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Abstract: The quarterly time series of German consumption and income are analyzed with respect 
to seasonality and stochastic trends. It emerges that both variables can be appropriately described 
by a periodically integrated autoregression. An implication is that the stochastic trend and the 
seasonal fluctuations are not independent for each of the univariate series. In order to test for 
cointegration across the two series, we propose several methods which take account of the rela- 
tionship between seasons and trends in the univariate series. Some of these methods boil down to 
extracting the stochastic trend from the univariate series in a first step and to relating these trends 
using cointegration techniques in a second step. Another method is an extension of the Johansen 
cointegration testing approach to periodic vector autoregressions. Monte Carlo simulations are 
used to evaluate the empirical performance of the various methods. The main empirical result is 
that only in the first quarter there seems to be cointegration between German consumption and 
income. 
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1 Introduction and Summary 

In  this paper  we study the seasonal and  stochastic t rend properties of G e r m a n  

consumpt ion  and  income over the period 1960.1-1987.4. This analysis will fo- 

cus on  the univariate  as well as the mult ivar ia te  properties of the two series. 

For  the univar ia te  analysis we use the model  selection strategy proposed and  

evaluated in Franses  and  Paap  (1993). This strategy amoun t s  to est imating 

periodic autoregressive [PAR]  time series models for each of the series, and, in 

case periodicity canno t  be rejected, to testing for the presence of stochastic 

trends within the PAR framework. For  the G e r m a n  data  we find that  a PAR 

model  of order one adequately describes both  series, and  that  each series has 

a stochastic trend. However, we show that  this stochastic t rend cannot  be re- 

moved by taking first order  differences because we find that  G e r m a n  consump-  

t ion and  income are so-called periodically integrated, and  hence that  a sea- 

sonally varying differencing filter is needed. 

A main  feature of periodic integrat ion is that the stochastic trend and  the 

seasonal f luctuations are no t  independent .  Loosely speaking, a change in the 

direction of the stochastic t rend causes a change in the seasonal pattern.  This 

dependency of seasonali ty on the stochastic t rend establishes that  c o m m o n  co- 

in tegra t ion  testing methods,  which are typically applied to nonper iodic  t ime 
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series, may yield incorrect inference with respect to the presence of a cointegra- 

tion relationship between consumption and income. In this paper we therefore 

propose and evaluate several methods to check for cointegration between peri- 

odically integrated time series. Some of these methods consist of two steps. The 

first step amounts to extracting the stochastic trends from each of the univariate 

series using a variety of approaches. In the second step we check for the pres- 

ence of cointegration among these extracted stochastic trend series using well- 

known cointegration testing methods. An alternative method which we pro- 

pose in this paper  is an extension of the Johansen cointegration approach to 

periodic vector autoregressions. Monte Carlo simulations are used to evaluate 

the empirical performance of all methods in small samples. The main empirical 

result we obtain is that there seems to be evidence in favor of cointegration 

between consumption and income in the first quarter only. 

The outline of this paper  is as follows. First, in section 2, we analyse the two 

univariate time series using periodic autoregressive models. In section 3, we 

propose, evaluate and apply several methods to test for cointegration between 

German consumption and income. Some concluding remarks are given in the 

final section. 

2 Univariate Analysis 

The data we analyse in this paper  are given in Liitkepohl (1991, table E.4.), 

where they are used as an illustration to periodic time series models. The 

consumption c~ and Yt series are the logs of the seasonally unadjusted (West-) 

German  Real per Capita Personal Consumption Expenditures and Personal 

Disposable Income, 1960.1-1987.4. Graphs  of the variables are displayed in 

figure 1. 

It can be seen that both series show seasonal fluctuations around a trending 

pattern. It can also be observed that the seasonal patterns do not seem to be 

constant over time, although the changes seem to occur only slowly. 

In the figures 2 and 3, we display the graphs of the first order differenced 

time series A l e  t and d l y  t, where A t is defined by A~z, = (1 -- B~)z,  where B is 

the familiar backward shift operator  defined by B~zz = zt-~. Note that these 

graphs do not connect the quarterly observations, but that they connect the 

data points corresponding to each of the seasons 1, 2, 3 and 4. From figure 2 

one can observe that the mean of the A 1 transformed consumption series is not 

constant. In fact, the mean of A ~ c, in the fourth quarter seems to be lower after 

around 1974, and the mean in the second quarter seems lower after 1980. Hence, 

the changes in the seasonal fluctuations in consumption may coincide with 

two major  business cycle fluctuations, which are likely to be established by the 

two oil shocks. Figure 3 indicates that the A~yt series contains trend-like be- 
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Fig. 1. German consumption and income 
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Fig. 2. First differences of tog consumption 

havior that varies with the seasons. In summary, the visual evidence obtained 

from these figures is that the A 1 filter may not be suitable to remove stochastic 

trend fluctuations from each of the univariate time series. 

To formally investigate the seasonality and stochastic trend properties of the 

two univariate time series, it has appeared useful to consider the class of peri- 

odic autoregressive [PAR] time series models, see Franses and Paap (1993). 

PAR models allow the autoregressive parameters to vary with the season, and 

hence nest nonperiodic AR models. The general PAR(p) model for a quarterly 

observed time series zt, t = 1, . . . ,  n, can be written as 
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F ig .  3. F i r s t  d i f fe rences  o f  l og  i n c o m e  

4 4 4. 

z, = Z #,D, ,  + ~ ~llsDstzt_ 1 + " "  -[- E ~lpsOstzt-p -'[- /3t ' ( 1 )  
s = l  s = l  s = l  

where D~t are the conventional seasonal dummy variables, et is an error term 

usually assumed to be a standard white noise process, and where ~ ,  ~b 1 . . . . . .  

~bp~ are parameters that can take values which differ across the seasons. When 

all ~bj~ equal ~kj, the model (1) reduces to a nonperiodic AR(p) process with 

seasonally varying intercept terms. The model in (1) can be modified by re- 

placing et by ~=, i.e. a seasonal heteroskedastic error process. Note that (1) also 

allows varying autoregressive model orders, as well as varying subset models 

since not all Cj~ have to be unequal to zero. The parameters in (1) can be 

estimated via ordinary least squares. Some early references to periodic AR mod- 

els are Jones and Brelsford (1967), Pagano (1978) and Tiao and Grupe (1980). 

A Model Selection Strategy 

The model selection strategy proposed in Franses and Paap (1993) consists of 

four steps. In the first step the lag order p of a PAR(p) is determined. Note  that 

this p is the maximum value of the possibly varying orders Ps, where ps denotes 

the AR lag order in season s ,s  = 1, 2, 3, 4. In Franses and Paap (1993) it is 

shown through Monte  Carlo simulations that using a sequence of F type tests 

for the significance of the four ~bk~, where k = k* . . . . .  p with p < k* and k* is 

set at some prespecified value like, e.g., 8, yields the most  favourable empirical 

performance. Given the empirical adequacy of a certain PAR(p) process, the 

second step is to test for periodicity in the PAR(p) process, i.e. to test the 
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hypothesis that ~,p~ = @p for all s. In Boswijk and Franses (1994) it is shown 

that the Likelihood Ratio based F test for this hypothesis has an asymptotic F 

distribution under the null hypothesis. In case the null hypothesis cannot be 

rejected, one can proceed with an analysis of the nonperiodic AR(p) model 

using, e.g., the method to test for seasonal unit roots as advocated in Hylleberg 

e t  al. (1990). 

In case the null hypothesis of nonperiodicity in the estimated PAR(p) pro- 

cess can be rejected, the third step is to check for the presence of unit roots. 

