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Abstract The seasonal prediction skill for the Northern

Hemisphere winter is assessed using retrospective predic-

tions (1982–2010) from the ECMWF System 4 (Sys4) and

National Center for Environmental Prediction (NCEP) CFS

version 2 (CFSv2) coupled atmosphere–ocean seasonal

climate prediction systems. Sys4 shows a cold bias in the

equatorial Pacific but a warm bias is found in the North

Pacific and part of the North Atlantic. The CFSv2 has

strong warm bias from the cold tongue region of the eastern

Pacific to the equatorial central Pacific and cold bias in

broad areas over the North Pacific and the North Atlantic.

A cold bias in the Southern Hemisphere is common in both

reforecasts. In addition, excessive precipitation is found in

the equatorial Pacific, the equatorial Indian Ocean and the

western Pacific in Sys4, and in the South Pacific, the

southern Indian Ocean and the western Pacific in CFSv2.

A dry bias is found for both modeling systems over South

America and northern Australia. The mean prediction skill

of 2 meter temperature (2mT) and precipitation anomalies

are greater over the tropics than the extra-tropics and also

greater over ocean than land. The prediction skill of trop-

ical 2mT and precipitation is greater in strong El Nino

Southern Oscillation (ENSO) winters than in weak ENSO

winters. Both models predict the year-to-year ENSO vari-

ation quite accurately, although sea surface temperature

trend bias in CFSv2 over the tropical Pacific results in

lower prediction skill for the CFSv2 relative to the Sys4.

Both models capture the main ENSO teleconnection pat-

tern of strong anomalies over the tropics, the North Pacific

and the North America. However, both models have

difficulty in forecasting the year-to-year winter temperature

variability over the US and northern Europe.

1 Introduction

Despite the chaotic internal dynamics of the atmosphere,

the time average of atmospheric variables is predictable to

some degree due to those components that have slow

variations on time scales from months to seasons. The

socioeconomic importance of accurate seasonal climate

prediction has motivated development of better seasonal

prediction systems. Recently, the development of coupled

ocean–atmosphere dynamical model prediction systems

has provided important advances in seasonal predictability

(Kumar et al. 2005; Wang et al. 2005a; Kug et al. 2008).

Several international projects have been undertaken to

compare coupled climate predictions, including the

Development of a European Multimodel Ensemble System

for Seasonal-to-Interannual Prediction (DEMETER) (Palmer

et al. 2004) and Asia–Pacific economic cooperation climate

center (APCC)/climate prediction and its application to

society (CliPAS) projects (Wang et al. 2009). Seasonal

prediction skill and the model performance have been

examined based on retrospective predictions of DEMETER

and APCC/CliPAS (Jin et al. 2008; Kim et al. 2008; Kug

et al. 2008; Wang et al. 2009; Lee et al. 2010).

Operational coupled seasonal forecast systems include

Climate Forecast System from the National Center for

Environmental Prediction (NCEP CFS) (Saha et al. 2006),

the Australian POAMA (Wang et al. 2001), European

Centre for Medium-Range Weather Forecasts (ECMWF),

UK Meteorological Office and Meteo-France (Palmer et al.

2004). Operational climate forecast centers are now

updating their seasonal prediction systems with improved
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physics and increased resolution. This study focuses on the

ECMWF and NCEP CFS seasonal forecasting systems.

ECMWF has been operating a seasonal forecast system

since 1997 and the operational system, known as System 3,

was introduced in March 2007. System 3 shows greater

prediction skill for the sea surface temperature (SST) in the

eastern Pacific and equatorial Indian Ocean than previous

ECMWF operational systems (systems 1 and 2) (Stockdale

et al. 2011). The ECMWF has now upgraded its opera-

tional seasonal forecasts from System 3 to System 4 with

the later version being operational since late 2011. In the

upgrade, it utilizes the use of the most recent atmospheric

model version, higher resolution forecasts with a higher top

of the atmosphere, more ensemble members and a larger

reforecast data set (Molteni et al. 2011).

The NCEP CFS has been making coupled ocean–

atmosphere forecasts since 2004. Skill of the CFS model

has been examined in simulating and predicting El Nino-

Southern Oscillation (ENSO) variability (Wang et al.

2005b), Asian-Australian/Indian monsoon (Yang et al.

