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Abstract 
Understanding the seasonality of the transpiration fraction (T/ET) of total terrestrial 

evapotranspiration (ET) is vital for coupling ecological and hydrological systems and 

quantifying the heterogeneity among various ecosystems. In this study, a two-source model 

was used to estimate T/ET in five ecosystems over the Heihe River Basin (HRB). In-situ 

measurements of daily energy flux, sap flow, and surface soil temperature were compared 

with model outputs for 2014 and 2015. Agreement between model predictions and 

observations demonstrates good performance in capturing the ecosystem seasonality of T/ET. 

In addition, sensitivity analysis indicated that the model is insensitive to errors in measured 

input variables and parameters. T/ET among the five sites showed only slight inter-annual 

fluctuations while exhibited significant seasonality. All the ecosystems presented a single-

peak trend, reaching the maximum value in July and fluctuating day to day. During the 

growing season, average T/ET was the highest for the cropland ecosystem (0.80 ± 0.13), 

followed by the alpine meadow ecosystem (0.79 ± 0.12), the desert riparian forest Populus 

euphratica (0.67 ± 0.07), the Tamarix ramosissima Ledeb desert riparian shrub ecosystem 

(0.67 ± 0.06), and the alpine swamp meadow (0.55 ± 0.23). Leaf area index exerted a first-

order control on T/ET and showed divergence among the five ecosystems because of 

different vegetation dynamics and environmental conditions (e.g., water availability or vapor 

pressure deficits). This study quantified transpiration fraction across diverse ecosystems 

within the same water basin and emphasized the biotic controls on the seasonality of the 

transpiration fraction.          

Keywords: Transpiration fraction, Two source model, Arid Inland Heihe River Basin, 

Seasonality, Sensitivity analysis, Typical ecosystems 

Plain Language Summary 

The management of water resources in Heihe River Basin (HRB) requires accurate 

predictions of water yield. At present, the response of the ecosystem of this river basin to 

regional climate change is faced with many uncertainties. Transpiration fraction (T/ET), is 

an important index to measure different vegetation feedback on climate change. Quantify 

T/ET and analysis the differences across typical ecosystems within HRB is of great scientific 

and practical significance for the sustainability development in the future. 
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1 Introduction 

Evapotranspiration (ET), including soil/canopy evaporation (E) and plant transpiration 

(T), is the main component of terrestrial ecosystem energy and water balance (Aouissi et al., 

2016; Good et al., 2015; Zhou et al., 2016a; Sulman et al., 2016). The transpiration fraction 

(T/ET), as an indicator of evapotranspiration partition, plays an important role in qualifying 

vegetation-climate feedbacks and improving future hydrological prediction (Jasechko et al., 

2013; Maxwell and Condon, 2016; Wang et al., 2014; Zhu et al., 2016). Globally, 

transpiration accounts for 64 ± 13% of evapotranspiration by global isotope-budget (Good et 

al., 2015), and 62 ± 6% of evapotranspiration by CMIP5 (Lian et al., 2018). Transpiration 

represents the largest loss of water from ecosystems (Berkelhammer et al., 2016; Sun et al., 

2014a) and the quantification of T/ET still faces many uncertainties. Understanding the 

seasonality of T/ET can reveals details of the processes that underlie ecosystem hydrological 

budgets and their feedback to the water cycle (Li et al., 2013a; Kool et al., 2014b; Velpuri & 

Senay, 2017; Wen et al., 2016a; Zhao et al., 2016a ). The T/ET can vary between 20% and 

95% across ecosystems (Berkelhammer et al., 2016). T/ET studies across a wide spectrum of 

scales and ecosystems have become a hotspot in ecohydrology and related disciplines (Hu et 

al., 2017; Velpuri & Senay, 2017; Zhou et al., 2016a) to improve the prediction of ecosystem 

responses to climate change.  

Many methods can be used to estimate T/ET, including measuring devices such as 

lysimeters, sap flow sensors (Davis et al., 2012; Uddin et al., 2011; Bai et al., 2017), isotopic 

approaches (Sun et al., 2014b; Wen et al., 2016a; Wang et al., 2010; Zhang et al., 2010), and 

models (Abera et al., 2017; Diarra et al., 2017; Singh et al., 2017; Zhou et al., 2016b). Among 

many methods, the modeling approach has the advantage of applying over a wide range of 

temporal and spatial scales (Shuttleworth et al., 2000). There were many models with 

different complexity can be used for modeling evapotranspiration and its components. The 

one source models (e.g., Penman and Penman-Monteith resistance models) are the simplest 

one but only estimate total ET flux. The multi-source models account for the vertical 

heterogeneity of surface conditions and/or spatial heterogeneity by dividing the surface into 

multiple patches (Zhang et al., 2016, Wang et al., 2018). However, they suffer from larger 

uncertainties because they need extensive variable/parameter inputs (Were et al., 2008). A 

two-source model is a useful tool to estimate ET and its components (Shuttleworth & 

Wallace, 2010; Norman & Becker, 1995; Wang & Yamanaka, 2014). Although a two-source 

model does not consider the interception loss term, it still provides reasonable estimates of 
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T/ET across various ecosystems (Norman et al., 2003; Anderson et al., 2004; Li et al., 2008; 

Song et al., 2016a). As reviewed by Kool et al., (2014), despite measurement variability of ∼30%, the past studies showed over 90% agreement for ET = E + T without considering 

other possible sources (e.g., interception). Previous investigations indicated that forest 

ecosystems have larger interception ratio, but for grassland ecosystems the contribution of 

interception loss to total ET is much smaller (Cui et al., 2017). In arid areas, where 

precipitation is rare, canopy-intercepted precipitation contribution to total ET is small and can 

be negligible (Wang et al., 2018).  