For  this purpose it is convenient to rewrite (1) in the so-called vector of quar- 

ters [VQ] representation where we consider the (4 x 1) vector process ZT----- 

(Z1T , Z 2 T  , Z 3 T  , Z 4 T f ,  with Z s r  denoting the observation in season s in year 

T = 1 . . . . .  N ,  N = n /4 ,  i.e. 

A o Z  T = ].t + A 1 Z T _  1 + "'" + A m Z T _  m + I~ T , (2) 

where Aj, j = 0, 1 . . . . .  m are (4 x 4) parameter  matrices and where # a n d e r  are 

(4 x 1) parameter  vectors corresponding t o / ~  and et in (1). For  the value of m 

it applies that m = 1 + [p/4], where [ . ]  means "integer value of". The Aj 

matrices contain the parameters ~bp~ in (1). Note that (2) is a multivariate time 

series model with constant parameters. The presence of unit roots in zt can be 

checked by solving the characteristic equation 

[A o - A l z  . . . . .  Amzm[ = 0 , (3) 

and by investigating whether one or more solutions to (3) are equal to unity. 

The empirical analysis of a large number of macroeconomic time series in 

Franses and Paap  (1993) indicates that in practice the value of p in (1) is typi- 

cally smaller than 4, and hence that m in (2) can be set equal to 1. Further- 

more, it is found that, typically, there seems a t  most  one unit root in PAR 

models like (2). A formal test for the hypothesis of a single unit root versus no 

unit root can be performed using the test statistic 

BF = sign(g(~) - 1)(n'log(RSSo/RSS~)) v2 , (4) 

see Boswijk and Franses (1994). The g(~) is a nonlinear function of the ~kp~ 

parameters evaluated under the alternative hypothesis of no unit root, which 

follows from solving (3). A simple example is given below in (6). The R S S o  and 

R S S 1  are the residual sums of squares under the null and alternative hypothe- 

sis. Given that the single unit root hypothesis involves a nonlinear parameter  

restriction on the ~b~ parameters, the R S S o  is found after applying nonlinear 

least squares. In Boswijk and Franses (1994) it is shown that this BF test in (4) 

follows a standard Dickey-Fuller distribution under the null hypothesis of a 

single unit root. As an example, consider the PAR(l)  process zt --- ~k~z~_l + a,, 

which can be written as A o Z T  = A 1 Z T - x  + er with 
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[ 00 il ~176 Ao = 2 1 0 and A 1 = 0 0 
-r 1 o o " (5)  

0 0 - ~ 4  0 0 

The characteristic equation as in (3) for this PAR(l)  process is 

[Ao -- A~zl = 1 - ~b~,2~3~4z = 0 . (6) 

Thus, zt has a single unit root when g(~k) = ~ 1 1 ~ 2 ~ / 3 ~ / 4  = 1. When Z T is found 

to have a single unit root, the z t process is called periodically integrated of 

order 1 [PI(1)]. In case of a PI(1) time series, the appropriate differencing filter 

to remove the stochastic trend is (1 - ~'sB) instead of (1 - B). Note that under 

the restriction ~'1 ~b2 if3 ~k4 = 1, some ~,~ values can exceed 1. 

The fourth and final step in the model selection strategy proposed in Franses 

and Paap  (1993) is to test the validity of specific parameter  restrictions in the 

PI(1) model, i.e. in the model where the nonlinear restriction which corresponds 

to the unit root is imposed. An interesting restriction in (5) is for example that 

all ~k, are equal to unity. In that case the PAR process is said to have a non- 

seasonal unit root since the appropriate  differencing filter becomes (1 - B).On 

the other hand, when all Cs are equal to - 1 ,  the periodic process has a sea- 

sonal unit root at the bi-annual frequency. I t  is shown in Boswijk and Franses 

(1994) that Likelihood Ratio based F test statistics for such hypotheses have 

an asymptotic F distribution under the null hypothesis. 

Some Empirical Results 

The application of the first step in the above model selection strategy for c~ and 

Yt yields that both univariate series can be described by a PAR(l)  model. To 

save space we do not report on the detailed model selection results, which can 

be obtained from the authors upon request. Neither do we report on the results 

of diagnostic test results for the models in this paper. We only mention that all 

models estimated in this paper  pass LM type diagnostic checks for the absence 

of residual autocorrelation at lags 1 and 1 through 4, of periodic autocorrela- 

tion in the residuals at lag 1, of ARCH effects of order 1 and 1 through 4, and 

for the absence of nonnormali ty in the estimated residuals. Finally, in all mod- 

els we present in this paper  we include a few dummy variables to exclude some 

severely outlying observations. For  consumption these dummy variables con- 

cern 1961.2 and 1979.2 and 1979.3. It  turns out that the latter two dummy 

variables can be combined to a ( . . . .  0, 1, - 1, 0 . . . .  ) dummy variable. For  in- 

come we use a dummy variable for 1966.4. We checked whether the exclusion 

of these dummy variables has any impact on the relevant parameter  esti- 

mates and we found to evidence of such an impact. Hence, the inclusion of the 
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d u m m y  variables should be seen as a way to ensure that  the est imated residuals 

are approx imate ly  white noise. 

Fo r  consumpt ion  we find the following pa rame te r  est imates after ordinary  

least squares, 

c, = / ~  + Lc ,_ l  + g~ , (7) 

with 

/~1 = - 0 . 8 9 9  /~2 = 0.625 /~3 = 0.098 /~4 = 0.435 

(0.070) (0.064) (0.065) (0.066) 

~1 = 1.095 ~2 = 0.928 ~3 -- 0.989 ~4 = 0.958 , 

(0.009) (0.008) (0.008) (0.008) 

where the figures in parentheses are s tandard  errors. A regression of g~ on a 

constant  and three seasonal  dummies  yields a significant F statistic value of 

4.544. Some exper imenta t ion  results in the observat ion that  this high value is 

caused by only a few data  points at the end of the sample. In fact, re-estimating 

(7) for the sample 60.1-85.4 yields an insignificant F statistic. Hence,  we con- 

clude that  we do not  have to be modify  (7) by including e~, instead of e,. 

The  F test statistic for the hypothesis  ffs = ~, for all s, obtains  a value of 

68.675. No te  that  under  the null hypothesis  ffs = ~ it is assumed that  all sea- 

sonality in c~ is deterministic since the model  becomes (1 - B)c, = / ~  + e~. Even 

when we enlarge model  (7) with x2ct_ 2 . . . . .  xact_ a, where the xj pa ramete rs  

are not  t ime-varying,  the F test statistic for the hypothesis  ff~ = 4 obtains  the 

highly significant value of 13.190. Hence, we conjecture that  an empirically 

adequate  model  for consumpt ion  is a PAR(I )  process. The  p roduc t  ~1~2~3~4 

equals 0.962. The value of the BF test statistic in (4) obtains the value of -2 .399 ,  

which is insignificant even at  a 10~o level. These results suggest tha t  consump-  

t ion can be described by a periodically integrated AR(1) process [PIAR(1)] .  

Nonl inear  least squares gives ~1 = 1.106, ~2 = 0.937, q~3 = 0.998 and  ~ = 

1 /~2q~a  = 0.967. 

