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Abstract

In seasonal environments, timing of reproduction is a trait with important fitness consequences, but we know little about the

molecular mechanisms that underlie the variation in this trait. Recently, several studies put forward DNA methylation as a

mechanism regulating seasonal timing of reproduction in both plants and animals. To understand the involvement of DNA

methylation in seasonal timing of reproduction, it is necessary to examine within-individual temporal changes in DNA

methylation, but such studies are very rare. Here, we use a temporal sampling approach to examine changes in DNA

methylation throughout the breeding season in female great tits (Parus major) that were artificially selected for early timing

of breeding. These females were housed in climate-controlled aviaries and subjected to two contrasting temperature

treatments. Reduced representation bisulfite sequencing on red blood cell derived DNA showed genome-wide temporal

changes in more than 40,000 out of the 522,643 CpG sites examined. Although most of these changes were relatively small

(mean within-individual change of 6%), the sites that showed a temporal and treatment-specific response in DNA meth-

ylation are candidate sites of interest for future studies trying to understand the link between DNA methylation patterns and

timing of reproduction.

Key words: DNA methylation, epigenetics, RRBS, Parus major, timing of reproduction, laying date.

Introduction

In seasonal environments, timing of reproduction has major

effects on fitness (Thomas et al. 2001; Zera and Harshman

2001; Lane et al. 2012; Reed et al. 2013; Lu et al. 2016) and is

therefore under strong selection, as individuals need to time

their reproduction to match the time window when food

resources are most abundant (Visser et al. 2006; Plard et al.

2014). As this time window varies between years, plants and

animals use environmental cues, such as photoperiod and

temperature, to time their reproduction (Shindo et al. 2006;

Perfito et al. 2012; Schaper et al. 2012; Stevenson and

Prendergast 2013). The within-individual change in pheno-

type in response to environmental factors, that is, phenotypic

plasticity (Pigliucci 2005), allows individuals to adjust to chang-

ing environmental conditions and plasticity itself can also be

under genetic control (Renn et al. 2008; Espinosa-Soto et al.

2011). However, the molecular mechanisms via which cue

perception leads to the onset of reproduction are poorly un-

derstood (Caro et al. 2013), although gene regulatory mech-

anisms are thought to play a major role. Factors that modulate
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regulatory changes, such as epigenetic mechanisms, are

therefore of key interest in understanding the molecular basis

of phenological traits (Beaman et al. 2016).

Epigenetic mechanisms can broadly be defined as modifi-

cations of the DNA that affect gene expression, without alter-

ations in the DNA sequence itself (Allis and Jenuwein 2016).

Of the different types of epigenetic modifications, DNA meth-

ylation is the most commonly studied form (Laird 2003) and

involves the addition of a methyl group to the fifth carbon of a

cytosine residue in the DNA backbone (Klose and Bird 2006).

In vertebrates, methylation predominantly occurs when the

cytosine is adjacent to guanidine in the DNA (CpG site) al-

though non-CpG methylation is also observed (Shirane et al.

2013; Guo et al. 2014; Derks et al. 2016). The addition of a

methyl group at the promoter and/or in the transcription start

site (TSS) regions typically impedes binding affinity of tran-

scription factors and reduce transcription rate and therefore

gene expression (Jaenisch and Bird 2003). Continuous

stretches of CpG dinucleotides in the DNA form so-called

CpG islands, which are distributed across different genomic

regions (Deaton and Bird 2011). Methylation of CpG sites and

CpG islands in other genomic contexts has been shown to

have varying effects on gene expression: for example, intra-

genic methylation is involved in regulation of alternative splic-

ing (Lev Maor et al. 2015), prevention of spurious

transcription (Neri et al. 2017), and expression of regulatory

ncRNA’s (Deaton and Bird 2011). As mechanisms of active

DNA demethylation have become better understood (Wu and

Zhang 2010, 2017) a role for DNA methylation as rapid reg-

ulator in gene expression due to its environmentally respon-

sive nature is evident (Stevenson and Prendergast 2013; Lynch

et al. 2016; Weyrich et al. 2016).

Interestingly, DNA methylation patterns have been linked

to timing of reproduction in different taxa in several recent

studies. For example, removal of DNA methylation alters the

pattern of flowering time in Arabidopsis and Taraxacum offi-

cinale (Cortijo et al. 2014; Wilschut et al. 2016). Furthermore,

changes in photoperiod and temperature affect DNA meth-

ylation patterns of flower buds in Azalea (Meij�on et al. 2011).

Photoperiod also seems to affect DNA methylation patterns in

insects: Nasonia vitripennis exposed to short or long day light

cycles showed differences in methylation pattern and dia-

pause response which were abolished by experimental low-

ering of DNA methylation (Pegoraro et al. 2016). However,

although there is increasing evidence for the role of DNA

methylation in seasonal timing of reproduction in plants and

insects, similar studies in vertebrates are scarce. The only study

so far, to our knowledge, to experimentally test the role of

DNA methylation in regulating seasonal timing of reproduc-

tion investigated the effect of photoperiod on hypothalamic

DNA methylation in Siberian hamsters (Stevenson and

Prendergast 2013). This pioneering study showed that pho-

toperiodic cues alter the DNA methylation pattern of the dei-

odinase 3 (DIO3) gene promoter, which is involved in thyroid

hormone signaling, and play a key role in reproductive related

behaviors and physiology (Dellovade et al. 1996; Barrett et al.

2007).