2008; Wang et al. 2008; Pattanaik and Kumar 2010) and

climatic variation in the US (Yang et al. 2009). The NCEP

CFS version 2 (CFSv2, http://cfs.ncep.noaa.gov/cfsv2.info/)

represents a substantial change to all aspects of the forecast

system including model components, data assimilation sys-

tem and ensemble configuration. The MJO simulation shows

improvement in CFSv2 owing to a positive response to

upgrades in the initial state compared to CFSv1 (Weaver

et al. 2011).

The seasonal predictions of individual coupled seasonal

forecast systems has been analyzed separately for various

target of seasons, different time periods and regions with

wide range of variables using regression and correlation

analysis, composite analysis and principal component

analysis (Wang et al. 2005b; Saha et al. 2006; Yang et al.

2008, 2009; Lee et al. 2010; Tompkins and Feudale 2010;

Wang et al. 2010; Stockdale et al. 2011). However, the

ECMWF and NCEP CFS seasonal forecast systems have

not been compared with the same validation matrix. The

choice of one model over the other, or the use of both

models in a multi-model ensemble requires information

that compares the predictions of both models and the

determination of the bias of each model. We compare the

simulation ability and seasonal prediction skill of the two

systems using the same validation matrix. The results of

this comparison may be useful for the community as a

benchmark for future generations of seasonal prediction

systems, and may provide valuable information for forecast

providers and decision makers that use seasonal forecast

products.

In this paper, we focus on the Northern Hemisphere

(NH) winter when the magnitude of ENSO anomalies and

teleconnections to the extratropics can be particularly high

(Peng et al. 2000). A companion paper for the NH summer

has also been prepared. In particular, this study addresses

how well the ECMWF System 4 and NCEP CFSv2 simu-

late the spatio-temporal climate variability for the NH

winter. Section 2 introduces details of reforecast and

observational data used in the present study. Section 3

examines the simulated climates and the seasonal predic-

tion skill of surface temperature and precipitation. Sec-

tion 4 examines the prediction of ENSO whilst Sect. 5

focuses on the prediction of the winter teleconnection

patterns. A summary of the results and a general discussion

are provided in Sect. 6.

2 Retrospective forecasts and observation data

The ECMWF System 4 (hereafter Sys4) and the NCEP

CFSv2 (hereafter CFSv2) are fully coupled general circu-

lation models (GCMs) that provide operational seasonal

predictions. Both systems provide reforecast simulations

for the purpose of evaluating and calibrating the model

simulations. The ECMWF System 4 seasonal reforecasts,

commencing in 1981, include 15 member ensembles con-

sist of 7 month simulations initialized on the 1st day of

every month. The atmospheric initial conditions come from

ERA Interim reanalysis for the period 1981–2010. A new

ocean model (NEMO) and ocean data assimilation system

(NEMOVAR) is implemented, improving the mean state

and SST forecast skill in the East Pacific and Tropical

Atlantic oceans. Details for the ECMWF System 4 can be

found in Molteni et al. (2011) and http://www.ecmwf.

int/products/forecasts/seasonal/documentation/system4. The

NCEP CFSv2 is an upgraded version of CFSv1 (Saha et al.

2006). CFSv2 produces a set of 9-month reforecast initiated

from every 5th day with four ensemble members for the

period 1982–2010. Initial conditions for the atmosphere and

ocean come from NCEP Climate Forecast System Reanal-

ysis (CFSR, Saha et al. 2010).

As prediction skill depends strongly on the ensemble

size (Kumar and Hoerling 2000), we match the ensemble

size, as well as lead-time for the comparison of the Sys4

and CFSv2 forecasts. The Sys4 reforecast consists of 15

ensembles initialized on November 1st and for CFSv2 16

member ensembles initialized from October 23rd to

November 7th from the target variables and those from

December to February (DJF), which we define as the NH

winter. For example, 1997 winter is an average of

December 1997 and January and February of 1998. A total

of 28 boreal winters from 1982/1983 to 2009/2010 are

examined in this study.

For the forecast evaluation, SST data is obtained from

monthly NOAA Optimum Interpolation (OI) SST V2

(Reynolds et al. 2002). The air temperature at 2 meter
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(2mT), mean sea level pressure (SLP), and geopotential

height at 500 hPa data are obtained from the CFS reanal-

ysis and ERA-Interim reanalysis products (Berrisford et al.