Periodic Integration 

Before we turn to the analysis of  the income series along similar lines as above,  

we take a closer look at  a p roper ty  of  a PIAR(1)  process. To  keep the no ta t ion  

simple, consider again the PAR( l )  process z, = ~b~zt_l + et, which can be writ- 

ten as A o Z r  = A1ZT-1  + er with the A0 and A1 as in (5). The  mult ivar ia te  
model  can be writ ten as 

Z r  = A o l A x Z r - 1  + Aoler  , (8) 

i.e. as a s tandard  vector  autoregressive process of order  1 [VAR(1)] ,  where 
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i o o ~,1 1 0 0 r162 
A ~  0 0 Ipl$2~, 3 ' (9) 

0 0 1 

given the restriction that $1~b2r162 = 1. Notice that AolA1 is an idempotent 

matrix, i.e. (AolA1) " = AolA1. By recursively substituting lagged Z r  variables 

in (8) until T = 0, one obtains the following expression for Zr: 

T--1  

ZT: = AoXA1Zo + Aoier + AoaA1Ao 1 ~ ei , (10) 
i = 1  

where 

1 Ipl ~p31P4 ~pi~p4 ~k i 

AoaA1A01 = ~b 2 1 ~/1 ~/2 ~/4 r (11) 
~k2$a IP3 1 ~152$3 ' 

~'2~'3r r162 ~'4 1 

and ~ f ~ l  ei is a (4 x 1) vector containing the accumulation of shocks in the 
four seasons, i.e. Ef=] 1 e, = (~T_-] x el,, Er=] 1 e2i, E f ~  1 e3,, ~'r_~x e4,)'. Given that 

the model has periodically varying parameters, i.e. that not all entries of (11) 

are equal to 1, it is clear from (10) with (11) that the impact of the accumula- 

tion of shocks varies with the season. Note that when all ~k s are equal to 1, this 

impact of shocks is the same across all seasons, and then the first order model 

reduces to the familiar expression: zt = Zo + ~ = ~  el. In other words, since the 

impact of the shocks varies with the season, as can be seen from (11), a periodi- 

cally integrated time series model implies that the stochastic trend effects the 

"seasonal" pattern, i.e. the differences between Zsr and Z~-~,r for s = 1, 2, 3, 4 

are not constant over time because of the stochastic trend pattern. Hence, the 

stochastic trend and the seasonal pattern are not independent when a time 

series is periodically integrated. This implication of PI processes may compli- 

cate cointegration analysis, and in the next section we will propose and evalu- 

ate cointegration testing methods that can take account of this relationship 

between seasons and stochastic trend. 

Further Empirical Results 

Before we consider cointegration analysis between consumption and income, 

we report some further empirical results. 
The first results concern the consumption series again. Considering the graphs 

in figure 2, one may also conjecture that the changes in the seasonal pattern 

can be caused by deterministic changes instead of the stochastic trend. In other 
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words, one m a y  hypothesize that  ct is not  generated by a PIAR(1)  model  as we 

have found above,  but  tha t  it is generated by a model  like 

** (12) Axct = 2s + 2*sDUMt>_74.1 + .~s DUMt>.79.1 + zt , 

where DUMt>74.1 and DUMt>_79.1 a r e  (0 , . . . ,  0, 1, 1 . . . . .  1) d u m m y  variables 
with the first value of 1 when t = 74.1 and 79.1, respectively, and where 22 are 

four constant  seasonal  means,  the parameters  of which change f rom 1974.1 

onwards  into 2s + 2* and  f rom 1979.1 onwards  into 2s + 2* + 2**. One  m a y  

now compare  (7) and (12) versus a model  that  nests bo th  models  using F tests. 

This general model  considers a regression of A ~ c t on (~b2 - 1)ct and the 12 dum- 

my  variables in (12) under  the restriction that  ffl~b2~a~4 = 1.The F(3, 94) test 

for the restrictions implied by the model  in (12), i.e. all (~b 2 - 1) --- 0, obtains  a 

value of 10.246, which is significant at the 1~o level. The  F(8, 94) test for the 

restrictions implied by the P I A R  model  in (7) obtains  the insignificant value of 

1.352. Hence, the model  in (12) can be rejected versus the model  in (7), and 

we conclude that  a PIAR(1)  model  gives an adequate  descript ion of the con- 

sumpt ion  variable. 

Finally, a long similar lines as we construct  model  (7), we find that  a PAR( l )  

is also appropr ia te  for the income variable. Ord inary  least squares gives 

Y, = ~ + a2Yt-1 + ft , 

with 

~1 = - 0 . 1 2 0  ~2 = 0.371 ~3 = 0.417 6, = - 0 . 2 5 3  

(0.076) (0.069) (0.072) (0.077) 

~1 = 1.001 6~ 2 = 0.955 ~3 = 0.950 ~4 = 1.047 . 

(0.009) (0.009) (0.009) (0.010) 

(13) 

A regression of ~2 on a constant  and three seasonal  dummies  obtains  an F 

statistic of  1.138, implying that  no seasonal  heteroskedast ic  er ror  process has 

to be included in (13). The  F test for the hypothesis  ~s = �9 obta ins  a value of 

23.738, and this hypothesis is rejected at any reasonable significance level. Even 

if we include (D2Yt_2, . . . ,  Ogsyt_ s in the PAR( l )  model,  where o.22 th rough  ~o s 

are nonper iodic  parameters ,  the F test statistic for the hypothesis  ~2 = ~ has a 

value of 6.653, which is still significant at the 1 ~  level. The  value of the prod-  

uct &x~2a3a4 in (13) is 0.951, and the test for the hypothesis  tha t  this p roduc t  is 

equal  to one yields an insignificant BF test statistic value of -2 .849 .  Again, the 

hypothesis  of  a unit root  cannot  be rejected, implying that  income can also be 

described by a PIAR(1)  process. No te  that  the rejection of the hypothesis  ct 2 = 

in a PAR( l )  process automat ica l ly  implies that,  as is the case for ct, the d l  

filter for Yt is not  appropr ia te .  This could already be seen f rom the graphs  in 

figure 3, where the A 1 t ransformed time series appear  to be trending, suggesting 

that  A 1 is not  the appropr ia te  filter to remove  the stochastic trend. Finally, the 

appl icat ion of nonl inear  least squares gives a l  = 1.014, a2 = 0.966, a3 = 0.963 

and  ~4 = 1 / ~ 1 5 ~ 2 ~ 3  = 1.060. 
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To summarize, the empirical results reported in this section for the univariate 

time series for German consumption and income for the period 1960.1-1987.4 

suggest that both series are periodically inegrated. This means that the sto- 

chastic trend in each of the series has an impact on the seasonal fluctuations, 

and hence that trend and seasons are not independent. An implication of this 

result is that tests for cointegration should take account of this relationship. In 

the next section we propose, evaluate and apply several useful cointegration 

testing methods which satisfy this property. 

3 Bivariate Analysis 

In this section we investigate several methods that can be useful to test for 

cointegration between two periodically integrated univariate time series. First, 

we discuss a simple cointegration method in case two series can be described 

by simple PAR(l)  models. This method is, however, not very useful for higher 

order PAR models, and therefore we propose two alternative methods. The 

first step in these methods involves the extraction of the stochastic trend from 

each of the series, while in the second step the two stochastic trends are com- 

pared using familiar cointegration techniques. Given that we find only a single 

unit root in the univariate series, we do not face any identification problems 

with respect to the extraction of the stochastic trend. The fourth cointegra- 

tion testing method we propose and apply in this section amounts to an exten- 

sion to periodic VAR models of the Johansen maximum likelihood method. 

We choose the notation Cr  and Yr for the (4 x 1) vector series containing the 

annual observations of consumption and income in each of the seasons, i.e. 

C T = (C1T  , C 2 T  , C 3T  , C 4 T  )' and Yr = (Ylr, Y2r, Yar, Y4r)', where C~r and Y~r 
denote the observations on consumption and income in quarter s in year T, 

respectively. 