Although there is accumulating evidence to suggest that

temporal changes in DNA methylation can be important in

regulating seasonal timing of reproduction, most studies use

photoperiod as an environmental cue for explaining methyl-

ation changes (Stevenson and Prendergast 2013; Pegoraro

et al. 2016). We know much less about the effects of tem-

perature and other environmental cues on fluctuations in

DNA methylation patterns as a mechanism for fine tuning

seasonal timing of reproduction. This is important to know,

because the changes in phenology observed in many plants

and animals over the last decades are not due to a shift in

photoperiod, but rather due to changes in temperature, or

environmental cues correlated to temperature (Reale et al.

2003; Nevo et al. 2012). For example, in the great tit (Parus

major), lay dates have advanced with increasing spring tem-

peratures over the last decades in many populations across

Europe (Charmantier et al. 2008; Husby et al. 2010; Valtonen

et al. 2017). In the long-term study population in Hoge

Veluwe national park in the Netherlands mean laying dates

have advanced by 0.19 days/year since 1973 (Husby et al.

2010).

The great tit is a particularly well-suited species to examine

temporal patterns of DNA methylation in relation to seasonal

timing of reproduction, because both causes (Visser et al.

2009) and consequences (Visser et al. 2006) of seasonal tim-

ing of reproduction are well understood (Husby et al. 2011;

Schaper et al. 2012; te Marvelde et al. 2012) and it has very

good genomic resources in the form of both a high-quality

annotated genome and methylome (Derks et al. 2016; Laine

et al. 2016). In this study, we were interested in temporal

variation in DNA methylation to test if, as suggested by other

studies, DNA methylation plays a role in determining individ-

ual variation in seasonal timing. We therefore 1) test for

genome-wide temporal variation in DNA methylation and 2)

whether temperature affects temporal changes in DNA meth-

ylation. We address this by using female great tits from a line

artificially selected for early timing of reproduction that were

housed in climate-controlled aviaries and were subjected to

contrasting temperatures.

Materials and Methods

Experimental Design

This study included samples (see “Blood sample collection”)

from female great tits that are part of a large-scale experiment

where females are artificially selected for early or late repro-

duction using genomic selection. The experimental design for

this artificial selection experiment is described in more detail in

Verhagen I, Gienapp P, Laine VN, Mateman AC, van Oers K,

Visser ME (unpublished data). In short, offspring (F1) from a
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wild parental generation (P) from the Hoge Veluwe (the

Netherlands) with either early (early line) or late (late line)

lay dates were collected and genotyped with a 650k single

nucleotide polymorphism (SNP) chip to calculate genomic es-

timated breeding values (GEBVs), the value of an individual in

the breeding scheme based on the estimated genomic marker

(i.e., SNPs) effects throughout the genome (see Verhagen I,

Gienapp P, Laine VN, Mateman AC, van Oers K, Visser ME

unpublished data; Gienapp P, Calus MPL, Laine VN, Visser

ME, unpublished data, for details). Based on their GEBVs,

birds were selected within the early or late reproducing selec-

tion line in such a way that birds with the most extreme

GEBVs were housed in pairs in outdoor aviaries to generate

the F1-generation. Birds from the F1-generation, in their turn,

were genotyped and selected for extreme GEBVs within the

two selection lines to produce the F2-generation. From these

F2 birds, pairs were put in climate-controlled aviaries and

subjected to two contrasting temperature treatments from

January until July. The two temperature treatments mimicked

a cold and warm year in the Netherlands using observed

temperatures from the year 2013 and 2014, respectively

(see Verhagen I, Laine VN, Mateman AC, Pijl A, de Wit R,

van Lith B, Kamphuis W, Viitaniemi HM, Williams TD, Caro SP,

Meddle SL, Gienapp P, van Oers K & Visser ME (unpublished

data)). Photoperiod changed daily following the natural pho-

toperiod. Aviaries were provided with three nest boxes and

from March onward, nesting material was provided.

Blood Sample Collection

A detailed blood sampling scheme is described in M€akinen

et al. (forthcoming) but briefly, birds were divided in two sam-

pling groups representing both temperature treatments and

selection lines (see above). Blood was sampled every other

week from each individual between January and July. Every

pair was sampled within 10 min after capture and then put

back in their climate-controlled aviary. During a sampling day,

birds (n¼ 36) were sampled between 8:30 AM and 14:30

PM. Individual birds were randomized by treatment and line

to three sampling groups and individuals were sampled

around the same time of day every time they were blood

sampled. Red blood cells were separated from plasma by

centrifuging at 14,000 rpm for 10 min and were stored in

Queens buffer at room temperature until being processed.

This treatment is sufficient to enrich the sample for red blood

cells as the ratio between white to red blood cells in a whole

blood sample is normally 1:800 (Vinkler et al. 2010). For the

analysis, four time points were chosen based on realized first

egg lay dates of the females as described in M€akinen et al.

(forthcoming): 1) the day when day light length >12 h (time

point 1), 2) the day when 25% of the females from the warm

environment had initiated laying (time point 2), 3) the day

when 25% and 50% of the females from the cold and

warm environment respectively had initiated laying (time

point 3), and 4) the day when 50% of the females from

the cold treatment had initiated laying. As our chosen time

points did not always coincide with the days of blood sam-

pling scheme, we chose blood samples that were sampled

closest to (67 days) the four chosen time points. This resulted

in a total of 63 samples, because we were unable to take one

blood sample for time point 4, because one female (warm

treatment) was incubating her eggs during the sampling.

Sample Processing for Reduced Representation Bisulfite
Sequencing

The detailed description of the sample processing can be

found in M€akinen et al. (forthcoming). In short, DNA was

extracted from red blood cell samples using FavorPrepT M

96-well Genomic DNA Kit (Favorgen). Quantity and quality

of the extraction was assessed with Nanodrop 2000

(Agilent Biotechnologies) and by gel electrophoresis by run-

ning the samples on a 1% agarose gel. Library preparation

and sequencing were done at Roy J. Carver Biotechnology

Center, University of Illinois at Urbana-Champaign, USA.