The Heihe River is the second largest inland river in China and is located in the arid 

and semiarid area of northwestern China. It is characterized by a complex geographical 

environment, a unique water resource system, and a coexistence of frozen circles and arid 

areas that is not available in other arid regions of the world (Zhao & Cheng, 2008). 

Quantifying vegetation feedbacks are important in regional climate models to investigate the 

basin-scale water recycling and improve integrated water resource management. So far, 

vegetation feedback is largely uncertain in climate models in terms of future predictions 

(Wang et al., 2018). Evapotranspiration represents the greatest loss of water balance in this 

area, and transpiration is the main component of terrestrial water flux, which is sensitive to 

changes in vegetation types and dynamics (Berkelhammer et al., 2016; Zhou et al., 2016a). 

Moreover, improving irrigation efficiency may require partitioning ET to improve irrigation 

water management. Several previous studies have been conducted in this area to estimate 

T/ET. Zhao et al. (2016) used an in-situ observation method to estimate that transpiration 

accounts for about 64% of water loss in the Heihe River Basin (HRB) desert shrub 

ecosystem. Wen et al. (2016) used the isotopic technique combined with the eddy covariance 

(EC) technique to partition ET in a maize ecosystem. However, previous studies have been 

conducted at different time scales and/or locations with different approaches, and no 

comprehensive comparison and assessment among various ecosystems have been performed. 

So far, few studies have addressed the partitioning of ET along environment gradients 

(altitude, precipitation and temperature) in the HRB across typical ecosystems from upper, 

middle, and downstream reaches and accessed the controls of water flux using the same 

protocol. Zhou et al. (2018) used uWUE method, both determined from eddy covariance ET 

and GEP to partition ET in three typical ecosystems from upper to lower reaches within the 

HRB, this method requires periods when T/ET=1 and such requirement is rarely met in 

water-limited ecosystems.  The present study used ET measured by the EC system and 
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transpiration measured with TDP (thermal dissipation probes) combined with a two-source 

model to estimate ET and T/ET. The objectives were: (1) to estimate the seasonality of T/ET 

across typical ecosystems in the HRB over a two-year period; (2) to explain the convergence 

and divergence of T/ET across different ecosystems in the HRB; and (3) to clarify the 

controls for seasonal variations of T/ET and to establish a quantitative relationship between 

T/ET and vegetation cover indices (e.g., leaf area index, (LAI) across different ecosystems.   

2 Materials and Methods 

2.1 Study sites 

The HRB, located between 97.1° and 102.0°E and between 37.7° and 42.7°N, contains 

the second largest inland river in China, originating from the Qilian Mountains glacier snow 

belt (Figure 1). The total area of HRB is 14.3 million km
2
 which integrates alpine glaciers, 

grassland, plain oases, and the Gobi desert from upper to lower reaches(Cheng et al., 2014a; 

Zhao et al., 2014). In the upper reaches in the Qilian Mountains, at an altitude between 1674 

and 5564 m, the climate is cold and arid. With characteristics of wet and cold (average annual 

temperature of 0.54°C) and an average annual precipitation of 300–600 mm, the vegetation 

spatial distribution is more obvious in the vertical zone, which is the runoff-generated area in 

the basin. The main runoff area is located at an altitude above 3600 m and consists of 

glaciers, sparse alpine vegetation, and alpine meadows. The middle reaches, at an altitude 

between 1352 and 1700 m, have a temperate continental arid climate with an annual average 

precipitation of 90–160 mm and an annual evaporation of 2000–2500 mm. The vegetation 

type is natural and artificial oases, which are the areas with the greatest intensity of human 

activity. The lower reaches have an altitude less than 1352 m and are more arid, with rare 

precipitation and strong evapotranspiration. The average annual temperature is 8.7°C, the 

average annual rainfall is 36.6 mm, and the vegetation is mainly desert and riparian forest (Si 

et al., 2013). There are series of hydrometeorological observatory in the upstream, midstream 

and downstream of the HRB (Li et al., 2013b; Liu et al., 2011), covering the main vegetation 

types of the HRB. In the present study, the alpine meadow and alpine swamp meadow 

ecosystems in the upper reaches, the cropland ecosystem in the middle reaches, and the 

Tamarix ramosissima Ledeb and Populus euphratica ecosystems in the lower reaches were 

selected for investigation. All sites have continuous observation data from EC systems and 

automatic weather stations (AWS) from January 2014 to December 2015. Table 1 lists 

detailed descriptions of each ecosystem, and Figure 2 shows the meteorological conditions of 

each ecosystem in 2014 and 2015.  