2009) from 1981. The CFSR is a major improvement over

the first generation NCEP reanalyses (NCEP R1 and R2) as

it is the product of a coupled ocean–atmosphere–land

system at higher spatial resolution (Higgins et al. 2010;

Saha et al. 2010). ERA-Interim (hereafter ERA) is the

latest global atmospheric reanalysis produced by the EC-

MWF and shows improvements on ERA-40 (Uppala et al.

2005) due to the use of four-dimensional data assimilation

(4D-Var), higher horizontal resolution, and bias correction

of satellite radiance data (Dee and Uppala 2009; Dee et al.

2011). Global Precipitation Climatology Project (GPCP)

version 2.1 combined precipitation dataset (Adler et al.

2003) is used as the validation dataset. It has to be noted

that there are substantial differences in trends across dif-

ferent reanalyses (Ebisuzaki and Zhang 2011; Zhang et al.

2012).

3 Seasonal prediction skill

Here, we examine the capability of the systems in simu-

lating the spatial patterns of seasonal climatology and their

predictive skill of seasonal anomalies. The prediction skill

is calculated as an anomaly correlation based on the

ensemble mean of each seasonal prediction and the target

observations.

First, we examine the model bias for SST mean state.

The long-term mean or climatology of the 28 year simu-

lations of NH winter SST for each model is compared with

observations. The SST climatology in both reforecasts

generally matches the observed features of variability (not

shown). The warm pool and the cold tongue in the equa-

torial eastern Pacific are well captured in both models.

However, systematic biases are found in both simulations

and are shown in Fig. 1a, b. In the Sys4 reforecast simu-

lations, a cold bias is found from the equatorial western to

eastern Pacific, whereas a warm bias is found in the North

Pacific and part of the North Atlantic. The CFSv2, on the

other hand, has strong warm bias from the cold tongue

region to the equatorial central Pacific and cold bias in

broad areas over the North Pacific and North Atlantic.

A cold bias over the broad region in the Southern Hemi-

sphere is common in both modeling systems.

Figure 1c, d shows the bias for winter mean precipitation

(PRCP). The spatial pattern of the precipitation climatology

in both Sys4 and CFSv2 are similar to the observation but

include systematic biases. In Sys4, excessive precipitation is

Fig. 1 Climatological winter mean (DJF) bias (model-observation) of the SST (�C) for a Sys4, b CFSv2 and of PRCP (mm/day) for c Sys4 and

d CFSv2
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found along the Inter-Tropical Convergence Zone (ITCZ),

equatorial Indian Ocean and western Pacific. In CFSv2, a

strongwet bias is found along the South PacificConvergence

Zone (SPCZ) and the southern Indian Ocean as well as the

western Pacific and dry biases are shown over the South

America and the northern Australia consistent with Weaver

et al. (2011).Wet bias in EastAsia and the equatorialAtlantic

is common in both systems.

To examine seasonal prediction skill, the correlation

coefficients between reanalysis and reforecast anomalies are

calculated for the ensemblemean determined from 28winter

seasons. Figure 2 shows the correlation coefficients for 2

meter temperature (2mT) and precipitation (PRCP) anomaly

for each modeling system compared to ERA and GPCP. In

both systems, the prediction skill for 2mT and PRCP is

greater over the tropics than over the extra-tropics and

greater over ocean than over land (Peng et al. 2000, 2011).

2mT has its greatest prediction skill in the tropical belt,

especially in the ENSO region. The South Indian Ocean, the

North Pacific and the equatorial North Atlantic also show

high skill in both systems. There is almost no skill near the

east coast of North America, a common problem in both

systems (Fig. 2a, b). Prediction skill of precipitation in both

reforecasts is generally lower than 2mT, but it also shows

greatest skill over the equatorial Pacific which is influenced

by ENSO (Fig. 2c, d).