Samples were individually barcoded and pooled together in

four pools of 16 samples, thereby randomizing individuals,

sampling days, and treatments for each pool. To obtain

enough coverage, each pool was sequenced on two lanes

for 100-bp single-end. To avoid effects due to difference in

flow cells, the four pools, which were all ran twice, were ran

on the same flow cell.

The control and bisulfite-treated libraries were prepared

with the Hyper Library Construction kit from Kapa

Biosystems, according to the “Reduced Representation

Bisulfite Sequencing For Methylation Analysis” protocol

(Illumina). Briefly, samples were digested with MspI, which

generates CCGG overhangs, prior to bisulfite treatment and

library building. The libraries were size selected for fragments

of 20–200 bp in length. The libraries were quantified by quan-

titative PCR and pools were sequenced on a HiSeq2500 using

a HiSeq SBS sequencing kit version 4 (Illumina). All pools were

sequenced on the same flow cells. Fastq files were generated

and demultiplexed with the bcl2fastq v2.17.1.14 Conversion

Software (Illumina). Lanes were spiked with PhiX to provide

nucleotide diversity and to measure bisulfite conversion suc-

cess. PhiX reads were subsequently removed from the data

set. Adaptors and individual barcodes were also trimmed

from the reads. All the reduced representation bisulfite se-

quencing (RRBS) samples are deposited in Short Read

Archive under Biosample accession SAMN07692587 and

are described in detail in M€akinen et al. (forthcoming).

Sequence Alignment and CpG Site Identification

The sequence processing and alignment has been described

in detail in M€akinen et al. (forthcoming) . In short, prior to

alignment, the obtained sequences were adaptively trimmed

and quality filtered to a minimum of 20 bp and a quality of 25
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using Trim Galore! 0.4.2. Genome alignment and methylation

site identification were performed with Bismark v0.16.3 using

Bowtie2 v2.2.3 in the alignment step. Reads were aligned

against the Parus_major1.1 genome (NCBI) using single-end

mode and default settings in Bismark (L¼ 20 and N¼ 0). CpG

sites were then identified from each sample; a site was ac-

cepted for downstream analysis when it had a minimum cov-

erage of 10� and when it was identified across all samples. In

total, the final data set for downstream analysis consisted of

522,645 CpG sites (supplementary table S2, Supplementary

Material online).

We first performed hierarchical clustering on the final data

set as well as for a reduced data set with only unrelated

individuals using the “cluster” (Maechler et al. 2016) and

“factoextra” (Kassambara and Mundt 2017) packages in R.

The distance method used was Euclidian and the clustering

method Ward.D2. We also calculated mean methylation val-

ues over the 522,645 CpG sites for the whole data set, and

for each time point, each individual and for both treatments

separately.

Methylation Patterns over Time

To examine temporal changes in DNA methylation across the

four time points, we used GPrank (Topa and Honkela 2018).

GPrank uses Gaussian process modeling to rank and identify

temporal patterns and has previously been applied to both

temporal transcriptome data (Topa and Honkela 2016) as well

as temporal genotype data (Topa et al. 2015). By utilizing

beta-binomial Gaussian process regression in a Bayesian

framework, this allows for modeling any form of temporal

variation in DNA methylation (linear as well as highly nonlinear

dynamics) and is therefore well suited and frequently used to

analyze data from sequencing-based genetic time series.

Our main interest was to detect changes in DNA methyla-

tion across the breeding season and between the two con-

trasting temperature treatments. In GPrank, the effect of time

is modeled using a Gaussian process (Rasmussen and Williams

2006). For each CpG site, we fitted a time-independent

model without a temporal change (model 0, i.e., null model)

and two different time-dependent models, allowing for a

temporal change in DNA methylation (model 1 and model

2; see below). Both the time-independent and time-

dependent models included a fixed variance component

from the beta-binomial model that captures the uncertainty

due to finite sequencing depth (Topa et al. 2015), and an

additive white noise, which represents random background

noise. In the time-dependent models (model 1 and model 2),

methylation levels are allowed to change between sampling

time points, which was modeled using a squared exponential

covariance in the Gaussian process: it tests correlation be-

tween two data points to estimate length scale and amplitude

in the data (i.e., how fast the change is in time) to improve

point estimate fit with the Gaussian process function. In the

time-dependent model 2, we additionally allowed for differ-

ences between treatment groups in the pattern of temporal

change (compared with model 1) by allowing the treatment

groups to have separate time-dependent components and

thereby capture possible treatment-specific temporal trajecto-

ries. We made comparisons between model 1 and model 0 to

test for time dependence and between model 2 and model 0

to test for time dependence with treatment-specific trajecto-

ries and between model 2 and model 1 to test for treatment-

specific trajectories of the time-dependent sites. Thus,

sites were classified as time independent, time depen-

dent, or as time dependent with treatment-specific trajec-

tories (table 1). All three model comparisons were run

separately for each CpG site and we selected the best

fitting model based on the log-Bayes factor values

(log BF), using log BF � 3 which in the log-Bayes factor

scale is considered as positive evidence in favor of the

alternative model (Raftery and Kass 1995). We also clus-

tered the data set using only time-dependent sites (with-

out or with treatment effect).

Because the GP models cannot take relatedness into ac-

count, we examined 5,000 sites across the log BF range of

49–3 and identified as temporally changing based on GPrank

model 1 with GLMM using R packages lme4 (Bates et al.