 

 

 

© 2019 American Geophysical Union. All rights reserved. 

2.2 Data 

The observation data were obtained from a hydrometeorological observation network 

dataset provided by Heihe Watershed Allied Telemetry Experimental Research (HiWATER) 

(http://hiwater.westgis.ac.cn/), which includes EC systems and AWS. The data collection has 

been described in details in earlier studies (Liu et al., 2011; Xu et al., 2013). The EC systems 

were mounted on towers ranging from 3.5 to 22 m above the various canopy heights (Table 

1). Post-processing calculations were performed using EdiRe (Li et al., 2013b; Liu et al., 

2011), and the results were gap-filled using a set of general algorithms (Reichstein et al., 

2005). After gap-filling, daily energy budget closure was used to evaluate the EC data, which 

was determined by the linear regression statistics between (LE+H) and (Rn-G) (Liu et al., 

2011b).The energy balance closure for the daily-mean datasets ranged from 74% to 96% 

(Figure 3), which indicated that energy balance closure issue in our sites was not big. 

Meteorological data including air temperature (Ta, °C), humidity (RH, %), wind speed (u, m 

s
-1

), air pressure (P, Pa), surface soil temperature at a depth Zsoil (Ts,°C), volumetric soil water 

content (, m
3
 m

-3
), downward solar radiation (Sd, W m

-2
)，were used for model input. All 

the energy fluxes including net radiation (Rn, W m
-2

), sensible and latent heat flux (H and LE, 

W m
-2

) and soil heat flux (G, W m
-2

), as well as transpiration data for P. euphratica measured 

with sap flow (Li et al., 2017; Qiao et al., 2015) at the Hunhelin site (obtained from 

http://www.heihedata.org/) were used to test model performance. The GLASS leaf area index 

(LAI) products (http://glassproduct.bnu.edu.cn/) from Beijing Normal University (Xiao et al., 

2016), available every 8 days and interpolated into a daily time interval, were used to 

represent vegetation dynamics in this study. Vegetation heights of riparian forest in the lower 

reaches were acquired by a field quadrat survey, and vegetation heights of alpine meadow in 

the upper reaches were obtained by reference to a research dataset of ecohydrology transects 

in the HRB in 2013 (Feng et al., 2014). The heights of maize in cropland attained from Wen 

et al. (2016).  

2.3 Model description 

A two-layer source model was used to estimate T/ET. The main equations of the model 

are illustrated in supplementary materials (Text S1). This model was chosen for the following 

reasons: First, this model, using the energy balance between the soil surface and the 

vegetation canopy and taking into account the energy interaction between them, achieved 

good performance in partitioning ET in the humid grasslands of Japan (Wang and Yamanaka, 

2014; Wang et al., 2015), the cropland ecosystem of the HRB (Wang et al., 2016), and arid 

http://hiwater.westgis.ac.cn/
http://www.heihedata.org/
http://glass-product.bnu.edu.cn/
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and semiarid grassland in Inner Mongolia in China (Wang et al., 2018). Second, the model 

uses the Newton-Raphson iteration scheme to solve the governing equations for the canopy 

and the ground surface separately without the need for radiometric temperature. Third, the 

model considers stomatal control of transpiration, including its dependence on soil moisture, 

and solar radiation is explicitly included. The model was localized to fit the characteristics of 

each ecosystem. Table S1 summarizes the parameters used for each site in this study. More 

details about the model can be found in Wang and Yamanaka (2014). 

2.4 Model performance assessment and sensitivity analysis 

As summarized by Willmott (1981), the root mean square error (RMSE) and I index, as 

well as R2 (R is the correlation coefficient), were used to validate and test the model. The I 

index is defined as: 

I = 1 − ∑ (𝑝𝑗−𝑜𝑗)2𝑛𝑗=1∑ (|𝑝𝑗−𝜎|+|𝑜𝑗−𝜎|)2𝑛𝑗=0              ,                                             (1) 

where the pj are predicted values, the oj are observed values, σ is the mean value of the oj, the 

subscript j denotes measurement number, and n is the total number of measurements. The 

value of I is unity for perfect agreement and zero for no agreement between observations and 

predictions. 