A critical issue in evaluating the reforecast is the choice

of the reanalysis dataset used for model evaluation. To

examine the sensitivity of the prediction skill to different

reanalysis datasets, we compare the 2mT prediction skill

for each system with the CFSR which is used as initial

conditions in CFSv2, and the ERA which is used as initial

conditions in ECMWF System 4. Figure 3 shows the dif-

ference of 2mT prediction skill when ERA and CFSR is

used as verification fields (ERA-CFSR) over 27 winters

from 1982/1983 to 2008/2009. In the Sys4 reforecast, the

skill decreases over part of North Atlantic and Indian

Ocean when the model is compared with ERA than with

CFSR. In CFSv2, most of the tropical ocean area shows a

large decrease in prediction skill when ERA is used for

verification. Compared to the an evaluation against the

CFSR, the equatorial Indian Ocean, west coast of Africa,

the equatorial Atlantic Ocean and the western Pacific show

decrease in skill. To analyze the discrepancy on the two

reanalysis, the correlation coefficient between ERA and

CFSR 2mT anomaly is calculated over the 27 year DJF

mean (Fig. 4). The two reanalysis data sets have weak

correlation over the Indian Ocean, the equatorial western

Pacific, the South America, over part of the equatorial

Atlantic Ocean and over the Arctic. This comparison

illustrates the uncertainty in the reanalysis datasets, which

by extension contributes to uncertainty in the prediction

Fig. 2 Correlation coefficients of (left) 2 meter temperature and (right) precipitation for (top) Sys4 and (bottom) CFSv2 for the period of

28 years from 1982 to 2009 winter
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analysis. Therefore, the analyses in this study are con-

ducted using both reanalysis datasets.

To compare the year-to-year variability of seasonal

prediction skill, the pattern correlation between the pre-

dictions and reanalysis is calculated over the entire globe

(0–360�E, 60�S–60�N) and the tropical pacific (40�E–

300�E, 20�S–20�N) over the 28 winters. Figure 5 shows

the correlation coefficient for 2mT and PRCP for each

region for both modeling systems compared to the ERA.

The global 2mT prediction skill shows strong interannual

variation over 28 winters (Fig. 5a). The 28 year mean

correlation coefficient for the global 2mT is similar for

both modeling systems, showing little dependence on the

reanalysis data set. For the tropics (Fig. 5b), Sys4 shows

the greatest prediction skill in 1997 winter and lowest in

1990. In CFSv2, the highest skill is also shown in 1997, but

the lowest skill occurs in 1987 winter. The 28-year mean

prediction skill for tropical 2mT is 0.54 for Sys4 and 0.42

for CFSv2. Figure 18 (to be discussed later) shows the

summary of the mean prediction skill for each variables

compared with ERA (dark shading) and CFSR (light

shading). Precipitation over the tropics shows strong

interannual variation (Fig. 5c) and mean prediction skill for

the PRCP is 0.47 and 0.41 for Sys4 and CFSv2, respec-

tively (Fig. 18).

Both systems have the highest predictive skill for trop-

ical 2mT in winters with strong ENSO amplitudes, spe-

cifically 1982, 1988, 1997 and 2007. To compare the

relationship between the seasonal prediction skill and

ENSO, the temporal correlation coefficient between the

year-to-year tropical 2mT prediction skill and ENSO

amplitude is calculated. The ENSO amplitude is defined as

a standard deviation of NH winter Nino 3 index (Fig. 5,

gray bar). The correlation coefficient between the 2mT

prediction skill over the tropics and ENSO amplitude is

0.63 and 0.57 for Sys4 and CFSv2, respectively. The cor-

relations between the PRCP prediction skill and ENSO

amplitude is 0.46 and 0.60 in Sys4 and CFSv2, respec-

tively. Hence, during strong ENSO winters the prediction

skill of tropical 2mT and PRCP is higher than for weak

Fig. 3 Difference in 2mT

prediction skill between ERA

interim and CFSR (ERA-CFSR)

used for verification in a Sys4

and b CFSv2
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ENSO winters. Figure 6 shows the mean prediction skill of

tropical 2mT from Fig. 5b plotted in descending order of

the amplitude of ENSO arranged according to the absolute

value of the ENSO amplitude. The ENSO amplitude and

skill are the moving average for 7 years from the largest

ENSO amplitude year to the smallest. For example, the

Fig. 5 Anomaly pattern

correlation for a global area and

b, c tropical Pacific area for b 2

meter temperature and

c precipitation. Gray bar is the

ENSO amplitude. Mean

correlation coefficients are

displayed in Fig. 18

Fig. 4 Correlation coefficients

for DJF 2mT between ERA

interim and CFSR over the

period from 1982/1983 to

2008/2009
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mean prediction skill from the largest ENSO amplitude

years is 0.71 which is the average of seven strongest ENSO

years (1997, 1982, 1999, 2007, 1988, 1991, and 1984). It is

consistent in both modeling systems that the prediction

skill increases with ENSO amplitude (Peng et al. 2000,

2011).

4 ENSO prediction

As described above, the amplitude of ENSO dominates the

winter seasonal prediction skill. Jin et al. (2008) examined

the current status of ENSO prediction using retrospective

forecasts made with ten different coupled GCMs from

DEMETER and CliPAS/APCC model sets and found that

the ENSO prediction skill in the state-of-the-art dynamical

predictions depends on the ENSO phase and amplitude.

