.25 (0.57–2.70)

Season

 Rainy Ref. Ref. Ref. –

 Dry 0.40 (0.27–0.59)** b0.39 (0.28,0.53)** 0.69 (0.39–1.21) –

Household  densitya

 ≤ 25 0.95 (0.92–0.97)** – 1.03 (1.00–1.07) 1.07 (1.04–1.10)**

 > 25 1.05 (1.02–1.09)** – 1.03 (0.99–1.08) 0.95 (0.93–0.98)**

Herd size (per additional pig) 1.06 (1.02–1.10)** – 0.97 (0.91–1.03) –

Pig sex

 Female Ref. – Ref. Ref.

 Male 0.78 (0.51–1.19) – 0.94 (0.54–1.66) b1.45 (1.01–2.08)*

Pig age (per month) 1.04 (1.0–1.08)* – 0.98 (0.93–1.03) –

Log-area of home range – – 1.50 (1.13–2.0)** 1.76 (1.43–2.16)**

Fig. 6 Box plots of home range areas by season and village show significant reduction in home ranges by season and between villages. Additional 

boxes show the home ranges extracted from pilot study in Peru [12], n = 37 pigs in rainy season and GPS tracking of 10 pigs in Kenya [18] from a 

mix of rainy and dry season tracking
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type (Table 3). Pigs spent significantly more time in peri-

domestic areas during the dry season (64 vs 55%, t-test: 

t(106)= − 2.05, P = 0.04), and were more likely to spend 

time in peri-domestic areas if they had smaller home 

ranges (linear regression β = − 0.088 for log-increase in 

home-range area, F(1,106)= 20.3, P < 0.0001), or lived in 

higher-density areas of the village (66% for > 10 house-

holds within 100 m vs 54% otherwise, t-test, t(106)= − 2.73, 

P = 0.008). Contact with open defecation sites occurred 

most frequently in peri-domestic and vegetated zones, 

less frequently along roads/paths, and was not observed 

in farmland (mean defecation sites in range= 2.0, 1.9, 0.9 

and 0, respectively).

Discussion

The purpose of this study was to examine the roaming pat-

terns of pigs in northern Peru, and to identify areas within 

their ranges where T. solium transmission could occur via 

contact with human feces. We found that pigs spent the 

majority of their active roaming time within 50 m of their 

household. This home-centered range was concentrated in 

the peri-domestic habitat and predominated across both 

seasons and all villages (median: 79% of active time within 

50 m). Most of the areas of overlap between defecation 

sites and pig roaming ranges were found in this 50-m zone 

or the wider 100-m radius surrounding pig homes, sug-

gesting that the majority of T. solium transmission risk is 

concentrated in these areas proximal to pigs’ households.

These findings are generally consistent with our knowl-

edge of limited pig roaming and focal T. solium transmis-

sion in this region. Prior spatial analyses of tapeworm 

carriers and infected pigs have found that pigs living 

with 50 m of a tapeworm are at significantly elevated 

risk of cyst infection [5, 6] and our pilot GPS analysis of 

pig roaming in this region found that pigs spent 70% of 

their roaming time and 93% of their interactions with 

defecation sites within 50 m of their homes [12]. Taken 

together, these studies provide consistent and convincing 

evidence that the T. solium transmission in this region 

occurs in close proximity to the home, areas where pig 

roaming and human defecation are concentrated, and 

that interventions targeting treatment resources to these 

hotspots of transmission are likely to be successful.

Although most pigs had limited roaming ranges and 

close contact with human feces near their home, many 

pigs spent at least some fraction of time foraging in more 

distant areas, and a subset of pigs had ample roaming 

ranges that revealed regular extended trips to distant 

areas. In these extreme cases, pigs ventured 1–3 km 

from their homes and spent nights away without return-

ing home. These long-distance roamers are an important 

sub-group to consider in the context of control interven-

tions, as they had higher rates of contact with open def-

ecation areas and, due to extended time away from home, 

may not be included in treatment, vaccination or serolog-

ical monitoring programs.

Table 3 Pig roaming land type by selected covariates. Mean percentage (95% CI) of active roaming time spent in given land type. 