To evaluate possible errors in the specified model parameters or measurement variables, 

a sensitivity analysis of the input variables is necessary. The method proposed by (Qiu et al., 

1998) and (Wang & Yamanaka, 2014) was selected. To quantify the influence of the driving 

variables and parameters on evapotranspiration and its components in the model, a sensitivity 

coefficient (Si) can be defined as: 

                                                                 𝑠𝑖 = 𝜕𝑂𝜕𝑃𝑖 𝑃𝑖𝑂 ,                                                               (2) 

where  𝑃𝑖 is the i-th driving parameter or variable that can affect the output (O, such as LE or 

T/ET). The partial derivative 𝜕𝑂𝜕𝑃𝑖 can be computed by the following equation: 

                                                                       𝜕𝑂𝜕𝑃𝑖 = 𝑂𝑝 ∗ −𝑂𝑝𝑃𝑖∗−𝑃𝑖 ,                                                                 (3) 

where 𝑂𝑝 ∗  is the 𝑂 predicted by the model with a provisionally assumed value of 𝑃𝑖 (i.e., 𝑃𝑖∗) 

and 𝑂𝑝 is the predicted O with 𝑃𝑖 assigned in the model or measured. 𝑠𝑖= 0.1 means that an 

increase of 1% in 𝑃𝑖  causes an increase of 0.1% in the output result O. The negative 

sensitivity coefficient indicates that a reduction in the output result O is caused by an increase 
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in 𝑃𝑖, and vice versa. 

3 Results 

3.1 Model validation and performance 

Compared to the measured values, all the energy fluxes were reasonably simulated 

(Table 2). At the apline (swamp) meadow, and cropland ecosystems, which are located in the 

upper and middle reaches of the HRB, good agreement can be seen for all the energy fluxes, 

with the RMSE ranging from 4.12 to 38 W m−2 and the I index ranging from 0.63 to 0.96. At 

the T. ramosissima   and P. euphratica ecosystems, which are located in the lower reaches, 

the model showed good performance for LE, Rn, and G, with RMSE ranging from 6.61 to 

39.75 W m−2, but slightly higher RMSE (57.00 and 69.98 W m−2) for H simulations. 

Although the simulation of H is less than ideal, the day-to-day variation of LE was well 

simulated and nonsystematic among the five typical ecosystems during the study period 

(Figure 4). The validity of our modeling can be reflected not only by energy fluxes but also 

by temperature information such as ground surface temperature (TG). The measured TG is in 

good agreement with the predicted TG in the five typical ecosystems (Figure 5). The 

measured daily vegetation transpiration by sap flow at the Hunhelin site was used for 

comparison with modeling results. The predicted T values were in good agreement with the 

measured values with R
2 
equaling to 0.75 and 0.80 in 2014 and 2015, respectively (Figure 6b 

and 6c). To further validate the modeled ET partitioning results, we collected all the available 

T/ET data from previous studies conducted in the cropland ecosystem using isotope method 

along with the lysimeter/eddy covariance measurements (Wen et al., 2016) and uWUE 

(underlying water use efficiency) approach (Zhou et al., 2018). Figure 7a illustrates the 

comparison of hourly–mean T/ET values simulated by our model with the ones estimated by 

isotope approach and by uWUE method in the early afternoon. In addition, the daily-mean 

T/ET values simulated by our model and by lysimeter/eddy covariance and uWUE methods 

are shown in Figure 7b. Generally, the T/ET values estimated using our model were more 

steady than the other two methods at both hourly and daily time scales. The simulated T/ET 

values were larger than the ones estimated by uWUE method, and the simulated T/ET trend 

was more consistent with the values estimated by isotope approach and the lysimeter/eddy 

covariance method. Consequently, the T/ET estimated by the two source model should be 

reasonable within the HRB. 
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3.2 Sensitivity analysis 

Table 3 summarizes the sensitivity analysis results for measured variables in different 

ecosystem types. RH was the most sensitive variable for LE in the upper and middle reaches. 

A 5% error in RH could cause errors of 3.7%, 2.4%, and 6.25% at the apline meadow, apline 

swamp meadow and cropland ecosystems, respectively. In the riparian forest in the lower 

reaches, Ta is the most sensitive variable for LE; a 5% error in Ta could cause an error close 

to 3.5% in LE. As for T/ET, LAI was the most sensitive variable in all ecosystems; a 5% 

error in LAI would cause errors of 2.2%, 4.15%, 2.75%, 3.95%, and 2.85% in T/ET at the 

apline meadow, apline swamp meadow, cropland, T. ramosissima, and P. euphratica 

ecosystems, respectively. The values of Si for T/ET were small in all the five studied 

ecosystems, indicating that modeled results are insensitive to errors of measured variables.   

3.3 Spatiotemporal dynamics of T/ET  

T/ET showed significant seasonality among the five ecosystems, with smaller 

interannual fluctuations. All ecosystems presented a single-peak trend, reaching the 

maximum value in July and fluctuating day to day (Figure 8). For the whole year, the mean 

annual T/ET was highest in cropland (0.53 ± 0.26), followed by P. euphratica (0.52 ± 0.17), 

apline meadow (0.51 ± 0.26), T. ramosissima (0.50 ± 0.20), and apline swamp meadow (0.31 

± 0.28). For the growing season (May–September) only, mean T/ET value was also highest in 

cropland (0.80 ± 0.13), followed by apline meadow (0.79 ± 0.12), P. euphratica (0.67 ± 

0.07), T. ramosissima (0.67 ± 0.06) and apline swamp meadow (0.55 ± 0.28). The higher 

T/ET values during growing season meant transpiration played an important role in water 

vapor fluxes in these ecosystems. About 60% of the field is covered with plastic films in the 

cropland ecosystem，bare soil evaporation is significantly reduced. While for T. 

ramosissima and P. euphratica ecosystems, there were very few precipitation events during 

the study period, surface is dry, but T could remain constant because plants can draw deeper 

water. The swamp meadow ecosystem was located at higher elevations, surface had plentiful 

water, T/ET was lowest during the growing season.  

