SEC X.2: Recommended Elliptic Curve Domain Parameters

Nippon Telephone and Telegraph Corporation
Contact: Kazumaro Aoki, Tetsutaro Kobayashi, and Akira Nagai
(publickey@lab.ntt.co.jp)
Working Draft
August 6, 2008
Version 0.6
(c)NTT 2008

1 Recommended Elliptic Curve Domain Parameters over $\mathbb{F}_{p^{m}}$

This section specifies the elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ recommended in this document. The section is organized as follows. First Section 1.1 describes relevant properties of the recommended parameters over $\mathbb{F}_{p^{m}}$. Then Section 1.2 specifies recommended 305-bit elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$, Section 1.3 specifies recommended 427-bit elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$, Section 1.4 specifies recommended 671-bit elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$,

1.1 Properties of Elliptic Curve Domain Parameters over $\mathbb{F}_{p^{m}}$

Following SEC X. $1[1]$, elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ are an octuple:

$$
T=(p, m, f(x), a, b, G, n, h)
$$

consisting of an integer p and m specifying the finite field $\mathbb{F}_{p^{m}}$, an irreducible polynomial $f(x)$ of degree m specifying the polynomial basis representation of $\mathbb{F}_{p^{m}}$, two elements $a, b \in \mathbb{F}_{p^{m}}$ specifying an elliptic curve $\mathbb{F}_{p^{m}}$ defined by the equation:

$$
E: y^{2}=x^{3}+a x+b \text { in } \mathbb{F}_{p^{m}}
$$

a base point $G=\left(x_{G}, y_{G}\right)$ on $E\left(\mathbb{F}_{p^{m}}\right)$, a prime n which is the order of G, and an integer h which is the cofactor $h=\# E\left(\mathbb{F}_{p^{m}}\right) / n$.
When elliptic curve domain parameters are specified in this document, each component of this ocptuple is represented as an octet string converted using the conventions specified in SEC X. 1 [1].
Again following SEC X. 1 [1], elliptic curve domain parameters over $E\left(\mathbb{F}_{p^{m}}\right)$ must have:

$$
(p, m) \in\left\{\left(2^{61}-1,5\right),\left(2^{61}-1,7\right),\left(2^{61}-1,11\right)\right\}
$$

This restriction is designed to encourage interoperability while allowing implementers to supply commonly required security levels. For a Koblitz curve, domain parameters over $E\left(\mathbb{F}_{p^{m}}\right)$ with $\left\lceil\log _{2} p^{m}\right\rceil=2 t$ supply approximately t bits of security. Meanwhile, for the verifiably random elliptic curve, domain parameters over $E\left(\mathbb{F}_{p^{m}}\right)$ with $\left\lceil\log _{2} p^{m-1}\right\rceil=2 t$ supply approximately t bits of security. This means that solving the logarithm problem on the associated elliptic curve is believed to take approximately 2^{t} operations.
Furthermore elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ must use the reduction polynomials listed in Table 1 below.
This restriction is designed to encourage interoperability while allowing implementers to supply efficient implementations at commonly required security levels.
Here recommended elliptic curve domain parameters are supplied at each of the sizes allowed by SEC X. 1 [1].
The elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ supplied at the field size consist of examples of two

Field	Reduction Polynomial(s)
$F_{\left(2^{61}-1\right)^{5}}$	$f(x)=x^{5}-3$
$F_{\left(2^{61}-1\right)}$	$f(x)=x^{7}-3$
$F_{\left(2^{61}-1\right)^{11}}$	$f(x)=x^{11}-3$

Table 1: Representations of $\mathbb{F}_{p^{m}}$
different types of parameters. Concretely speaking, one type being parameters associated with a Koblitz curve and the other type being parameters chosen verifiably at random.
Verifiably random parameters offer some additional conservative features. These parameters are chosen from a seed using SHA-1 as specified in SEC X. 1 [1]. This process ensures that the parameters cannot be predetermined. The parameters are therefore extremely unlikely to be susceptible to future special-purpose attacks, and no trapdoors can have been placed in the parameters during their generation. When elliptic curve domain parameters are chosen verifiably at random, the seed S used to generate the parameters may optionally be stored along with the parameters so that users can verify the parameters were chosen verifiably at random.
See SEC X. 1 [1] for further guidance on the selection of elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$.
The example elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ have been given nicknames to enable them to be easily identified. The nicknames were chosen as follows. Each name begins with sec to denote 'Standards for Efficient Cryptography', followed by an o to denote parameters over $\mathbb{F}_{p^{m}}$, followed by a number denoting the field size n, followed by a k to denote parameters associated with Koblitz curves or an r to denote random parameters, followed by a sequence number.
Table 2 summarizes salient properties of the recommended elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$. Information is represented in Table 2 as follows. The column labelled 'parameters' gives the nickname of the elliptic curve domain parameters. The column labelled 'section' refers to the section of this document where the parameters are specified. The column labelled 'strength' gives the approximate number of bits of security the parameters offer. The column labelled 'size' gives the field size. The column labelled 'RSA/DSA' gives the approximate size of an RSA or DSA modulus at comparable strength. (See SEC 1 [2] for precise technical guidance on the strength of elliptic curve domain parameters.) Finally the column labelled 'Koblitz or random' indicates whether the parameters are associated with a Koblitz curve - ' k ' - or were chosen verifiably at random - ' r '.