2015) and lme4qtl (Ziyatdinov et al. 2017). We included the

IBD matrix (supplementary table 2, Supplementary Material

online) as a random effect in lme4qtl to control for potential

differences in methylation due to shared sibship. Otherwise,

both models used methylation count as the response, time

point as a fixed effect and individual repeated measure was

added as random effect (for both lme4 and lme4qtl). We

compared the estimates between the two models for time

point and intercept. As the estimates for both models, with

and without controlling fore relatedness were highly congru-

ent (supplementary fig. S1, Supplementary Material online),

we conclude that relatedness per se did not influence our

analysis when looking at temporal change in DNA

Table 1

Model Selection Criteria and Classification of CpG Sites

Model Comparison Criteria Classification of CpG Site

Model 1–Model 0 < 3

Model 2–Model 0 < 3

Model 2–Model 1 < 3

Time independent

Model 1–Model 0 > 3

Model 2–Model 0 < / > 3

Model 2–Model 1 < 3

Time dependent

Model 1–Model 0 < 3

Model 2–Model 0 > 3

Model 2–Model 1 > 3

Time dependent with treatment

NOTE.—Left-hand side describes the criteria for the model comparisons, based
on logBF, which needed to be fulfilled for a CpG site to be classified as time inde-
pendent, time dependent, or time dependent with treatment (right-hand side).
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methylation patterns. Ideally however, the analyses would be

done in a GP model where both relatedness and the repeated

measures structure of the data could be considered.

Genomic Locations and Gene Annotation

Genomic locations of identified CpG sites were annotated

using the Great tit genome v1.1 (NCBI). We divided the sites

into whether they were located in exons, introns, TSS regions

(defined as the region spanning 300-bp upstream and 50-bp

downstream of the annotated gene start), or promoters (de-

fined as the region 3 kb upstream of gene start excluding the

TSS) using the R packages “GenomicFeatures” (Lawrence

et al. 2013) and “rtracklayer” (Lawrence et al. 2009). CpG

islands were identified from the great tit genome using

CpGplot v EMBOSS: 6.6.0.0 (Alan Bleasby, European

Bioinformatics Institute, Wellcome Trust Genome Campus,

Hinxton, Cambridge CB10 1SD, UK) using default settings:

window size 100, minimum island length 200, minimum ob-

served/expected 0.6, minimum percentage 50. Overlap be-

tween identified CpG sites and specified regions, was

obtained with BEDtools v.2.26.0. (Quinlan and Hall 2010)

and the sites were assigned to their specific genomic regions.

We used the annotation from genomic locations (promoter,

TSS, and within gene body as defined above) for assigning the

CpG sites to genes for functional analysis, which was done

using Cytoscape plugin ClueGo (Bindea et al. 2009) with

chicken (EBI-Quick 31.1.2018) annotation. ClueGo identifies

functional groups of genes based on Gene Ontology (GO)

terms and enrichment analysis. As the reference set in the

functional analysis and enrichment analysis, we used all genes

for which at least one CpG site used in the GPrank analysis

was associated with. We determined these genes based on

the intersections of the CpG sites and the genomic locations

described above (i.e., promoter, TSS, intron, and exon of a

gene). To account for nonindependence of CpG sites (i.e.,

genes having many sites and sites supported by different

models), genes were categorized to be time dependent or

time dependent with treatment-specific trajectories based

on what the CpG site with the highest ranking log BF value

associated with the gene was classified to be. For a gene to be

categorized as time independent, all CpG sites associated

with that gene, regardless of the genomic region, had to be

classified as time independent.

Results

After filtering, 522,643 sites, covering 3.4% of the known

CpG sites in the great tit genome, were available for down-

stream analyses (supplementary table S1, Supplementary

Material online). The genome-wide methylation level across

all the sample time points and individuals for these sites was

13.82% (SD¼ 0.25). Methylation levels were significantly

lower in individuals from warm than in cold treatment in

the first three time points (t ¼ �4.3186, df ¼ 8,362,200, P

value ¼ 1.57e-05; t ¼ �4.154, df ¼ 8,362,100, P value ¼
3.268e-05, and t ¼ �3.6373, df ¼ 8,362,300, P value ¼
0.0003, respectively, fig. 1A), although the difference

was small (delta ¼ �0.0008, delta ¼ �0.0007, and

delta ¼ �0.0007 for time points 1, 2, and 3, respectively).

For the fourth time point, there was no difference in genome-

wide DNA methylation levels (delta¼�0.0002, t¼�1.3819,

df ¼ 7699900, P value ¼ 0.167, fig. 1A). In general, we

observed a slight increase in mean methylation level over

time and this pattern was similar in both the cold and the

warm treatments (ANCOVA: F2,5 ¼ 94.09, P value< 0.001,

fig. 1A). Individual level variation in mean methylation level

(supplementary fig. S2, Supplementary Material online) as

well as in how methylation changed across time was large

(supplementary fig. S3, Supplementary Material online) but

hierarchical clustering using all 522,643 CpG sites demon-

strated that an individual’s replicated measures were a better

predictor of similarity compared with treatment (fig. 2 and

supplementary table S2, Supplementary Material online). As a

consequence of using selection lines, and thus a limited num-

ber of individuals, there are nine full-sibs in the data set (three

sister pairs and one sister triplet, supplementary table S1,

Supplementary Material online). Removal of these siblings

(see Materials and Methods) from the data did not change

the replicate driven clustering (supplementary fig. S4A,

Supplementary Material online).

Not surprisingly, most CpG sites were lowly methylated

(median 1.13%) although methylation levels spanned the en-

tire range from completely unmethylated to fully methylated

(fig. 1B). Considering the change in methylation across time

points per CpG site (i.e., absolute value of the difference be-

tween largest and the smallest methylation level within a site),

we observe large variation given the minimum level of meth-

ylation within a site (supplementary fig. S3, Supplementary

Material online). Mean individual methylation change across

all sites was 6.82% (SD¼ 8.45) and mean methylation

change within a site was 18.7% (SD¼ 18.17). Between treat-

ments, methylation change across time in the CpG sites was

slightly lower for warm compared with cold treatment with

mean 6.80% (SD¼ 8.50) versus 6.84% (SD¼ 8.40) for warm

and cold, respectively (delta¼ 0.04, t¼ 3.1247, df ¼
1045100, P value ¼ 0.0018). Thus, in general, there were

relatively minor differences between treatments and time

points but substantial between-individual variation.