Generally, dynamical models tend to have better prediction

skill when initialized at NH winter than spring due to the

‘spring predictability barrier’ (Webster and Yang 1992;

Webster 1995; Torrence and Webster 1998; Jin et al. 2008;

Kim et al. 2009; Hendon et al. 2009). This study focuses on

the boreal winter prediction when the initial condition

already contains a strong ENSO signal. The ECMWF

forecast model has been found to be better than statistical

models at forecasting ENSO events (Van Oldenborgh et al.

2005) and NCEP CFS is shown to be competitive with

other statistical models in predicting tropical SST vari-

ability (Saha et al. 2006). Here we compare ECMWF

System 4 and CFSv2 in terms of winter ENSO prediction.

Figure 7 compares the predicted SST with OISSTv2

variability over the tropical Pacific for each forecast sys-

tem. The SST variability is calculated by the standard

deviation of NH winter SST anomalies over the 28 year

period. Both modeling systems show similar patterns to the

observations with maximum variability over the central to

eastern Pacific, but with stronger magnitudes (Fig. 7). It

has been previously noted that NCEP CFSv1 and v2 con-

sistently tends to forecast larger ENSO amplitude (Wang

et al. 2010). Figure 8 shows the latitudinal average of SST

standard deviation (Fig. 7) over the tropics (10�S–10�N).

Sys4 overestimates the amplitude of SST variability over

the entire Tropics and CFSv2 overestimates the amplitude

especially from 150�W to the eastern Pacific and under-

estimates it in the western Pacific.

To analyze the SST variance and systematic bias in both

modeling systems, an empirical orthogonal function (EOF)

analysis is applied to both the observed and predicted NH

winter SST anomaly fields. To examine the simulation

ability for increasing forecast lead times, we applied the

EOF analysis for the winter mean (DJF) SST predictions

initialized in November (0-month lead), October (1-month

lead) and September (2-month lead), respectively. Each DJF

predictions with 0- to 2-month lead include 16 ensemble

members from August to November. The EOF analysis is

applied to the predicted SST of individual ensemble mem-

bers and then averaged. Figure 9 shows the eigenvector of

the first EOFmode for the observation and for two prediction

systems. Figure 10 compares the latitudinal and longitudinal

mean of the first eigenvector for each lead time. The leading

Fig. 6 Tropical 2mT prediction skill as a function of ENSO amplitude from Fig. 5b. ENSO amplitude and correlation coefficients are multiplied

by 100. Years are arranged in the ascending order of amplitude of the ENSO
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EOF mode for the observation explains 54 % of the total

variance and the eigenvector is characterized by large

positive components over the central to equatorial eastern

Pacific (Fig. 9a). The spatial pattern of SST in the model

counterpart differs from observation which can be expected

from Fig. 7. Both systems overestimate the amplitude in the

eastern Pacific compared to observations. In the Sys4 results,

the positive maximum value is concentrated to the region

around 120�W and is shifted to south relative to the obser-

vation (Figs. 9, 10). The patterns do not change much as the

forecast lead time increases. In the CFSv2, the center of

maximum variability matches the observations well but is

slightly shifted to the east.

The eigenvectors and their corresponding normalized

time series of principal components (PC) of the EOF 1st

mode are related to ENSO variability. The PC time series

for observation and model with different lead times capture

the dominant ENSO variability (Fig. 11), although the

model eigenvectors show bias in their spatial pattern. The

similarity between the observed and predicted PC time

series provides possibilities for model error correction

using a statistical approach (Kang et al. 2004; Kim et al.

2008). In both systems, the percentage of total variance of

Fig. 7 Standard deviation of

winter mean SST anomalies for

a observation, b Sys4 and

c CFSv2

Fig. 8 Latitudinal mean of SST standard deviation (Fig. 7) between

10�S to 10�N for observation (black), Sys4 (red) and CFSv2 (blue)
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the SST anomaly is larger than observed and differs in each

lead time (Fig. 9).