 

3.4 Controlling factors of transpiration fraction 

        Figure 9 shows the relationship between LAI and T/ET in the five ecosystems. The 

strong relationships (R2 > 0.69) indicate that the seasonality of T/ET was mainly controlled 

by vegetation dynamics characterized by LAI variations. The relationship between LAI and 
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T/ET was stronger for the alpine (swamp) meadow and cropland ecosystems with higher R2s 

(> 0.91) than for the downstream riparian ecosystems (0.69–0.73). This indicates that in 

upper and middle reaches LAI can explain >90% of the variations in ecosystem T/ET, 

whereas in the extremely arid riparian ecosystem, other environmental factors (e.g., water 

availability, vapor pressure deficit) or biotic factors (e.g., rooting depth) also affect T/ET. To 

further analyze the impact of other environmental factors on T/ET, spearman rank correlation 

analysis (Jerrold, 1972) was conducted. Based on the results in Table 4, all the variables were 

strongly correlated with T/ET illustrating the complex interactions among vegetation, 

atmosphere and soil. 

 

4 Discussion 

4.1 Seasonality of T/ET in different ecosystems in the Heihe River Basin 

Understanding the seasonality of T/ET across ecosystems is vital to discern the 

vegetation feedback to the climate system and improve predictions of future hydrological 

changes in the HRB. Table 5 summarizes results from previous studies on evapotranspiration 

partition and compares these results with those obtained in this study. The growing season 

average and annual mean of T/ET in the alpine swamp meadow were 0.31 and 0.55, 

respectively, which are similar to the previously reported values (0.40 and 0.59) in the Haibei 

alpine swamp meadow (Hu et al., 2009). Our modeled mean annual T/ET value in this study 

is the same with the results from Zhou et al. (2018) but discrepancy exists in the growing 

season. Our modeled result is higher than what is reported in Zhou et al. (2018) during the 

growing season. Cropland ecosystem in middle reaches had the largest T/ET value, which is 

consistent with Zhou et al. (2014; 2018), who found that cropland had higher T/ET than other 

vegetation types. The mean values of T/ET of the Daman site in the early afternoon (13:00–

15:00) are 0.86 ± 0.06 using the isotope method (Wen et al., 2016) and 0.88 ± 0.06 using the 

two-source variation data assimilation (TVDA) method during the growing season (Xu et al., 

2016). These values are higher than the daily mean values of 0.80 ± 0.13 found in this study. 

Wei et al. (2017) stated that most isotope-based studies report higher transpiration fraction 

than non-isotope-based measurements. Zhao et al. (2016) used sap flow measurements in the 

middle reaches of the HRB and found that T/ET of the Calligonum shrub ecosystem was 

about 0.66 during the growing season (May–September) from 2008 to 2010, which is similar 

to the result obtained here (0.67 ± 0.06) for the T. ramosissima shrub ecosystem. 
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Comparisons indicate that T/ET varied among the different ecosystems in the HRB and the 

modeling results are comparable with the available results within the HRB using other 

observation methods. At the same time, the results also indicate that it is difficult to compare 

results among different ecosystems when observations are obtained using different methods 

because of possible mismatches at the temporal and spatial scales or different uncertainties 

associated with different techniques. 

4.2 Convergence and divergence of T/ET among different ecosystems 

As shown in Figure S2, transpiration is directly related to vegetation activity, and 

therefore, it is not surprising that LAI strongly controls T/ET (Hu et al., 2009; Wang et al., 

2014; Wang & Yamanaka, 2014; Wei et al., 2017). Our results showed that LAI could 

explain more than 80% of the day-to-day variations of T/ET across meadow and cropland 

ecosystems (Figure 9), but the percentage dropped to about 70% for downstream P. 

euphratica and T. ramosissima shrub ecosystems. However, it is still not clear to what extent 

T/ET ratios controlled by vegetation and what additional factors could further explain T/ET 

variations in different ecosystems. Wang et al. (2014) developed a plant growth stage 

function to achieve a further explanation of global variation in T/ET under the same LAI 

condition. Under the same LAI condition (e.g., LAI =0.5), the T/ET values were 0.61, 0.52, 