Farmland not shown due to infrequent roaming; other pig variables not shown (pig sex, age, and household herd size) were not 

significantly associated with any roaming land type

*P < 0.05, **P < 0.01

a Two-sample t-test used to derive P-values and 95% confidence intervals

b One-way analysis of variance (ANOVA) used to derive P-value and 95% confidence intervals

c Number of households within 100 m radius

Peri-domestic Vegetation Roads/paths

Seasona

 Rainy 54.8 (48.7–60.9)* 26.7 (20.8–32.7) 17.3 (12.8–21.8)

 Dry 64.2 (57.3–71.1)* 20.1 (13.6–26.6) 15.4 (11.3–19.5)

Villageb

 Village A 64.9 (57.2–72.7)** 26.2 (18.2–34.4) 8.5 (6.1–10.9)**

 Village B 46.1 (37.6–54.5)** 26.1 (18.0–34.3) 26.0 (20.0–32.1)**

 Village C 67.9 (61.5–74.3)** 18.8 (11.6–25.9) 13.3 (8.9–17.6)**

Home-range  sizea

 < 3000  m2 73.8 (67.7–79.8)** 9.6 (0.6–13.4)** 16.5 (10.1–23.0)

 > 3000  m2 54.6 (49.1–60.2)** 28.2 (22.8–33.6)** 16.2 (12.8–19.7)

Household  densitya,c

 ≤ 10 53.8 (47.0–60.5)** 29.1 (22.9–35.2)** 16.7 (12.1–21.3)

 > 10 66.1 (60.2–72.1)** 16.9 (11.0–22.9)** 15.9 (12.0–19.8)

No. of open defecation sites in range 
(mean ± SD)

1.99 ± 2.3 1.94 ± 2.5 0.87 ± 1.2
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Another key finding in this study was the importance 

of season as a determinant of the area and distance 

pigs covered during roaming. Nearly all occurrences of 

extended roaming were observed during the rainy sea-

son, and rainy season home ranges were 61% larger than 

their dry season counterparts. Compared to the dry sea-

son, pigs in the rainy season also spent less time forag-

ing in peri-domestic zones. This seasonal pattern is likely 

due to the increased availability of wilds fruits, vegetation 

and natural streams during the rainy season. Pig owners 

frequently reported to us that their pigs roamed longer 

and further during the rainy summer months in search of 

wild fruits to eat and streams to bathe in, and spent the 

dry winter months resting and grazing on domestic food 

sources. While we did not collect information about the 

provision of pig feed by owners, we have observed that 

purchased feed in this region is rare due to its cost, sug-

gesting that the availability of natural food sources and 

not pig feeding patterns is the most likely explanation for 

seasonal differences in roaming ranges. This seasonal pat-

tern is consistent with a non-spatial study of pig behavior 

conducted in Mexico, which found that pigs spent more 

time feeding and walking during the rainy season, and 

more time resting and consuming feces during the dry 

season [17]. Despite our finding of seasonality in roaming 

range areas, we did not detect any significant difference 

in contact with human feces between seasons, and there-

fore were not able to corroborate evidence of a seasonal 

pattern in T. solium transmission.

Apart from season, the most important determinant of 

the size of a pig’s roaming area and its contact with def-

ecation areas was its village of residence. Roaming areas 

in Village A were considerably larger than those observed 

in Villages B or C (median home ranges: 12,570; 5697; 

and 3270  m2, respectively), yet contact with defecation 

sites was more frequent in Village B (mean of 4.0 defe-

cation sites in range vs 0.6 and 0.7 in Villages B and C, 

respectively). These differences highlight the importance 

of village-specific characteristics that may lead to het-

erogeneous transmission patterns between villages. For 

example, Village A is relatively flat with large and dis-

persed homesteads (6.9 households/100 m) and a low 

rate of open defecation (97% of households had latrines), 

while Village B is a densely populated peri-urban settle-

ment (26.1 households/100 m) with a high rate of open 

defecation (only 66% of households owned latrines). 