The year-to-year ENSO prediction skill is assessed by

using the Nino 3.4 index, defined as a mean SST anomaly

averaged over the region from 190�E to 240�E and from 5�S

to 5�N. The index possesses a strong interannual variability

(Fig. 12) and both prediction systems capture the year-to-

year ENSO variability very well. The correlation coefficient

between the reforecasts and observations for Sys4 is 0.97

with root-mean-square error (RMSE) of 0.37, and for CFSv2

is 0.85 with RMSE of 0.67. Although the ENSO phase is

well predicted in CFSv2, the magnitude of ENSO is over-

estimated in the system as noted earlier. Relatively low

prediction skill and large RMSE in CFSv2 result from larger

SST variability over the tropics. For example, the observed

Nino 3.4 index in 1988 winter is around-2 K while CFSv2

predicts a value almost 1 K lower than the observation.

Before 1993, CFSv2 underestimates the Nino 3.4 values, but

after 1998 CFSv2 overestimates the Nino 3.4 continuously,

about 0.5 K higher than the observation (Fig. 12). A clear

upward trend in the predicted winter Nino 3.4 index is found

in CFSv2 (Xue et al. 2011).

Figure 13 compares the winter SST trend [K/year] of both

modeling systems with observations. The observations show

an upward trend over the most of the globe, while it shows a

negative trend in the eastern Pacific and part of the North

Pacific. Sys4 captures the trend verywell, except with weaker

amplitude over the globe. However, the CFSv2 has a very

strong warming trend in winter SST even over the equatorial

eastern Pacific, whereas the observations and Sys4 show a

negative trend (Fig. 13c). The earlier version of CFS (Saha

et al. 2006) shows a weaker warming trend perhaps due to the

Fig. 9 Eigenvectors of the first EOF mode for DJF SST anomaly for a observation, left Sys4 and right CFSv2 initiated at b, e November,

c, f October, d, g September

Seasonal prediction skill of ECMWF System 2965
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use of fixed greenhouse gas concentration. The CFSv2, on the

other hand, uses prescribed CO2 concentrations as a function

of time in its atmospheric initial condition (Cai et al. 2009).

The large warming trend in the eastern Pacific SST is pri-

marily associated with changes in satellite observing system

that occurred in 1998/1999 period that were assimilated in the

CFSR (Xue et al. 2011; Wang et al. 2011). An assessment of

the trend is beyond the scope of this study, but it certainly

needs further examination.

5 Teleconnection patterns in the extratropics

5.1 ENSO teleconnection

We now examine how the models predict winter telecon-

nection patterns in relation to the ENSO phase. Clearly, the

NHwinter is strongly influenced by the warm and cold phases

of ENSO, especially the North Pacific and North America.

Figures 14 and 15 shows the compositemap of the ERA2mT,

the 500 hPa geopotential height and the PRCP anomaly in

Fig. 10 The eigenvector of the first EOF mode for a latitudinal mean

(15�S–15�N) and for b longitudinal mean (160�E–280�E). Black line

indicates the observation and thin blue and red lines indicate Sys4 and

CFSv2 for lags from 0 to 2 month

Fig. 11 Normalized timeseries

of PCs of the first EOF modes

from observation (black), Sys4

(red) and CFSv2 (blue)

Fig. 12 Nino 3.4 index for

observation (black), Sys4 (red)

and CFSv2 (blue) from 1982 to

2009. Correlation coefficient

and root-mean-square error

between observation and

hindcasts are indicated together
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four strong El Nino (1982, 1991, 1997 and 2009) and La Nina

(1988, 1998, 1999 and 2007) winters.

The composite patterns in CFSR are similar to the ERA

analyses (not shown). The conventional El Nino pattern is

apparent, with warm/wet anomaly across the equatorial

central to eastern Pacific produced by the shifting pattern of

the Walker circulation (Figs. 14, 15). A boomerang pattern

of cold and dry anomaly appears to the north and south of

the equatorial western Pacific. Although the La Nina pat-

tern is not exactly the mirror image of El Nino, it is almost

the opposite from El Nino in the extratropics. Both pre-

diction systems simulate well the general pattern of ENSO

response over the tropics, although the boomerang pattern

in the western Pacific is not well simulated by either sys-

tem. The magnitude of the SST anomaly in both prediction

systems is larger than the observed anomaly. The warm

anomaly over the South Indian Ocean during El Nino and

the warm/cold anomaly over the northern part of Australia

in El Nino/La Nina are well captured in Sys4 (Fig. 14b, e).