0.62, 0.68, and 0.69 at the A’rou, Dashalong, Daman, Sidaoqiao, and Hunhelin sites, 

respectively. As shown in Figure S2, we found largest variations of monthly LAI in A’rou but 

relatively smaller variations of T/ET, followed by Daman, while for downstream ecosystems, 

such as Huhelin and Sidaoqiao, there are smaller changes of monthly LAI, but results in 

larger changes of T/ET. Dashalong site is in the middle situation. Therefore, apart from LAI, 

soil moisture and atmospheric condition also contributed to these variations. Generalized 

linear model (GLM) analyses (Pei et al., 2017; Wu et al., 2018) were used to investigate the 

relative contribution of all the variables to T/ET changes in different ecosystems. We found 

that LAI played an important role in controlling T/ET variations in all ecosystems, followed 

by soil moisture in the upper and middle reaches. While in the riparian ecosystems, the 

contribution of atmospheric conditions (VPD) is higher than soil moisture (Table 6).  The 

results obtained here indicate that T/ET has a convergent evolution that is controlled by 

internal ecosystem characteristics (e.g., LAI dynamics) and T/ET also shows divergences 

among ecosystems because of different environmental conditions.  
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4.3 Uncertainty analysis  

In this study, T/ET was simulated using a two-layer source model. The modeling results 

agree well with the available observations. However, some uncertainties remained. On one 

hand, uncertainties may arise from the model input variables. To explore this possibility, 

sensitivity analysis was carried out to determine the effect of the main input variable 

variations on T/ET. The result showed that T/ET was more sensitive to LAI and soil water 

content than to the other variables. LAI was the most sensitive factor, and therefore the 

uncertainties in the modeling output may be related to uncertainty in the LAI data set. 

Different LAI products exhibited discrepancies. However, the LAI products used here had 

been extensively validated by field measurements in the study area, their effects on T/ET 

should be small. On the other hand, soil water content also affected the modeling results. By 

combining previous studies on water uptake by vegetation roots (Amos & Walters, 2006; 

Himmelbauer et al., 2010; Yue et al., 2015)  and imposing constraints on temperature and 

energy flux, it was determined that 10-cm soil moisture was suitable for representing water 

availability in the alpine, swamp meadow, and cropland ecosystems, whereas 100–120 cm 

soil moisture was best in the riparian ecosystem. Use of soil moisture from different layers 

could result in estimated T/ET errors of less than 6% over the whole year (Figure 10), and 

larger differences in T/ET were mainly apparent in the non-growing season.  

Besides, evaporation of rainfall intercepted by the vegetation was not considered in the 

present model, this may have resulted in overestimation of T/ET in alpine (swamp) meadow 

ecosystems, because precipitation amount is small in other ecosystems in the HRB (annual 

precipitation is about 150 mm in the cropland and is about 30 mm in the riparian 

ecosystems). To qualify the uncertainties caused by interception in the upper alpine meadow 

ecosystem and alpine swamp meadow, ET partition results (T/ET) were compared for the 

rain/entire dataset (n=258/604) and sunny days only (n= 346), respectively. Statistical results 

indicate that there was no significant difference (p>0.05) for T/ET between the datasets for 

rain (entire) and sunny days. The errors caused by intercepted rainfall account for < 2% (1%) 

for T/ET in alpine meadow ecosystem (alpine swamp meadow). Therefore, although there are 

possible errors in the model simulations, the ET partition results are quite robust and 

reasonable. Consequently, the potential error caused overestimation T/ET by interception is 

not big issue in our study. 

5. Conclusions  

This study used a two-layer source model to estimate T/ET across typical ecosystems 
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over the HRB. The good agreement obtained between simulation and observations of energy 

flux, ground soil temperature, transpiration measured by sap flow, and estimated T/ET by 

previous studies indicates that the model performed well. Sensitivity analysis indicated that 

the model is not sensitive to uncertainties in the measured input variables. In the Heihe River 

Basin, except alpine swamp meadow, the mean annual T/ET values among alpine meadow, 

cropland, T. ramosissima shrub and P. euphratica ecosystems were similar, but the 

seasonality of T/ET was significant. The results obtained here indicate that LAI is a first-

order controlling factor for T/ET and that other factors (e.g., soil water dynamics and vapor 

pressure deficit) result in divergence of T/ET among ecosystems. The results of this study 

highlight that T/ET exhibits a convergent evolution that controlled by internal ecosystem 

characteristics (e.g., LAI dynamics) and expresses various divergences among ecosystems 

because of different environmental conditions.  
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Table 1 Main characteristics of the typical ecosystems in the Heihe River Basin 

 

Site Longitude Latitude Altitude (m) 
Dominant vegetation 

type 
EC height(m) 

Watershed 

positions 

A’rou 100.46°E 38.05°N 3044 Alpine meadow 3.5 
Upstream 

Dashalong 98.94°E 38.84°N 3739 Alpine swamp meadow 4.5 

Daman 100.37°E 38.86°N 1556 Cropland 4.5 Midstream 

Hunhelin 101.13°E 41.99°N 874 P. euphratica 22 
Downstream 

Sidaoqiao 101.14°E 42.00°N 873 T. ramosissima 8 

  Note: EC height means the heights eddy covariance systems were mounted above the canopy heights. 
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Table 2 