Stochastic Trends in a P I A R ( 1 )  Process 

For  a periodically integrated AR(1) process, the application of theorem 4.1 in 
Johansen (1991) yields some simple results. Consider again the PAR(I) model 

as in (5) and (6), i.e. zt = d/sz,-1 + er Given (8), one can write 

z l Z r  = (AolA1 -- I 4 ) Z r _  1 + Ao l~r  , (14) 

where A denotes the first order differencing filter for annual time series, and 

where 14 is the 4-dimensional identity matrix. Given (9) it is easy to see that the 
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1 

02 
A~ = 0203 

02030, 

we can write 

matr ix  (AolA1 - 14) can be decomposed  as 7fl', see Johansen  (1991), with 

0 - 1  a n d f l =  0 1 0 (15) 
Y =  0 0 - 0 0 1 ' 

0 0 -01 -0102 -010~03 

such that  y• = (0, 0, 0, 1)'. An applicat ion of theorem 4.1 in Johansen  (1991) 

results in 

ZT = ]~•177 -l?• -1ST + C(B)s , 

where ST = ~jr--1 e; and C(B) is an invertible matr ix  lag polynomial .  Given  the 

presence of a single unit roo t  in the ZT process, the c o m m o n  stochastic trend 

in Z r is now simply equal to y'xAolST . Since 

1 0 

03 1 ' 

030, 0, 

FZl j  - 01Z4 j-11 

T [  Z 2 j _ O 2 Z l  j [ (16) 
~'~AolS~ = (02030., 030., 0., 1) J=lY~ [ Z3j - 03Z2~ [ = Z .~ ,  

k z . ~ -  0 . z .  d 

condi t ional  on suitable start ing values and on the restriction 0 1 0 2 0 3 0 ,  = 1. 

The  result in (16) implies that  each Z~r series can be a c o m m o n  trend. 

As a second step in our  case of  the consumpt ion  and income processes CT 

and Yr, one m a y  compare  the annual  t ime series Csr and Y~r in cointegrat ion 

exercises. We obta in  Dickey-Ful ler  test values (no constant ,  no lags) for the 

residuals of  the regressions of Csr on a constant  and ~ r ,  s = 1, 2, 3, 4, of  

- 3 . 702 ,  -2 .818 ,  - 1.655 and - 1.462, respectively. C o m p a r i n g  these values 

with the fractiles in M a c K i n n o n  (1991), there seems to be cointegrat ion at  a 

5 ~  level in the first quar ter  only. 

Fo r  periodically integrated AR(p)processes, where p exceeds 1, the expres- 

sions similar to (15) and  (16) become much  more  complicated.  Hence,  in case 

of such higher order  processes, one m a y  want  to use simpler methods  to ex- 

tract  the stochastic t rends f rom each of the series. 

Extracting Stochastic Trends Using the Box-Tiao Method 

One simple approach  to extract a stochastic trend from the (4 x 1) vector series 

C r  and  Yr is to use the Box and Tiao  (1977) [BT]  method.  Fo r  a vector  
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process of order 1, as in (8), this method considers the eigenvalue problem 

121 , -1 , , -1 , - ( X r X r )  XrXr_l(Xr_lXr_l)  X r _ l X r [  = 0 (17) 

where X r is Cr or Yr when corrected for their respective means. The eigen- 

vector which corresponds to the largest eigenvalue is the most  nonstationary 

linear combination that can be constructed from the four Xsr series, see Box 

and Tiao (1977) for details. One can consider this linear combination to be the 

stochastic trend in the multivariate system for Xr .  Denoting these stochastic 

trends for Cr  and Yr as CBr r and yfr,  one can compare these annually ob- 

served variables in a second step of cointegration analysis. 

The obvious question is now which critical values to use for the test statis- 

tics in a second cointegration testing step. In tables 1 through 4 we report on 

the empirical fractiles and the empirical size of the Engle-Granger (1987) I-EG] 

and the Johansen-Juselius (1990) [-JJ] cointegration testing methods, after we 

have extracted the stochastic trend using the BT method. The E G  method 

amounts  to calculating the Durbin-Watson statistic [CRDW]  and the (aug- 

mented) Dickey-Fuller test [ C R D F ]  for the cointegrating regression of C~ r on 

a constant and Yfr .The standard critical values are taken from MacKinnon 

(1991) for 25 observations. The JJ method amounts to regressing ACBr r, A yfr, 
B T  B T  Cr-1  and Y~-I on a constant and lagged AC~ r and d y f r  variables, giving the 

(2 x 1) vectors of residuals Rot  and R l r  and the residual product matrices 

N 

Sij = (I/N) ~ R,rRjr, for i,j = 0, 1 . (18) 
T = I  

The next step is to solve the eigenvalue problem 

12Sll - $1oSo~Soll = 0 , (19) 

which gives the eigenvalues '~1 > ~2 and the corresponding eigenvectors t31 and 

~2, in our case of only two variables. The two test statistics to check for the 

presence of cointegration are the maximal eigenvalue test and the trace test, 

see Johansen and Juselius (1990) for details. For  the case of two series of length 

25, we generate the critical values for the case of two independent random 

walks and display the results in table A1 in the appendix. These fractiles will 

be used to evaluate the fractiles of the JJ tests in case the tests are considered 

for estimated stochastic trends from PIAR models. 

The first panel in the tables 1 through 4 displays the empirical size and 

fractiles of the C R D W  and C R D F  as well as of the J J-trace test, to be denoted 

as Tr(r < 1) and Tr(r < 0), where r is the number  of cointegrating relationships 

between C~Y and yfr. The results for the maximal eigenvalue test are very 

similar, and are not reported to save space. The data generating processes 

[ D G P ]  in the tables 1 through 4 consists of two independent PIAR(1) pro- 

cesses. We have selected four sets of D G P s  in order to investigate whether the 

choice for certain parameter  values effects the Monte Carlo outcomes. The 

D G P  in table 4 corresponds to the estimated univariate models for consump- 
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Table 1. Empirical performance of cointegration tests (size) in ease the DGP consists of two inde- 
pendent PIAR(1) processes. DGP is y~ = ffsYt-1 + e~ and x, = cqxt_ 1 + v~, where ez, vt are N(0, 1) 

and ~1 = cq = 1.25, ~2 = ctz = 0.8, if3 = ct3 = 2.0, ~4 = ~t4 = 0.5. Based on 5000 replications of 
effective sample size n = I00 or N = 25 

Method (t) Empirical fractiles Empirical size (2) 
5% 10% 20% 5% 10% 20% 

EG after BT CRDW 1.33 1.15 0.93 6.28 12.26 2t.70 
CRDF -3.74 -3.35 --2.88 5.90 11.92 22.10 

JJ after BT Tr(r < 1) 8.76 6.97 5.19 6.10 11.10 21.88 
Tr(r < 0) 19.46 17.23 14.29 6.20 11.76 21.44 

EG after GG 

JJ after GG 

CRDW 1.12 0.96 0.79 2.28 5.72 12.88 
CRDF --3.27 --2.96 -2.60 2.04 5.50 13.96 
CRDF (3) -3.45 -3.11 --2.72 3.54 7.80 17.60 
Tr(r < 1) 6.89 5.78 4.44 2.20 5.62 15.78 
Tr(r < 0) 16.94 14.79 12.56 2.26 5.44 13.30 
Tr(r <_ 1) TM 8.18 6.65 5.00 4.76 9.76 20.68 
Tr(r < 0) (3) 20.25 17.66 14.93 7.14 13.50 24.56 

Periodic JJ Tr(r < 1) 8.30 6.75 5.03 5.10 10.34 20.64 
Tr(r < 0) 19.06 16.70 14.24 5.28 10.50 21.46 

(1) The methods and abbreviations are given in the text in section 3. Unless otherwise indicated, 
the CRDF statistics are based on an auxiliary regression that contains no constant and no lags, 
and the J J-trace test statistics are calculated for a VAR(1) process. 
(2) In the empirical size columns we report on the rejection frequency when the standard critical 
values for nonperiodic models are used, which are given in MacKinnon (1991) and table A1 in the 
appendix. 
(3) For the CRDF statistic, the auxiliary regression contains no constant and one lag. The trace 
test statistics are calculated for a VAR(2) process of C~. ~ and Yr ~ .  

t i on  a n d  i n c o m e  in the  p r e v i o u s  sect ion.  As can  be  o b s e r v e d  f r o m  the  n u m b e r s  

in the  first pane l  of  all fou r  tables,  i t  seems tha t  e m p i r i c a l  r e j ec t ion  f requenc ies  

are  ve ry  c lose  to  the  n o m i n a l  sizes e v e n  for  a s ample  size o f  100 qua r t e r ly ,  i.e. 