The ENSO forcing of the Polar Jet over the North

Pacific and North America is known to be responsible for

ENSO teleconnections such as Pacific North America

(PNA) (Wallace and Gutzler 1981). The southern part of

North America experiences a cold and wet winter during El

Nino and a warm and dry winter during La Nina (Figs. 14,

15). The northwestern part of North America experiences

Fig. 13 Temperature changes

(K/year) for a observation,

b Sys4 and c CFSv2 from 1982

to 2009 NH winter
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milder winter during the El Nino and colder winter during

the La Nina phase. Both modeling systems capture the gross

global patterns in strong ENSO winters. The 500 hPa high

pressure area over the North America in El Nino winter is

well captured in Sys4 but with weaker magnitude, and it is

shifted to the west in CFSv2. The strong low pressure area in

the North Pacific is well captured in both models, but

slightly shifted to the south in CFSv2 (Figs. 14, 15). The

other low pressure area in the southern part of US and the

Atlantic Ocean is not well simulated in Sys4. In La Nina

winters, the models have a tendency that is similar but

slightly asymmetric to El Nino winters (Figs. 14, 15).

5.2 PNA and NAO

We have shown that the ENSO teleconnection pattern over

the North Pacific and the North America is generally well

predicted for strong ENSO winters. However, the year-

to-year winter climate variability in extratropics is influenced

not only by tropical forcing but by oscillations of atmo-

spheric mass between mid- and high-latitudes, such as PNA

or North Atlantic Oscillation (NAO; Wallace and Gutzler

1981; Barnston and Livezey 1987). The NAO and PNA

patterns are the two most important modes of variability in

the NH mid- and high-latitudes, thus the prediction skill of

the NH extratropics is related to the skill of predicting these

patterns. In this section, we examine how well the models

predict the dominant winter climate oscillations.

The NAO is one of the most prominent wintertime

teleconnection patterns that modulate climate over the

North America to the northern Europe (e.g., Hurrell 1995).

The NAO index is defined as a difference between nor-

malized DJF mean SLP anomaly from 80�W to 30�E and at

35�N and 65�N (Li and Wang 2003). The NAO has

exhibited considerable variability over the past 28 years

in both the ERA interim and CFSR data sets (Fig. 16a).

Fig. 14 Composite map of 2 meter temperature (K, shading) and 500 hPa geopotential height anomaly (m, countour) for top ERA interim,

middle Sys4 and bottom CFSv2 for left El Nino and right La Nina winter
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The correlation coefficients between the ERA interim and

CFSR is 0.78. Neither prediction system captures the year-

to-year NAO variability during DJF. Coefficients between

the ERA reanalysis and predicted NAO index are 0.16 and

0.25 for Sys4 and CFSv2, respectively (Figs. 16a, 18). The

correlation coefficients between CFSR and the predicted

NAO index are 0.11 and 0.21 for Sys4 and CFSv2,

respectively (Figs. 16a, 18).

The PNA is also a dominant low frequency mode of

climate variability over the NH winter. The PNA index is

determined following Wallace and Gutzler (1981):

PNA ¼ 0:25� ½Zð20�N; 160�WÞ � Zð45�N; 165�WÞ
þ Zð55�N; 15�WÞ � Zð30�N; 85�WÞ�

where Z is standardized value of the 500 hPa geopotential

height. Figure 16b shows interannual variability of the

PNA index for 28 winters from ERA interim and CFSR.

Although the PNA pattern is a natural internal mode of

climate variability, it is also modulated by the ENSO. The

correlation coefficient between observed NH winter PNA

and Nino 3.4 index is highly correlated at 0.7. The corre-

lation coefficients between ERA interim and CFSR is 0.99.

The two modeling systems predict the PNA quite well,

with correlation coefficients between 0.4 and 0.7 with ERA

interim and CFSR (Figs. 16b, 18). The Sys4 system pre-

dicts the PNA better than the CFSv2 system, especially in

strong ENSO winters (particularly for the winters of 1982,

1988, 1991, 1997 or 2007: not shown). Due to the asso-

ciation of the PNA and its low-frequency variability and

the influence of ENSO forcing, relatively higher prediction

skill occurs for the PNA than for the NAO in general

agreement with dynamical predictions (Johansson 2007;

Müller et al. 2005).