 Model performance statistics with daily mean data in the five typical ecosystems 

Site Index 
Energy flux 

LE Rn H G 

A’rou 

R
2
 0.91 0.85 0.29 0.42 

I 0.96 0.95 0.75 0.63 

RMSE (W m
-2

) 16.02 23.08 20.86 8.23 

n 711 730 730 730 

Dashalong 

R
2
 0.8 0.71 0.45 0.73 

I 0.95 0.91 0.86 0.98 

RMSE (W m
-2

) 20.18 31.7 24.52 9.86 

n 724 719 720 730 

Daman 

R
2
 0.84 0.93 0.34 0.7 

I 0.94 0.96 0.83 0.98 

RMSE (W m
-2

) 23.67 26 38 11.35 

n 669 730 730 730 

Hunhelin 

R
2
 0.84 0.96 0.29 0.86 

I 0.95 0.88 0.47 0.67 

RMSE (W m
-2

) 27.4 34.55 69.98 8.81 

n 673 730 730 730 

Sidaoqiao 

R
2
 0.78 0.92 0.4 0.82 

I 0.89 0.89 0.65 0.89 

RMSE (W m
-2

) 38.61 32.1 57 6.61 

n 716 730 699 730 

Note: LE is latent heat flux, Rn is net radiation, H is sensible heat flux, G is ground heat flux, RMSE (W m
−2

) is 

root mean square error, R
2
 is the coefficient of determination and n is the number of data points. 
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Table 3  

 Mean and standard deviation (SD) of the sensitivity coefficients of LE and T/ET to the 

measured variables 

Site Variables 
Mean ±SD 

      Ta
 

RH
 

LAI
 

         θ 

A’rou 
LE 0.52 ± 0.38 -0.74 ± 0.32 0.16 ± 0.09 0.22 ± 0.06 

T/ET 0.19 ± 0.27 0.00 ± 0.22 0.44 ± 0.28 0.34 ± 0.28 

Dashalong 
LE 0.05 ± 0.04 -0.48 ± 0.22 0.13 ± 0.43 0.13 ± 0.13 

T/ET 0.02 ± 0.21 0.20 ± 0.22 0.83 ± 0.48 0.29 ± 0.35 

Daman 
LE 0.63 ± 0.35 -1.25 ± 0.70 0.29 ± 0.26 0.39 ± 0.18 

T/ET 0.04 ± 0.16 0.08 ± 0.18 0.55 ± 0.34 0.43 ± 0.32 

Hunhelin 
LE 0.72 ± 0.40 -0.37 ± 0.27 0.26 ± 0.16 0.19 ± 0.22 

T/ET 0.08 ± 0.06 0.00 ± 0.11 0.79 ± 0.42 0.36 ± 0.45 

Sidaoqiao 
LE 0.65 ± 0.31 -0.34 ± 0.32 0.23 ± 0.10 0.11 ± 0.14 

T/ET 0.02 ± 0.03 0.09 ± 0.12 0.57 ± 0.22 0.15 ± 0.20 

 Note: LE means latent heat flux, Ta means
 
air temperature, RH means relative humidity

,
 LAI means

 

Leaf area index, θ 
means soil water content.  
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Table 4  

Spearman correlation coefficients between T/ET and several variables 

Site LAI
a
 VPD

b
 Rn

c
 θd

 Ta
e
 

A'rou 0.94
** 

0.63
**

 0.72
**

 0.76
**

  0.88
**

 

Dashalong 0.95
**

 0.57
**

 0.79
**

 0.76
**

 0.84
**

 

Daman 0.98
**

 0.69
**

 0.80
**

 0.92
**

 0.92
**

 

Sidaoqiao 0.92
**

 0.87
**

 0.82
**

 0.42
**

  0.88
**

 

Hunhelin 0.88
**

 0.89
**

 0.70
**

 0.56
**

   0.91
**

 

Note: ** means significant correlation at the 0.01 significance level, LAI means
 
Leaf 

area index, VPD means vapor pressure deficit, Rn means net radiation, θ 
means soil 

water content and Ta means
 
air temperature. 
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Table 5  

Summary of transpiration fraction (T/ET) and RMSE for observed and predicted energy fluxes in the 

Heihe River Basin 

Literature Method Vegetation type 

Time 

Scal

e 

RMSD (W m
-2

) T/ET 

lE Rn H G 
Growing 

season 
All year 

Xu et al., 

2016 
TVDA model   Cropland  

Hour

ly 
116 

10.

1 

27.

3 

30.

2 
0.88 ± 0.06 N/A 

Wang et al, 

2016 

Iso-SPAC 

model  
Cropland   

Hour

ly 

45.

9 

45.

16 

51.

4 

21.

37 
0.88 ± 0.13 N/A 

Wen et al., 

2016 

Situ oxygen 

isotope 
Cropland 

Hour

ly 

N/

A 

N/

A 

N/

A 

N/

A 
0.86 ± 0.06 N/A 

Su et al., 

2016 
Lysimeters T. ramosissima  

Dail

y 

N/

A 

N/

A 

N/

A 

N/

A 
0.37-0.50 N/A 

Zhao et al, 

2016 

Sap flow 

measurement 
Calligonum L.  