25 annua l ,  obse rva t ions .  Hence ,  we m a y  use the  s t a n d a r d  cr i t ical  va lues  in o u r  

c o i n t e g r a t i o n  analys is  o f  CBr r a n d  Yr ~r. H o w e v e r ,  s ince we h a v e  g e n e r a t e d  the  

cr i t ical  va lues  in case  the  D G P  consis ts  o f  P I A R ( 1 )  m o d e l s  w i th  p a r a m e t e r s  as 

t hose  in the  p r e v i o u s  sect ion,  we will  use the  cr i t ica l  va lues  d i sp l ayed  in the  

first pane l  o f  tab le  4 in the  nex t  e m p i r i c a l  analysis .  

An  app l i ca t ion  o f  the  B o x - T i a o  m e t h o d  in (17) to ex t rac t  the  s tochas t ic  t r end  

f r o m  the  C r  series gives the  fou r  e igenva lues  a re  0.999, 0.303, 0.180 a n d  0.103, 

whi le  for  Yr i n c o m e  they  a re  0.998, 0.216, 0.117 a n d  0.094. I t  is c lear  f r o m  these  

e igenva lues  tha t  the re  seems to  be  on ly  a s ingle un i t  r o o t  in the  pe r iod ic  

mode l s .  Th is  con f i rms  the  resul ts  o f  the  a p p l i c a t i o n  o f  the  B F  test  in (4). T h e  

m o s t  n o n s t a t i o n a r y  l inear  c o m b i n a t i o n s  a re  

C~ T = 1.O00C1T + 0.250C2T + 0.032CAT --  0.112C4T (20) 

a n d  
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Table 2. Empirical performance of cointegration tests (size) in case the DGP consists of two inde- 

pendent PIAR(1) processes. DGP is y~ = ~bsyt_ 1 + e t and x t = ~sxt_ ~ + v, where e~, v t are N(0, 1) 

and ~b 1 = 1.25, ~b 2 = 0.8, ~b 3 = 2.0, ~b 4 = 0.5, ~q = ~2 = eta = ct,, = 1 Based on 5000 replications of 

effective sample size n = 100 or N = 25 

Method ~1) Empirical fractiles Empirical size TM 

5% 10% 20% 5% 10% 20% 

EG after BT CRDW 1.34 1.15 0.93 6.32 12.34 22.04 

CRDF - 3.70 -- 3.33 -- 2.89 5.78 11.70 22.38 

JJ after BT Tr(r < 1) 8.57 6.80 5.04 5.66 10.24 20.84 

Tr(r < 0) 19.04 16.74 14.20 5.24 10.48 21.14 

EG after GG 

JJ a~erGG 

CRDW 1.12 0.96 0.80 2.40 5.90 13.30 

CRDF - 3.31 -- 2.97 - 2.60 2.44 5.90 13.70 

CRDF t3) -3.57 --3.19 --2.76 4.46 9.20 18.68 

Tr(r <_ 1) 6.85 5.65 4.35 1.84 5.50 14.68 

Tr(r < 0) 16.88 14.78 12.50 2.56 5.50 12.78 

Tr(r < 1) (3) 8.29 6.61 5.01 5.02 9.50 20.88 

Tr(r < 0) (a) 19.98 17.78 15.07 7.32 13.90 24.76 

Periodic JJ TE(r < 1) 8.25 6.70 4.98 4.96 10.02 20.48 

Tr(r < 0) 18.35 16.18 13.56 4.22 9.10 18.02 

tl) The methods and abbreviations are given in the text in section 3. Unless otherwise indicated, 

the CRDF statistics are based on an auxiliary regression that contains no constant and no lags, 

and the JJ-trace test statistics are calculated for a VAR(1) process. 

t2) In the empirical size columns we report on the rejection frequency when the standard critical 

values for nonperiodic models are used, which are given in MacKinnon (1991) and table A1 in the 

appendix. 

ta) For the CRDF statistic, the auxiliary regression contains no constant and one lag. The trace 

test statistics are calculated for a VAR(2) process of C~r ~ and Yr ~G. 

Yr n r  = 1 .000Ylr  - 0,147YzT + 0.550Y3T - -  0.350Y4T �9 (21) 

G i v e n  t h a t  t he  m e a s u r e m e n t  un i t s  a re  t he  s a m e  ac ro s s  t h e  Csr  a n d  Y~r series,  

o n e  c a n  c o n c l u d e  f r o m  these  e x p r e s s i o n s  t h a t  the  first  q u a r t e r  c o n t r i b u t e s  t he  

m o s t  to  t he  s t o c h a s t i c  t r e n d  fo r  c o n s u m p t i o n  as well  as fo r  i n c o m e .  G r a p h s  o f  

the  t w o  c o m m o n  t r e n d  ser ies  a r e  g iven  in  f igure  4. 

A n  E n g l e  a n d  G r a n g e r  (1987) t ype  o f  c o i n t e g r a t i n g  r e g r e s s i o n  yie lds  

C~ r = - 0 . 1 7 0  + 1.114Y~ r , (22) 

(0.116) (0.014) 

w i th  C R D W  = 0.955 a n d  C R D F  = - 3 . 4 3 1 .  C o m p a r i n g  t h e s e  va lues  w i th  t he  

f rac t i les  in  t ab l e  4, it  c a n  be  seen  t h a t  t he  C R D W  va lue  o f  0.955 is o n l y  signifi-  

c a n t  a t  a 20% level, whi le  t he  C R D F  va lue  o f  - -3 .431  is s ign i f ican t  a t  a 10% 

level. A n  a p p l i c a t i o n  o f  the  J o h a n s e n - J u s e l i u s  m e t h o d  to  a V A R(1 )  fo r  t he  C~ r 

a n d  y~T series gives the  t race  s ta t is t ic  va lues  Tr(r <_ 1) = 6.388 a n d  Tr(r <_ O) = 

19.584. I t  is c lear  f r o m  the  e m p i r i c a l  f rac t i les  in  t ab l e  4 t h a t  t he  l a t t e r  s ta t i s t i c  

is s ign i f i can t  a t  a 5% level. H e n c e ,  t he  J J  m e t h o d  s e e m s  to  i n d i ca t e  t h a t  t h e r e  is 
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Table 3. Empirical performance of cointegration tests (size) in case the DGP consists of two inde- 
pendent PIAR(1) processes. DGP is Yt = O~Yt-i + et and x t = ctsx~_ 1 + v,  where et, vt are N(0, 1) 

and ~1 = cq = 1.105, if2 = ~2 = 0.937, 03 = % = 0.998, 04 = ct4 = 0.968 Based on 5000 replica- 
tions of effective sample size n = 100 or N = 25 

Method (1~ Empirical fractiles Empirical size (2) 

5~ 10~o 20~ 5~o 10~o 20~o 

EG after BT CRDW 1.31 1.11 0.90 7.72 10.50 20.08 
CRDF -3.64 --3.28 --2.81 5.16 10.54 20.06 

JJ after BT Tr(r < 1) 8.52 6.85 5.09 5.64 10.56 21.50 
Tr(r < 0) 19.28 16.67 14.13 5.66 10.36 20.94 

EG after GG 

JJ after GG 

CRDW 1.14 0.97 0.80 2.74 6.26 13.42 
CRDF -3 .33  -2.99 -2.61 2.34 6.18 14.26 

CRDF ~3) -3.54 -3.19 -2.79 4.42 9.34 19.50 

Tr(r < 1) 6.88 5.68 4.34 2.36 5.64 14.70 
Tr(r < 0) 16.90 14.94 12.48 2.58 5.40 13.26 
Tr(r < 1) (3~ 8.16 6.61 5.00 4.74 9.76 20.72 

Tr(r < O) (s) 20.64 17.93 15.02 8.02 14.36 25.20 

Periodic JJ Tr(r < 1) 8.26 6.66 4.98 5.00 9.84 20.44 
Tr(r < 0) 18.73 16.43 13.86 4.60 9.64 19.44 

~1) The methods and abbreviations are given in the text in section 3. Unless otherwise indicated, 
the CRDF statistics are based on an auxiliary regression that contains no constant and no lags, 

and the J J-trace test statistics are calculated for a VAR(1) process. 