Temporal Variation in DNA Methylation

In total, we found that 47,922 CpG sites out of 522,643

analyzed sites showed support for a time-dependent methyl-

ation pattern (i.e., statistical support for time dependence or

time dependence in a treatment-specific manner) and these

represent 9% of all the analyzed sites (table 2 and supple-

mentary table S3, Supplementary Material online). We
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repeated the clustering using only these sites and found that

the samples formed two main clusters based on treatment

(supplementary fig. S4B, Supplementary Material online). The

effect of the repeated measurements is still visible as samples

of the same individual are clustered together. In a similar

manner, the effect of siblings split into both treatment groups

is still visible as the siblings from the warm treatment cluster

together with their cold treatment siblings in to the cold treat-

ment cluster (supplementary fig. S4B, Supplementary Material

online). Thus, for all sites as well as only the time-dependent

sites, the main similarity among samples is the repeated sam-

pling of individuals across time.

Out of the 47,922 sites that showed a temporal pattern,

the majority, 37,459 sites, were classified as time dependent

without a treatment-specific effect, whereas 10,463 sites only

showed a time-dependent effect when the treatments were

allowed to have separate trajectories (table 2, supplementary

table S3, Supplementary Material online, and fig. 3).

Genomic Locations and Gene Annotation

As expected, there was a positive correlation between the

number of analyzed CpG sites (corrected for chromosome

length) and GC content of the chromosome (r¼ 0.84, df ¼
32, P< 0.01, supplementary fig. S5A, Supplementary

Material online). This is reflected also in the numbers of

time-dependent sites in the different chromosomes.

Chromosomes 25LG1 and 25LG2 have the largest number

of CpG sites assigned to them in relation to their size (supple-

mentary fig. S5B, Supplementary Material online) as the GC

content of these chromosomes is the highest in the whole

Great tit genome (Laine et al. 2016). Similarly, GC content is

slightly higher also in chromosomes 26, 27, and 28 and

LGE22 compared with the other chromosomes (supplemen-

tary fig. S4A, Supplementary Material online). This pattern of

high GC content is typical for the great tit microchromo-

somes. In the mitochondria, we observed five sites and these

were all time dependent and intragenic (supplementary table

S3, Supplementary Material online).

Most of the analyzed CpG sites were intronic (24.8%),

whereas for TSS, exon, intergenic, and promoter, the propor-

tions were quite similar (18.3%, 17.3%, 17.4%, and 22.1%,

respectively). Methylation levels in the different genomic

regions also differed significantly (Wilcox test, see supplemen-

tary table S5, Supplementary Material online) and methylation

levels were highest in exons and intergenic regions (supple-

mentary fig. S6, Supplementary Material online). The propor-

tions of the genomic regions within time-independent CpG

sites are similar to the genomic regions for all analyzed data

set with 19.45%, 17.1%, 16.5%, 24.6%, and 22.2% for

FIG. 1.—Distributions of methylation levels in the analyzed sites in the data. (A) Mean methylation levels across time points per treatment. Error bars

represent standard error of the mean. t-Test P values between groups were 1.57e-05, 3.268e-05, 3.268e-05, and 0.167 for time points 1, 2, 3, and 4,

respectively, when calculated across all analyzed CpG sites. (B) Histogram of mean methylation level across time points per CpG site.
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TSS, exon, intergenic, intron, and promoter, respectively. For

the time dependent and time dependent with treatment ef-

fect the corresponding values are 7.4%, 18.6%, 25.3%,

27.0%, and 21.6% and 4.3%, 20.6%, 28.7%, 26.8%,

and 19.5%, respectively, for TSS, exon, intergenic, intron,

and promoter. Methylation levels were higher for CpG sites

classified as time dependent with treatment effect (table 2)

and this was also seen when splitting the CpG sites based on

genomic location and model (supplementary fig. S7,

Supplementary Material online). In addition, methylation lev-

els did not differ between the treatments for sites classified as

time dependent or time independent, whereas levels differed

FIG. 2.—Cluster dendrogram for the analyzed sites. Sample names (ring number) with indication of the corresponding sampling time point (indicated by

_1 to _4 after the ring number). Sample names are colored based on their corresponding temperature treatment with red for warm and blue for cold. The

four clusters containing full-sisters are indicated with curly brackets on the right hand side of the figure.

Table 2

Characteristics of the Analyzed CpG Sites Classified by Their Time

Dependency

Time

Independent

Time

Dependent

Time-Dependent

Treatment-Specific

Trajectory

CpG sites assigned to

different models

474,723 37,459 10,463

Mean methylation

(SD)

0.13 (0.24) 0.17 (0.30) 0.33 (0.33)

NOTE.—Number of CpG sites classified to each group as well as mean methyla-
tion level (and standard deviation) is reported.
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for sites classified as the time dependent with treatment ef-

fect as expected (supplementary fig. S7, Supplementary

Material online).

There were differences between genomic regions of the

time-dependent CpG sites (47,922 in table 2.) and the

time-independent sites. The number of sites annotated to

TSS is lower in time-dependent sites (both without or with

treatment), whereas more sites are annotated to exon or

intergenic regions in the time-dependent class, especially for

time-dependent treatment (fig. 4, Pearson’s chi-square test,

df¼ 8, P< 0.001).