We have examined the prediction skill of the NAO and

PNA, both of which influence North American and north-

ern Europe climate variability. How well do the models

predict the winter climate over the North America and the

northern Europe? Figure 17 shows the year-to-year area

Fig. 15 As in Fig. 14, but for the precipitation anomaly (mm/day, shading)
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averaged 2mT for the North America (Fig. 17a) and for the

northern Europe (Fig. 17b) compared with both the ERA

and CFSR. The average skill over the North America is

0.14 for Sys4 and 0.30 for CFSv2 (Fig. 17a). The skill

changes to 0.29 for Sys4 and 0.42 for CFSv2 when eval-

uated against the CFSR. The skill over the northern Europe

is 0.39 for Sys4 and 0.33 for CFSv2 when compared with

ERA, and 0.40 and 0.41, respectively, when compared with

the CFSR (Fig. 17b). No relationship between the predic-

tion skill of the North American and European regions and

NAO/PNA has been found. Similar difficulty occurs in

finding coherence in the prediction skill of both models.

6 Summary and discussion

This study has examined the seasonal prediction skill for NH

winter using retrospective predictions (reforecasts) by the

ECMWF System 4 and NCEP CFSv2. The temperature,

precipitation and geopotential height from the reforecast for

the period 1982–2010 were compared with two reanalysis

products: the ERA interim and the CFSR. The simulation

ability of long-term mean climatology and the year-to-year

variation were assessed. Both Sys4 and CFSv2 reproduce

realistically the observed climatology pattern. However,

systematic biases are found in both simulations. For the Sys4,

a cold bias is found across the equatorial Pacific although a

warm bias is found in the North Pacific and part of the North

Atlantic. The CFSv2 has strong warm bias from the cold

tongue region of the Pacific to the equatorial central Pacific

and cold bias in broad areas of theNorth Pacific and theNorth

Atlantic. A cold bias over large regions of the Southern

Hemisphere is a common property of both reforecasts. With

respect to precipitation, the Sys4 produced excesses along

the ITCZ, the equatorial Indian Ocean and the western

Pacific in Sys4. In theCFSv2, a strongwet bias is found along

the SPCZ and the southern Indian Ocean as well as in the

western Pacific. A dry bias is found for both modeling sys-

tems over SouthAmerica and northernAustralia andwet bias

in East Asia and the equatorial Atlantic.

For both the Sys4 and CFSv2 systems, the mean pre-

diction skill of 2mT and precipitation is higher over the

tropics than the extra-tropics and higher over ocean than

land. The 2mT over the South Indian Ocean, the North

Pacific and equatorial North Atlantic shows high predictive

skill in both reforecasts. The actual prediction skill of the

2mT depends on the reanalysis data set which is used as

verification field. The discrepancy in two reanalysis (ERA

interim and CFSR) is clear over the Indian Ocean, the

equatorial western Pacific, the South America, over part of

the equatorial Atlantic Ocean and over the Arctic. There-

fore, the analyses are conducted using both reanalysis

datasets. The 2mT and precipitation show the greatest skill

in the tropical belt, especially in ENSO region when it is

verified with both ERA interim and CFSR. In both mod-

eling systems, the prediction skill of both tropical 2mT and

precipitation is higher during strong ENSO winters than

during weak ENSO winters.

Fig. 16 a NAO and b PNA

index for ERA interim (black),

CFSR (gray), Sys4 (red) and

CFSv2 (blue) from 1982 to

2009 winter. Numbers indicate

the temporal correlation

coefficient compared with ERA

interim and CFSR
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In both systems, the standard deviation of winter mean

SST anomaly shows similar patterns to observations with

maximum variability over the central to eastern Pacific with

a stronger magnitude than observed. Although the ENSO

SST variability is spatially biased in themodels, bothmodels

predict the year-to-year ENSO variation accurately. Bias in

winter SST trend over the ENSO region in CFSv2 results in

relatively low ENSO prediction skill and high RMS error

compared to Sys4. Both models capture the main ENSO

teleconnection pattern of strong anomalies over the tropics,

the North Pacific, the NorthAmerica and for PNA.However,

both models have difficulty in forecasting the NAO and the

year-to-year winter temperature variability over the North

America and northern Europe. Figure 18 shows the sum-

mary of the mean prediction skill for different variables and

regions in Sys4 and CFSv2.

This study has examined the prediction skill of the NH

winter from the most recently upgraded seasonal forecast

systems from ECMWF and NCEP. However, to provide

physical insights to differences in prediction skill regarding

to the set up of forecast systems, it would be useful to

compare the skill between CFSv1 and CFSv2 and between

ECMWF System 3 and system 4. This will be the subject of

future research.
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indicate the mean prediction

skill compared to ERA interim

(CFSR)
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