(2) In the empirical size columns we report on the rejection frequency when the standard critical 

values for nonperiodic models are used, which are given in MacKinnon (1991) and table A1 in the 

appendix. 
(3) For the CRDF statistic, the auxiliary regression contains no constant and one lag. The trace 

test statistics are calculated for a VAR(2) process of C~r ~ and Yr ~176 

c o i n t e g r a t i o n  b e t w e e n  t he  s t o c h a s t i c  t r e n d s  e x t r a c t e d  u s i n g  t he  B T  m e t h o d .  

A c c o r d i n g  to  t he  J J  m e t h o d ,  t he  c o i n t e g r a t i n g  v e c t o r  is (1, - 1 . 1 1 4 ) ,  w h i c h  is 

e q u a l  to  t he  E G  o u t c o m e  in  (22). U s i n g  (20) a n d  (21) t he  c o i n t e g r a t i o n  r e l a t i o n  

b e t w e e n  CT a n d  YT is 

CIT  --  1 .11Yl r  + 0 .25C2T + 0.16Y2T + 0 .03C3T -- 0.61 y a r  

--  0 . 1 1 C 4 r  + 0.39YgT 

I t  is c l ea r  t h a t  th i s  r e l a t i o n  is d o m i n a t e d  b y  i ts  C1 r - 1.11 Y1T c o m p o n e n t ,  i.e. 

a l ike ly  c o i n t e g r a t i o n  r e l a t i o n  b e t w e e n  C T a n d  YT in  t he  f i rs t  q u a r t e r .  T h i s  

o u t c o m e  c lose ly  c o r r e s p o n d s  to  t he  f i n d i n g  ea r l i e r  in  t h i s  sec t ion .  

Extract ing Stochastic Trends Using the Gonzalo-Granoer Method  

T h e  G o n z a l o - G r a n g e r  (1994) m e t h o d  t o  e x t r a c t  t he  s t o c h a s t i c  t r e n d  e x p l o i t s  

t h e  d u a l i t y  b e t w e e n  c o i n t e g r a t i o n  a n d  s t o c h a s t i c  t r e n d s .  F o r  o u r  X T  series,  
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T a b l e  4. Empirical performance of cointegration tests (size) in case the D G P  consists of two inde- 

pendent PIAR(1) processes. D G P  is y, = ~b+y~_ 1 + et and xt = ~tsxt_ 1 + vt, where et, vt are N(0, 1) 

and ~b 1 = 1.106, ~b 2 = 0.937, ~b 3 = 0.998, ~b 4 = 0.967, ~1 = 1.014, ct 2 = 0.966, c~ 3 = 0.963, ~4 = 1.060. 

Based on 5000 replications of effective sample size n = 100 or N = 25 

Method <t) Empirical fractiles Empirical size (2) 

5% 10% 20% 5% 10% 20% 

EG after BT CRDW 1.32 1.12 0.92 5.74 11.40 20.98 

CRDF -3.75 --3.32 -2 .87  5.82 11.20 22.88 

JJ after BT Tr(r < 1) 8.64 6.86 5.07 5.68 10.64 21.04 

Tr(r < 0) 19.36 16.85 14.14 5.72 10.74 20.66 

EG after G G  

JJ after GG 

CRDW 1.12 0.98 0.81 2.28 5.66 13.82 

CRDF --3.29 --2.96 -2 .62 2.10 5.54 13.88 

CRDF <3) --3.54 --3.20 --2.78 4.16 9.24 19.26 

Tr(r < 1) 6.71 5.58 4.32 1.86 5.04 14.44 

Tr(r < O) 1%09 15.02 12.53 2.86 5.96 13.14 

Tr(r <_ 1) <3) 7.99 6.51 4.91 4.26 9.20 19.82 

Tr(r < 0) <a) 20.74 18.01 15.22 8.08 14.69 25.70 

Periodic JJ Tr(r <_ 1) 8.17 6.43 4.81 4.84 8.98 19.06 

Tr(r < 0) 19.12 16.56 13.73 5.34 9.98 18.64 

<1) The methods and abbreviations are given in the text in section 3. Unless otherwise indicated, 

the CRDF statistics are based on an auxiliary regression that contains no constant and no lags, 

and the JJ-trace test statistics are calculated for a VAR(1) process. 

<2) In the empirical size columns we report on the rejection frequency when the standard critical 

values for nonperiodic models are used, which are given in MacKinnon (1991) and table A1 in the 

appendix. 

<3) For the CRDF statistic, the auxiliary regression contains no constant and one lag. The trace 

test statistics are calculated for a VAR(2) process of C~ ~ and Yr ~ .  
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F ig .  4. Stochastic trends using Box-Tiao method 
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where X T is either C T o r  YT, the procedure is as follows. First one regresses 

A X  r and Xr -1  on a constant and lagged A X  r variables. This gives the (4 • 1) 

residual vectors Rot  and R l r  and the (4 x 4) residual product matrices S,j, i, 

j = 0, 1, calculated in the same way as (18). The next step is to solve the eigen- 

value problem 12S00 - SolS~Slo[ = 0, which gives the eigenvalues ~1 > "'" > 

24 and eigenvectors ml . . . . .  m 4. Given that we know that there are three co- 

integrating relations between the elements of X r  for both consumption and 

income, the stochastic trends here are found to be equal to m'4X r. We denote 

these trends extracted using this G G  method as C~r ~ and Yr ~ .  

Again there is the question whether one can use the standard critical values 

when testing for cointegration between Crr G and Yr ~ .  In the second panel of 

tables 1 through 4, we report on the empirical fractiles and sizes in case the 

D G P  consists of two independent PIAR(1) processes. In contrast to the out- 

comes for the BT method, it seems that the empirical rejection frequency is 

below the nominal size for the C R D W  statistic and for the C R D F  test in case 

no lagged variables are included in the auxiliary Dickey-Fuller regression, as 

well as for the JJ-trace tests in case a VAR(t) for C~ G and Yr ~G is assumed to 

be adequate. However, when we include an additional lag for the C R D F  test 

a n d  consider a VAR(2) instead of a VAR(1) for C~ ~ and Yr ~ ,  the empirical 

size gets closer to the nominal size. We also perform a similar exercise in case 

we have 400 quarterly, i.e. 100 annual, observations. The results of these simu- 

lations are reported in table 5. It  can be observed from the results in this table 

that the empirical size gets closer to the nominal size in larger samples. 

For  the empirical analysis below, as well as for the Monte Carlo investiga- 

tion into the power properties of the various cointegration testing methods 

proposed in this section, we therefore use the critical values given in MacKinnon 

(1991), while we add one lag to the Dickey-Fuller regression. Further, we use 

Table 5. Empirical performance of cointegration tests (size) in case the DGP consists of two inde- 

pendent PIAR(1) processes. DGP is Y, = ~sYt-1 + at and xt = cqx,-i + vt, where at, v, are N(0, 1) 

and ~1 = 1.106, ~z = 0.937, ffs = 0.998, ~4 = 0.967, cq = 1.014, ct 2 = 0.966, ct 3 = 0.963, ct 4 = 1.060. 