CpG sites classified as time dependent (with or without

treatment) overlapped 41% of the annotated genes in

Parus major v1.1 genome; that is, 53% of the genes which

were used in the analysis (i.e., the reference set, supplemen-

tary table S4, Supplementary Material online, considering pro-

moter, TSS, and gene body). Genes had on average 15.00

CpG sites assigned to them (SD¼ 14.12) and typically in-

cluded CpG sites classified as both time dependent and

time dependent with treatment effect (supplementary table

S4, Supplementary Material online).

Functional analysis, which is grouping genes based on GO-

term enrichment (BH corrected P value <0.05), for time-

dependent classified genes identified 106 functional groups

mainly involved in regulation and development of different

tissue types (supplementary tables S6, Supplementary

Material online), whereas for time-dependent treatment clas-

sified genes, there were six functional groups identified and

these were involved in chromatin modification related func-

tions (GO:0042800 and GO:0048188) as well as transcrip-

tional coactivation (GO:0001223, supplementary table S7,

Supplementary Material online). In the time-dependent

genes, we identified specific GO-terms not only for develop-

mental functions in different tissues but also for energy bal-

ance and reproductive system development (GO:0003006,

GO:0048608, GO:0061458, GO:2000243, GO:0008406,

GO:0045137, and GO:0046660). Genes underlying these lat-

ter GO-terms as well as GO-terms in the six groups from the

time dependent with treatment-specific trajectories can be

regarded as potential candidates for timing of breeding in

the great tit (supplementary tables S6 and S7,

Supplementary Material online).

When looking at genes in more detail, we found that

DIO2, a candidate gene for timing of reproduction in the

great tit (Perfito et al. 2012), showed temporal change in

DNA methylation. Two out of the eight CpG sites observed

FIG. 3.—Manhattan plot of statistical support for temporal change in DNA methylation on a per CpG site basis using the Gaussian Process modeling

approach, black line at logBF¼3 indicate evidence of good statistical support (Raftery and Kass 1995).
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in this gene in our data set were classified as time dependent

(supplementary table S4, Supplementary Material online).

These sites are located in the first exon of the gene (UTR).

The overall methylation level of the eight sites in DIO2 have

mean methylation level of 2.4% (SD¼ 1.5%), and the non-

linear change over time is low in general (supplementary fig.

S8, Supplementary Material online). One of the new potential

candidate genes identified with the GO analysis, RORA (sup-

plementary table S7, Supplementary Material online, group

1), exhibits a site-specific methylation pattern, which also dif-

fers between the treatment groups across time (supplemen-

tary fig. S9, Supplementary Material online). It has 30 CpG

sites associated to it of which three are time dependent and

nine time dependent with treatment. All the sites are located

in introns. In contrast to DIO2, methylation levels in RORA are

higher for the methylated sites (mean¼ 23.6%, SD¼ 27.2%)

making the difference between methylated and nonmethy-

lated sites more evident than in DIO2. Both of these genes

also indicate linear and nonlinear changes across time.

Discussion

Here, we examined within-individual temporal changes in

DNA methylation in great tit females across the breeding sea-

son by analyzing repeated methylation measures using a RRBS

approach. We were able to sample 522,643 CpG sites with

>10� coverage in all samples and 47,922 of these were

found to exhibit time-dependent change either without or

with treatment-specific trajectories. In general, the methyla-

tion levels and temporal changes were slightly higher in the

cold compared with the warm treatment. There is a strong

temporal component to DNA methylation patterns across the

breeding season as 9% of all sites displayed a temporal pat-

tern and thus changes in DNA methylation at some of these

sites could potentially be involved in regulating the onset of

reproduction.

Temporal Patterns in DNA Methylation

Considering that DNA methylation is viewed as a mechanism

for gene regulation, most ecological studies examining DNA

methylation have only sampled single time points, leaving us

with a poor understanding of the temporal stability of DNA

methylation (but see e.g., Rubenstein et al. 2016; Saino et al.

2017). To our knowledge, this is the first animal study to

examine genome-wide DNA methylation patterns using a re-

peated measures approach, which up till now has only been

conducted in few clinical studies in humans (Shvetsov et al.

2015; Simpkin et al. 2015; Leenen et al. 2016; Urdinguio et al.

2016). Even in these studies, CpG methylation is typically

measured between two time points only, which hinders de-

tection of nonlinear changes in methylation. One exception is

(Simpkin et al. 2015) who measured CpG methylation at three

time points (at birth and at ages 7 and 17). They found evi-

dence of both linear and nonlinear patterns in methylation

levels of CpG sites associated to birth weight and gestational

age across the sampling period. We measured CpG methyla-

tion at four time points between March and June and ob-

served both linear and nonlinear changes, as seen for example

with DIO2 and RORA, within this short time period, thereby

highlighting the dynamic nature of DNA methylation patterns.

Previous studies using repeated measures in humans have

identified from 0.5% to 30.1% of analyzed sites changing

methylation patterns over time (Wang et al. 2012; Martino

FIG. 4.—Genomic regions of CpG sites in the time-independent and the two time-dependent classes. Colors represent the different genomic locations

based on annotation of the Parus major genome v1.1.
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et al. 2013; Urdinguio et al. 2016). In this study, we found

that 9% of the analyzed CpG sites changed their methylation

patterns over time, with an average individual methylation

change of 2%. For comparison, Martino et al. (2013) reported

that in human twins, methylation pattern between birth and

18 months had a mean methylation change of 3.1%. A re-

cent review on the role of DNA methylation in gene regulation

in clinical context reported that even low methylation changes

at a site in the range of<10% can have a phenotypic effect in

nonmalignant diseases (Leenen et al. 2016).