Given that pig roaming patterns and contact with open 

defecation areas varied considerably between these vil-

lages, it is likely that spatial patterns of transmission and 

the degree of clustering in T. solium transmission differ 

as well. Control programmes should consider the impact 

of these between-village heterogeneities when planning 

interventions. For example, the decision to select a mass 

or focal intervention may differ depending on the degree 

of clustered transmission likely to be present. Knowledge 

of the local patterns in pig roaming, open defecation and 

housing density may help to tailor intervention strategies 

local conditions.

This study had a few important strengths compared 

to prior research in this field. First, repeated tracking 

periods allowed us to investigate seasonal differences in 

roaming patterns. This aspect of pig roaming was not 

addressed in our prior analysis, and was not robustly 

evaluated in two other studies relating pig roaming to 

T. solium transmission risk: a GPS study in Kenya that 

tracked five pigs per season [18] and a non-spatial study 

of pig behavior in Mexico [17]. Our study tracked over 

50 pigs per season across three villages, the most robust 

effort to date to study pig behavior as it relates to T. 

solium transmission. Secondly, our application of a six-

day tracking period (compared to two days in our prior 

study) and our selection of active roaming time were key 

improvements that reduced the impact of chance daily 

variations in roaming and the introduction of bias from 

periods of rest that would not contribute to transmission 

risk.

Despite these strengths, our study has a few important 

limitations. Due to the logistical challenges of mapping 

defecation sites in the communities, defecation map-

ping was only applied in the rainy season, and defecation 

sites were assumed to remain constant in the dry season. 

Although we are not aware of evidence from literature or 

local experts that open defecation practices vary by sea-

son, this remains a possibility and could have affected 

estimates of contact with defecation in the dry season. 

Secondly, while we applied multiple measures to elimi-

nate erroneous GPS points caused by signal disruption, 

some degree of imprecision in GPS points was inevitable. 

GPS imprecision likely introduced random error into our 

classification of pigs’ land usage and reduced the accu-

racy of our algorithm to select periods of active roam-

ing. Finally, roaming patterns and patterns of contact 

with human feces likely differ between endemic regions, 

and results obtained from these three villages may not be 

generalizable to other areas. In fact, the substantial dif-

ferences in roaming patterns and defecation practices 

that were observed between the three culturally and geo-

graphically related villages included in this study suggest 

that even more extreme differences would be expected in 

other regions and continents where T. solium is endemic. 

Therefore, it will be important to replicate this work in 

other endemic areas in order to compare the spatial pat-

terns of T. solium transmission and the generalizability of 

our findings to these regions. With that said, our findings 

from Peru are comparable to the limited prior work on 

this topic from Kenya and Mexico [17, 18] (see Fig.  6), 
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and spatial analyses from Latin America and sub-Saharan 

Africa that have detected clustered patterns of T. solium 

prevalence [5–8, 19, 20].

Conclusions

We found that the majority of pig roaming and contact 

with human defecation sites occurred in close proximity 

to pigs’ homes: roaming was concentrated within 50 m 

and contact with human defecation within 100 m of pigs’ 

households. When considered alongside prior GPS track-

ing studies and spatial analyses in this region, this study 

provides strong evidence that T. solium transmission is 

most likely to occur in close proximity to the home and 

supports control strategies that target treatment resources 

to these high-risk areas. When longer-range pig roaming 

occurred, it occurred more frequently in the rainy season 

and varied between villages. Therefore, while we did not 

find evidence that contact with feces varied by seasonal or 

village-specific factors, we recommend that future control 

strategies consider these factors when planning interven-

tions such as pig treatment or vaccination as they could 

impact availability of pigs for participation. The infor-

mation provided here may also be useful for T. solium 

transmission models, which require precise estimates 

for behavioral factors that influence transmission pat-

terns, such as pig roaming and open human defecation. 

Pig roaming and open human defecation are key features 

that cause clustered patterns of T. solium transmission, 

and modelers should account for this clustering, along 

with possible seasonal and village-specific differences in 

transmission patterns when considering the structure and 

parameterization of future models. Ultimately, data from 

this study may fill an important gap in behavioral data 

needed for the development of accurate and validated T. 

solium transmission models. Advancements of T. solium 

modeling, including improved biological and behavioral 

data, is a need that has been highlighted by the World 

Health Organization as a priority for achieving control 

and elimination milestones [21].
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