Based on 5000 replications of effective sample size n = 400 or N = 100 

Method (a) Empirical fractiles Empirical size (2) 

5~ 10~o 20~ 5~  10~ 20% 

EG after GG CRDW 0.36 0.30 0.24 3.38 7.62 18.82 

CRDF --3.30 --3.00 -2.68 4.00 9.16 18.68 

JJ after GG Tr(r < 1) 7.79 6.34 4.79 4.22 8.74 19.22 

Tr(r < 0) 17.91 15.76 13.32 4.54 7.12 18.96 

tx~ The methods and abbreviations are given in the text in section 3. Unless otherwise indicated, 

the CRDF statistics are based on an auxiliary regression that contains no constant and no lags, 

and the JJ-trace test statistics are calculated for a VAR(1) process. 

(2) In the empirical size columns we report on the rejection frequency when the standard critical 

values for nonperiodic models are used, which are given in MacKinnon (1991) and table A1 in the 

appendix. 
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Table 6. Empirical performance of cointegration tests (power) in case the bivariate process in (27) 
and (28) is the DGP Based on 5000 replications of effective sample size n = 100 or N = 25 

Method ~x~ Rejection frequency at nominal size 
5~ 10% 20% 

EG after BT CRDW 11.26 21.54 68.68 
CRDF 7.24 14.14 27.26 

49.72 57.76 60.34 
CRDF 9.98 19.04 34.28 

27.82 38.46 46.02 
Q1 49.62 57.02 58.52 
Q2 46.44 54.34 56.88 
Q3 47.40 54.84 57.08 
Q4 49.25 56.48 57.12 
all Q 26.38 32.58 35.76 

JJ after BT ~3) 
EG after GG ~2~ 

JJ after GG ~3~) 
Periodic JJ~) 

ca) The methods and abbreviations are given in the text in section 3. Unless otherwise indicated, 
the CRDF statistics are based on an auxiliary regression that contains no constant and no lags, 
and the J J-trace test statistics are calculated for a VAR(1) process. 
~2) The CRDW does not have the correct size, and is therefore not used here. The results for the 
CRDF are based on a Dickey-Fuller regression with one lag. 
ca) Reject Tr(r < 0) and do not reject TR(r < 1). 
t4) Reject Tr(r < 0) and do not reject TR(r < 1) per quarter Q~ and over all the four quarters at the 
same time. 
~5) Results based on a VAR(2). 

the  cr i t ica l  va lues  in t ab le  A1 in the  a p p e n d i x  for  the  J J - t r a c e  test  s tat ist ics,  

whe re  we c o n s i d e r  a VAR(2)  m o d e l  for  COT ~ a n d  YT ~~  var iab les .  

T h e  a p p l i c a t i o n  o f  t he  G G  m e t h o d  to  ex t r ac t  the  s tochas t i c  t r e n d  f r o m  the  

(4 • 1) v e c t o r  series C r  a n d  Yr resul ts  in 

C~ ~ = - -0 .493C1T --  0 . 381C2r  + 0.551C3T + 1.O00CgT 

a n d  

YT ~  = --0.240Y1T --  0.297Y2r + 0.038Y3r + 1.000Y~r , 

G r a p h s  o f  these  t w o  series a p p e a r  in f igure  5. 

T h e  E n g l e - G r a n g e r  c o i n t e g r a t i n g  r eg re s s ion  l o o k s  l ike 

C~ ~ = 0.741 + 1.144YT ~  , (23) 

(0.096) (0.023) 

whe re  C R D W  takes  a va lue  o f  0.962, a n d  the  C R D F  wi th  0 a n d  1 a d d i t i o n a l  

lags has  the  va lues  - 2 . 6 9 0  a n d  - 1 . 5 8 5 ,  respect ive ly .  C o m p a r i n g  these  va lues  

wi th  t he  s t a n d a r d  cr i t ica l  values ,  we c a n n o t  re ject  the  nul l  h y p o t h e s i s  o f  n o  

c o i n t e g r a t i o n .  A n  a p p l i c a t i o n  o f  the  J J  m e t h o d  to  a VAR(1)  a n d  VAR(2)  for  

C~ ~ a n d  Y ~  resul ts  in the  t r ace  test  s ta t is t ics  Tr(r < 1) = 1.192, Tr(r < O) = 

8.705, a n d  Tr(r < 1) = 0.206, Tr(r < 0) = 4.222, respect ive ly .  Hence ,  the  J J  

m e t h o d  does  n o t  y ie ld  e v i d e n c e  in f a v o u r  o f  c o i n t e g r a t i o n  ei ther .  I n  sum,  it  

seems t h a t  the  a p p l i c a t i o n  o f  the  G G  m e t h o d  to  ex t r ac t  the  s tochas t i c  t r e n d  
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Fig. 5. Stochastic trends using Gonzalo-Granger method 

does not yield any evidence for cointegration between consumption and 

income. 

The Johansen Method for Periodic Vector Autoregressions 

The final method we propose in this paper which can be useful to test for the 

presence of cointegration between periodically integrated time series amounts 

to an extension of the Johansen-Juselius method to periodic VAR models 

[PVAR]. Given that the differencing filters are (1 -- ~sB) and (1 -- ~sB) for con- 

sumption and income, respectively, one may want to specify for example a 

PVAR(1) process 

(1 ~sB)ytj = H, + (24) 
LYt-l] ut 

which gives four (2 x 2) Hs matrices, for each of the seasons. The next step may 

then he to check the rank of each of these matrices, and to investigate whether 

the H~ can be decomposed into 7~fl'. A drawback of this method, however, is 

that the distribution of the J J-type test statistics will not be a standard distri- 

bution like that in table A1 in the appendix. The intuition behind this conjec- 

ture can be observed from considering a rewritten version of the univariate 

PAR(l) model, i.e. 

Alz,  = (~bs - 1)zt-1 + ~, 

and assuming that one wants to test the hypothesis ~b~ - 1 = 0 for all s. One 

may consider testing this hypothesis if one wants to check whether A 1 is the 

appropriate differencing filter for a periodic time series. The distribution of a 
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Wald test statistic for the hypothesis ~k s = 1 for all s can be shown to be the 

sum of a Dickey-Fuller type distribution and a Z2(3) distribution, see Boswijk 

and Franses (1994). Hence, this test requires new tables with critical values. 

Hence, the application of the JJ tests to (24) would also amount  to new 

asymptotic distributions. Using (unreported) simulations we generate critical 

values for these tests for the case at hand. An application of the JJ tests results 

in a similar empirical finding as to be reported below. Furthermore,  we also 

perform a power study (similar as to be reported in Table 6) and do not find 

that this method outperforms other methods. To summarize, we consider the 

extension and detailed evaluation of JJ tests useful, although we postpone this 

analysis for further research. 

Alternatively, we propose to apply the Johansen-Juselius cointegration testing 

approach not to a model like (24), but to each of the seasons separately. The 

procedure is as follows. One regresses (ACsT , AYsT ) and (Cs, r_l ,  Y~,r-1) on a 

constant and lagged AC~T and A Y~r variables for each of the seasons s = 1, 2, 

3, 4. This gives the (2 x 1) residual vectors Ror,s and R~T,~ for each season s 

and the (2 x 2) residual product matrices Sij,, constructed as 

N 

S~s,~ = (l /N) ~ R,T,~Rjr,s, for i , j  = 0, 1 . (25) 
T=I 

The next step is to solve the eigenvalue problem 

IAS11.~ -- Sxo,~So~,~Sol,~I = 0 , (26) 

for each season s, which gives the eigenvalues )~s > ,~z~ and the corresponding 

eigenvectors 0~ and ~32~, in our case of only two variables. One can now apply 

the trace test statistics Tr~(r < 1) and Tr~(r < 0) to check for the presence of 

cointegration between Csr and Y~r for each s. 