Dail

y 

N/

A 

N/

A 

N/

A 

N/

A 
0.64 N/A 

Zhou et al, 

2018 
uWUE 

Alpine meadow 

Dail

y  

N/

A 

N/

A 

N/

A 

N/

A 
0.55 0.51 

Cropland 
N/

A 

N/

A 

N/

A 

N/

A 
0.63 0.52 

P. euphratica 
N/

A 

N/

A 

N/

A 

N/

A 
0.55 0.53 

This study 
Two source 

model  

Alpine meadow 

Dail

y  

16.

02 

23.

8 

20.

86 

8.2

3 
0.79 ± 0.12 

0.51± 

0.26 

Alpine swamp 

meadow 

20.

18 

31.

7 

24.

52 

9.8

6 
0.55 ± 0.23 

0.31 ± 

0.28 

Cropland 
23.

67 
26 38 

11.

35 
0.80 ± 0.13 

0.53 ± 

0.26 

P. euphratica 
27.

4 

34.

55 

69.

98 

8.8

1 
0.67 ± 0.07 

0.52 ± 

0.17 

T. ramosissima 
38.

61 

32.

1 
57 

9.8

6 
0.67 ± 0.06 

0.50 ± 

0.20 
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Table 6  

The relative contributions of environment factors to variations of transpiration fraction (T/ET) in five 

ecosystems 
Site 

a
LAI (%) 

b
VPD (%) 

c
Rn (%) 

dθ (%) e
Ta (%) 

A'rou 70 3.86 1.7 18 0.13 

Dashalong 90 1.6 0.77 2.43 0.03 

Daman 87 2.6 1.12 4.1 0.66 

Sidaoqiao 56 10 0.08 0.65 4.3 

Hunhelin 68 14 0.04 10 0.79 

Note.  
a
 Leaf area index, 

b
 vapor pressure deficit, 

c
 net radiation, 

d
 soil water content, 

e 
air temperature. 
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Figure 1. Topography and location of the study sites within the Heihe River Basin. 
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Figure 2. Meteorological factors in typical ecosystems from 2014 to 2015, mean monthly air 

temperature (Ta, °C), vapor pressure deficit (VPD, hPa), potential evapotranspiration 

(PET, calculated with FAO Penman Monteith equation) and precipitation (P, mm) for 

A’rou (alpine meadow ecosystem), Dashalong (alpine swamp meadow ecosystem), 

Daman (cropland ecosystem), Sidaoqiao (T .ramosissima  ecosystem), and Hunelin (P. 

euphratica ecosystem) sites. 
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Figure 3. Regression relationship between sums (LE+H) of latent heat flu (LE) and sensible 

heat flux (H) and available energy (Rn-G) expressed by abstraction between net radiation 

(Rn) and ground heat flux (G) based on daily eddy covariance data at (a) alpine meadow, 

(b) alpine swamp meadow, (c) cropland, (d) T. ramosissima, (e) P. euphratica 

ecosystem in 2014 and 2015. 
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Figure 4. Comparisons between predicted and measured latent flux (LE) for (a) alpine 

meadow, (b) alpine swamp meadow, (c) cropland, (d) T. ramosissima, and (e) P. 

euphratica ecosystems at daily time scale for 2014 and 2015. 
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Figure 5. Comparisons between predicted and measured ground surface temperature (°C) for 

(a) alpine meadow, (b) alpine swamp meadow, (c) cropland, (d) T. ramosissima, and (e) 

P. euphratica ecosystems at daily time scale for 2014 and 2015. 
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Figure 6. Comparison of transpiration (T) between measured by sap flow and by modeled for 

(a) day to day seasonal variations and 1:1 plot for dataset in (b) 2014 and (c) in 2015 at 

P. euphratica ecosystem. 
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Figure 7. Comparison of T/ET values using the two source model and measured using 

underlying water use efficiency (uWUE) and isotope methods in the early afternoon 

(13:00–15:00) (a), and comparison of T/ET values using the two source model and 

measured using the uWUE and lysimeter/eddy covariance (EC) methods at daily scale 

(b) for the cropland ecosystem in 2012. The T/ET data using isotpe and lysimeter/eddy 

covariance (EC) methods were obtained from Wen et al., (2016). The estimated T/ET by 

uWUE approach was provided by Zhou et al. (2018). 
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Figure 8. Daily variation of T/ET in typical ecosystems for (a) alpine meadow, (b) alpine 

swamp meadow, (c) cropland, (d) T. ramosissima, and (e) P. euphratica ecosystems 

from 2014 to 2015. 
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Figure 9. Relationship of LAI and T/ET at daily time scale for (a) alpine meadow ecosystem, 

(b) alpine swamp meadow, (c) cropland, (d) T.ramosissima, and (e) P.euphratica 

ecosystems from 2014 to 2015. 
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Figure 10. The soil moisture in different depth (a) and its corresponding transpiration 

fraction (T/ET)simulated by two source model (b) for alpine meadow ecosystem(A’rou), 

alpine swamp meadow (Dashalong), cropland (Daman), T .ramosissima and P. 

euphratica (Hunhelin) ecosystems from 2014 to 2015. 

 