A substantial challenge is to understand how much DNA

methylation should change in order to have a phenotypic ef-

fect. In our case, we often observe that methylation change

occurs only in specific time points and in a single, or a few,

CpG sites within a gene. Clinical studies on nonmalignant

diseases have implicated that even single sites could be im-

portant for creating a disease phenotype (Leenen et al. 2016).

In an ecological context, effects of changes in methylation at

single CpG site have for example been found for ERa and yolk

testosterone in eastern bluebird (Bentz et al. 2016) and for

SERT and exploration behavior in urban great tits, although in

great tits there was also SNP variation associated with it

(Riyahi et al. 2015). In contrast, in another study on great

tits and exploratory behavior, only variation in DNA methyla-

tion in sites within the TSS of the DRD4 gene was associated

with the phenotype, whereas this was not the case for the

sites sampled in the gene body (Verhulst et al. 2016).

Genome-wide methylation patterns correlated to tran-

scriptome expression from the great tit show that CpG meth-

ylation was negatively correlated with gene expression in

gene bodies and at TSS in brain tissue (Derks et al. 2016;

Laine et al. 2016). When both promoter and gene body

CpG sites were hypomethylated, expression in the brain

was higher (Derks et al. 2016). Furthermore, differential

CpG methylation between brain and whole blood (including

both erythrocytes and leucocytes) in these regions had a func-

tional role which was shown by differential patterns of hypo-

and hyper-methylation between the tissues in regard to ex-

pression patterns in the brain (Derks et al. 2016). However,

although these studies find methylation and expression are

correlated, we do not yet have a good understanding of what

level of change in methylation, or in which CpG’s in a region,

is sufficient to change transcription and thus lead to a phe-

notypic response. Thus, although it is clear that the environ-

ment can leave a mark on an individuals’ DNA methylome

(Bentz et al. 2016; Rubenstein et al. 2016; Weyrich et al.

2016; Gokhman et al. 2017; P�ertille et al. 2017), we need

more studies to establish potential causative effects of such

methylation changes on the phenotype of organisms.

Genomic Locations of Time-Dependent Sites

The majority of time-dependent (with or without treatment)

CpG sites were annotated to introns and exons rather than to

promoter or TSS. Although this result is different to that

reported in other RRBS data sets in nonmodel organisms

(measured at single time point only) (Pegoraro et al. 2016),

this is probably a result of differences in the type of tissue

typically examined in different organisms: whole body versus

red blood cells. DNA methylation data from red blood cells in

chicken also had a pattern similar to this study, that is, with

gene region methylation being more abundant than regula-

tory region methylation although measured only at a single

time point (P�ertille et al. 2017). Although more CpG sites

were annotated to introns than in exons in sites categorized

as time dependent (with or without treatment), the measured

methylation levels in the genomic regions were higher in gene

bodies compared with promoter regions with very low meth-

ylation levels around the TSS, as expected based on previous

great tit methylomes (Derks et al. 2016; Laine et al. 2016).

Although more of the CpG sites that showed time-dependent

patterns were situated within introns compared with exons,

methylation level in introns was moderate compared with

exons. Both of these observations on intronic CpG sites fit

with recent knowledge of intronic CpG sites in regard to reg-

ulating gene expression as part of the promoter (Suzuki and

Bird 2008). As an example of a promoter including also the

first intron, pyrosequencing of the DRD4 gene in great tit

selection lines for exploratory behavior identified most of

the variation in DNA methylation within in the first intron,

whereas methylation level increased toward the 30 end of

the gene (Verhulst et al. 2016).

Given that we are mapping genomic locations of time-

dependent sites, it is likely that they exhibit a pattern that

differs from the usual expectation of identifying differentially

methylated sites in TSS or promoter regions. In an investiga-

tion of human leukocyte CpG methylation patterns between

birth and age at 5, over 6,000 CpG sites were observed

changing (Urdinguio et al. 2016): the sites identified as hypo-

methylated over time were related to immune system func-

tions and were located in introns, whereas hypermethylated

sites were related to development and sequence-specific

binding and were located in exons. The time-dependent

(without or with treatment effect) CpG sites in the red blood

cells in our study were also seen in introns and exons, whereas

we observed less than expected sites in TSS compared with

other genomic regions. Thus, our result are in line with what is

observed in other species where time-dependent changes ac-

cumulate in a different manner in different genomic regions

(Martino et al. 2013; Urdinguio et al. 2016).

Temporal Change in DNA Methylation and Its Potential
Role in Timing of Breeding

Our study shows that there is potential in using reversible

methylation patterns to identify genes responding to environ-

mental cues similar to transcriptomic studies. In particular, we

can compare the genes that displayed temporal changes in
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methylation with those that additionally showed a tempera-

ture effect. For example, although the GO-terms in the time-

dependent class were mostly involved in developmental and

regulatory effects in various tissues, the time-dependent treat-

ment class was involved in chromatin modification, more spe-

cifically H3K4 methylation (GO:0042800 and GO:0048188).

This chromatin mark has previously been associated with tran-

scriptional activation (Muramoto et al. 2010; Liu et al. 2017).

Another group (GO:0001223; transcription coactivator bind-

ing) contained three genes ESR1, POU2F1, and RORA which

provides a potential link between temperature sensing and

reproduction. In ESR1, the estrogen receptor, methylation at

the promoter was recently shown to be a prominent mecha-

nism that mediates maternal environmental effects (Bentz

et al. 2016). RORA is a gene with circadian properties

(Jetten 2009) and POU2F1 is a transcription factor connected

to progesterone and glucocorticoids (Zhao 2013).

We did not see time-dependent methylation changes in

many of the typically investigated candidate genes in relation

to timing of reproduction (e.g., BMAL, CLOCK, PER2/3, and

TSH) in our data set, with the exception of DIO2 (Perfito et al.