Again we check the validity of the critical values in table A1 in the appendix 

via Monte  Carlo simulations. In the third panel of tables 1 through 4, we 

report  on the empirical rejection frequencies and size of this periodic JJ test 

method. From the results in these tables it is clear that the empirical size is 

very close to the nominal size, and hence we will use the fractiles in the appen- 

dix for the next empirical analysis. 

The application of this periodic JJ procedure to the German consumption 

and income data, where we do not include additional lags in the first computa-  

tion step, yields the following results: 

21a --- 0.423 ~-21 = 0.224 Trl(r < 1) = 6.861 Tr~(r < 0) = 21.709"* 

212 ----- 0.270 222 = 0.145 Tr2(r < 1) = 4.217 Tr2(r _ 0) = 12.703 

~xa = 0.166 ~2a = 0.104 Tr3(r < 1) = 2.956 Tra(r < 0) = 7.851 

)~1,~ = 0.199 ~24 = 0.053 Tr,~(r < 1) = 1.462 Tr4(r < 0) = 7.453 

where ** indicates significant at a 5% level. These outcomes suggest that there 

seems to be cointegration between c t and Yt in the first quarter only. This co- 
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integration relation is estimated to be C1T -- 0.978Y1T. A test for the hypothe- 

sis that this relaton equals Ca r - Y1 r yields a value of 0.965, which is insignifi- 

cant when compared to the fractiles of the ~2(1) distribution. See Johansen and 

Juselius (1990) for details of this test on restrictions on cointegration vectors. 

The estimation of periodic VAR models of various orders and the applica- 

tion of several model selection criteria yields that a PVAR(1) is an empirically 

adequate  model for (ct, y,). This implies that the presence of a cointegration 

relationship in the first quarter means error correction in the second quarter, 

i.e. the model for the bivariate process (c, y,) is 

(1 -- (~sB)c, = #s + rqD2,(c,-~ -- Y,-~) + e, (27) 

(1 -- cqB)y, = 6 S + I r 2 D 2 t ( c t _  1 - -  Yt-1) + v, (28) 

The parameters in this system can be estimated using nonlinear least squares 

since we impose the restrictions ~ 1 ~ 2 ~ 3 ~ 4  = 1 and OCl(X2t~30~ 4 = 1. The estimates 

for these ~s and cq are very much similar to those reported in section 2. More 

interesting are the results for the error correction parameters z~ = -0 .373 with 

a t ratio of -3 .148,  and ~2 = -0 .189  with a t ratio of -1.321.  Hence, there is 

only significant error correction in the model for consumption. 

To summarize, we find empirical evidence of cointegration between German 

consumption and income in the first quarter only. This evidence is obtained 

using a two-step method which considers the stochastic trends constructed 

via the Box-Tiao method andusing the Johansen method when applied to a 

periodic VAR process. 

Power  o f  the Various Cointegrat ion Me thods  

A final investigation we carry out in this paper concerns the power of the vari- 

ous cointegration testing methods proposed in this section. Of  course, we can 

generate a variety of D G P s  in order to check this power. However, given the 

empirical application considered in this paper, we limit ourselves to a D G P  as 

(27) and (28), i.e. a PVAR(1) process with cointegration in the first quarter. 

Note that, given two PIAR(t)  processes, cointegration in one quarter automat-  

ically implies cointegration in the other quarters. In practice, however, it may 

depend on the power of the test procedure whether one finds more than one 

cointegration relationship. 

In table 6 we report on the empirical power of the various cointegration 

testing methods. Note  that "power" here refers to the finding of a single co- 

integration relationship, i.e. for the JJ method we also exclude the occasions 

where more than one cointegration relationship is found. The results in table 6 

clearly indicate that for this particular D G P  the power of the "JJ after BT" 

method and the periodic JJ approach is highest, while that of the EG methods 
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is typically smallest. A thourough comparison of the various methods using a 

wide range of DGPs  will indicate whether the results in table 6 reflect a more 

general result. However, we consider such an extensive investigation to be 

outside the scope of the present paper. 

4 Concluding Remarks 

This paper deals with two empirical issues concerning econometric models for 

German consumption and income in the period 1960.1-1987.4. The first is an 

investigation into the seasonality and stochastic trend properties of the uni- 

variate series. The second is the proposal of methods to test cointegration 

between consumption and income, given that we find that both series can 

be described using first order periodic autoregressions with a single unit root. 

Given that such models allow a dependence of the seasonal pattern on the sto- 

chastic trend, we have to take account of this aspect when considering the 

series in a cointegration analysis. We propose several cointegration testing 

approaches and evaluate their empirical performance in Monte Carlo simula- 

tions. One of the approaches is an extension of the Johansen method to peri- 

odic VAR models. In this paper we analyse the application of the various meth- 

ods to bivariate time series only. In principle, it seems that extensions to higher 

dimensional time series are straightforward. Finally, the empirical evidence ob- 

tained for the German time series suggests that there is cointegration between 

consumption and income in the first quarter only. Possible causes for this em- 

pirical result are that wage contracts in Germany negotiated for one year take 

effect at the beginning of each year. Furthermore, prices also typically change 

at the beginning of the year. This may establish error correction behavior of 

economic agents. However, further research into the origin of this specific peri- 

odic behavior seems needed. 
Although this paper focuses on an empirical analysis of economic time series 

using several econometric techniques, there may also be implications for eco- 

nomic theory in case one finds periodic VAR models with periodically varying 

error correction mechanisms to be adequate data descriptions. For  example, 

one may wish to extend economic theories to allow for periodically varying 

structures. An important study in this context is Osborn (1988), where parame- 

ters in a utility function for consumption can take time-varying values. More 
general, one may take into account that economic agents may incorporate 

changing seasonal patterns into their plans and expectations. If so, such be- 
haviour implies that it may be more appropriate not to remove seasonal pat- 

terns via certain seasonal adjustment methods, but to model seasonality ex- 

plicitly. The econometric methods analysed in the present paper may then be 

useful tools. 
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T h i s  a p p e n d i x  c o n t a i n s  t he  c r i t i ca l  v a l u e s  of  t h e  J o h a n s e n  c o i n t e g r a t i o n  tes t s  

for  a s a m p l e  size o f  25 o b s e r v a t i o n s .  T h e  q u a n t i l e s  a r e  b a s e d  o n  10000 r ep l i ca -  

t ions .  T h e  t e s t  s t a t i s t i c s  a r e  c o m p u t e d  f r o m  t he  o r i g i n a l  f o r m u l a s  in  J o h a n s e n  

a n d  Juse l ius  (1990). T h e  t a b l e  c o r r e s p o n d s  to  t a b l e  A.2 in  J o h a n s e n  a n d  Juse l ius  

(1990). T h e  r e a d e r  is r e f e r r ed  to  t h a t  p a p e r  for  m o r e  de ta i l s .  

Table A1. Quantiles of the Johansen cointegration test statistics Sample size is 25. The data gener- 
ating process contains no trend, and the constant term tt is unrestricted 

dim 50~ 80% 90% 95% 97.5% 99~ mean var 

Maximal eigenvalue 
1 2.43 4.93 6.70 8.29 9.91 12.09 3.06 7.36 
2 7.86 11.38 13.70 15.75 17.88 20.51 8.54 14.76 

Trace 
1 2.43 4.93 6.70 8.29 9.91 12.09 3.06 7.36 
2 9.78 13.99 16.56 18.90 21.26 23.70 10.45 20.64 
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