2012). There can be several reasons for this, sampling the

wrong tissue (hypothalamus is generally preferable for sea-

sonal timing related genes), missing the correct time points or

not knowing enough of the methylation dynamics across life

time, as discussed below. When looking at DIO2, which

exhibited a vastly different methylation pattern from RORA,

it is possible that we did not sample the right time window for

it, or for many other genes, as it is likely that the genes facil-

itating the photoperiodic response have established their

methylation pattern already prior to our first sampling day

at the end of March (Visser et al. 2010; Stevenson and

Prendergast 2013). It is also plausible that certain genes

have stable methylation patterns throughout a lifetime as a

result of tissue-specific imprinting (Lokk et al. 2014). Two re-

cent studies on birds measured DNA methylation from blood

in single genes twice and found no difference over time in the

methylation levels (Rubenstein et al. 2016; Saino et al. 2017).

In the case of superb starlings (Lamprotornis superbus), glu-

cocorticoid hormone receptor CpG methylation was mea-

sured when the individuals were chicks and later on as

adults to monitor the temporal pattern and with this sampling

scheme they were able to show that early life environmental

conditions (i.e., rainfall) had a sex-specific impact on life-

history traits (Rubenstein et al. 2016). In a study on migration

phenology in barn swallows (Hirundo rustica), individuals

were measured twice as adults in two consecutive years in

the breeding range (i.e., after arrival from wintering grounds).

This raises the question on whether the observation of stable

methylation in CLOCK poly-q (Saino et al. 2017) is due to not

sampling the right time frame or due to the methylation pat-

tern being stable from early life onward. Thus, predictions of

the outcome of methylation change for timing of breeding in

great tits and the underlying gene regulation of these

functional groups is highly tentative until the link between

observed methylation changes and transcriptomic expression

has been tested and confirmed in additional tissues (in

particular the brain).

Limitations and Caveats

As discussed above, we acknowledge that red blood cells are

not the optimal tissue to understand gene regulatory changes

related to decision making and timing of reproduction in the

great tit. However, it is not possible to do repeated measures

in more relevant tissues, that is, in the hypothalamus–pitui-

tary–gonad–liver axis, which are more directly associated with

functions important for timing of reproduction (Visser et al.

2010). Although tissue specific DNA methylation patterns de-

velop early on (Li et al. 1992; Bird 2002), DNA methylation is

also accumulated throughout life at CpG sites (Christensen

et al. 2009; Khor et al. 2016; Metzger and Schulte 2017;

P�ertille et al. 2017) and thus whether environment driven

methylation is tissue specific at first, is not well known.

Moreover, the correlation in DNA methylation patterns

among different tissue can be high (Lokk et al. 2014). Thus,

using a general tissue such as red blood cells can be informa-

tive also of methylation patterns in other tissues.

Although our sampling design covers a large proportion of

the reproductive season it is of course possible that we may

have not chosen the right sampling times to detect changes in

methylation relevant to timing of reproduction. For example,

it may be that the regulatory changes necessary for egg-laying

take place over a longer or shorter timespan relative to laying

of the first egg (Williams 2012) than what we can detect with

our sampling interval. Thus, identifying the reference points

for environmental cues and egg-laying would allow for better

resolution when designing the sampling scheme.

One strength of our design is the use of individuals from

selection lines housed in climate-controlled aviaries. Individual

level variation in DNA methylation patterns is high and thus

limiting environmentally induced variation in DNA methyla-

tion can increase our ability to detect changes relevant to

timing of reproduction as all individuals have experienced sim-

ilar environmental conditions (apart from the treatment effect

of temperature of course). In this study, we only examined

DNA methylation from the early selection line and from a

single generation (F2). Thus, we are not in a position to ad-

dress potential effects of selection on the DNA methylation

patterns between the selection lines or changes across gen-

erations that may have occurred during the selection experi-

ment. Thus, to what extent selection has induced changes in

the methylation landscape compared with the “ancestral”

(wild) great tits is not clear.

Our main focus here was on the temporal stability and

effects of the temperature treatment on DNA methylation

patterns and only indirectly linked to the observed timing of
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reproduction. We are currently working on taking another

analytic approach to more directly identify differently methyl-

ated sites and regions between early and late reproducing

individuals within the temporal sampling design we have.

Thus, the link to timing of breeding for the sites and genes

identified here of course remain tentative.

Lastly, as we only measured DNA methylation in these

samples but not RNA expression we cannot draw firm con-

clusions of the effects of single sites to gene expression.

Although earlier studies have examined how DNA methyla-

tion in different genomic regions affects gene expression in

the great tit (Derks et al. 2016; Laine et al. 2016; Verhulst

et al. 2016), they do not have a temporal expression data set

to compare with temporal methylation. This is the next im-

portant step toward verifying whether the temporal trends in

methylation are functional.

Conclusions

Here, we investigated temporal within-individual changes in

erythrocyte DNA methylation in great tits of genomic selec-

tion line for early timing of breeding which were exposed to

either a warm or cold treatment. We find that many CpG sites

changes methylation levels over the sampling period, but that

the overall change is small. There was also substantial hetero-

geneity across CpG sites within genes in their response to time

or treatment. Thus, our work calls for a greater understanding

of the relationship between changes in methylation and ex-

pression at individual level and across different tissues. Future

studies that examine this relationship across time and on the

same individual would be very valuable.

There is currently great interest in ecological epigenetics and

a number of studies on primarily DNA methylation patterns in

natural populations have been published over the last few

years. However, most studies only sample a single time point

and a few targeted CpG sites. Our results highlight that there is

large between individual variation in DNA methylation and a

strong temporal component to DNA methylation patterns.

This, combined with the heterogeneity observed also within

genes, suggest that great caution is required when interpreting

studies that have sampled few sites at single time points.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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