1.2 Recommended 305-bit Elliptic Curve Domain Parameters over an odd characteristic extension field $\mathbb{F}_{p^{m}}$

This section specifies the two recommended 305 -bit elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ in this document: parameters seco305k associated with a Koblitz curve, and verifiably random parameters seco305r.
Section 1.2.1 specifies the elliptic curve domain parameters seco305k, and Section 1.2.2 specifies

Parameters	Section	Strength	Size	RSA/DSA	Koblitz or random
seco305k	1.2 .1	112	305	2048	k
seco305r	1.2 .2	128	305	3072	r
seco427k	1.3 .1	160	427	3072	k
seco427r	1.3 .2	192	427	7680	r
seco671k	1.4 .1	256	671	15360	k
seco671r	1.4 .2	256	671	15360	r

Table 2: Properties of Recommended Elliptic Curve Domain Parameters over an odd charateristic extension field $\mathbb{F}_{p^{m}}$
the elliptic curve domain parameters seco305r.

1.2.1 Recommended Parameters seco305k

The elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ associated with a Koblitz curve seco305k are specified by the ocptuple $T=(p, m, f(x), a, b, G, n, h)$ where $p=2^{61}-1, m=5$ and the representation of $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
p & =2^{61}-1 \\
& =1 \text { FFFFFFF FFFFFFFF } \\
f(x) & =x^{5}-3
\end{aligned}
$$

The curve E: $y^{2}=x^{3}+a x+b$ over $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
& \left.a=\begin{array}{rrrrrrr}
000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & \text { 1FFFFFFF } & \text { FFFFFFF } & & & & \\
000000 & \text { 00000000 } & \text { 00000000 } & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & \text { 0FE3A248 } & \text { 499DD27E } & & & &
\end{array} . \begin{array}{rl}
\\
0
\end{array}\right)
\end{aligned}
$$

E was chosen verifiably at random from the seed:

$$
S=4 \mathrm{E} 545420 \quad 436 \mathrm{~F} 7270 \quad 6 \mathrm{~F} 726174 \quad 696 \mathrm{~F} 6 \mathrm{E} 00 \quad 04 \mathrm{~A} 90700
$$

E was selected from S as specified in SEC X. 1 [1] in section 3.1.3.1.
The base point G in compressed form is:

```
G= 0300595E EA64ADOD 9495D3AC CC43EEBE E2DD7E75 DDA8E143 08EC3E80
    C68B117C C51D0B73 19455C8B
```

and in uncompressed form is:

$$
G=\begin{array}{rrrrrrr}
040059 & \text { 5EEA64AD } & \text { 0D9495D3 } & \text { ACCC43EE } & \text { BEE2DD7E } & \text { 75DDA8E1 } & \text { 4308EC3E } \\
\text { 80C68B11 } & \text { 7CC51D0B } & \text { 7319455C } & \text { 8B0129D3 } & \text { 6A8F0366 } & \text { C35FED32 } & \text { C256A940 } \\
\text { 65F0B440 } & \text { E504DE2A } & \text { E86E7586 } & \text { C4658836 } & \text { F1D7FD89 } & \text { 9E59288F } &
\end{array}
$$

G was selected from S as specified in SEC X. 1 [1] in section 3.1.3.2.
Finally the order n of G and the cofactor are:

```
n=100000 00012E8C BC001659 05BE2A45 1CE16B8A 290B3477 AE30812C
    3C2D0183
h = 1FFFFFFF FDA2E683
```


1.2.2 Recommended Parameters seco305r

The verifiably random elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ seco305r are specified by the ocptuple $T=(p, m, f(x), a, b, G, n, h)$ where $p=2^{61}-1, m=5$ and the representation of $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
p & =2^{61}-1 \\
& =1 \text { FFFFFFF FFFFFFFF } \\
f(x) & =x^{5}-3
\end{aligned}
$$

The curve E: $y^{2}=x^{3}+a x+b$ over $\mathbb{F}_{p^{m}}$ is defined by:

```
a= 000000 00000000 00000000 00000000 00000000 00000000 00000000
    0 0 0 0 0 0 0 0 ~ 1 F F F F F F F ~ F F F F F F F C
b = 00CE6A C542EE65 694530D7 770BF7DA 97B0B987 1FD7E363 5F312903
    79A295C4 7407C791 6C5490A9
```

E was chosen verifiably at random from the seed:

$$
S=4 \mathrm{E} 545420 \quad 436 \mathrm{~F} 7270 \quad 6 \mathrm{~F} 726174 \quad \text { 696F6E00 } \quad \text { 03EB0100 }
$$

E was selected from S as specified in SEC X. 1 [1] in section 3.1.3.1. The base point G in compressed form is:

$$
\begin{array}{rllllll}
G= & 02000000 & 00000000 & 00000000 & 00000000 & 00000000 & \text { 36A8C2E2 } \\
& \text { 9A4D8A2C } & \text { A664293E } & \text { 1FDE3D99 } & & & \\
\hline
\end{array}
$$

and in uncompressed form is:

$$
\begin{array}{rlllllll}
G= & 020000 & 00000000 & 00000000 & 00000000 & 00000000 & 0036 A 8 C 2 & \text { E2137228 } \\
& \text { E09A4D8A } & \text { 2CA66429 } & \text { 3E1FDE3D } & 99003 F 79 & \text { D371C332 } & \text { AEDB593A } & \text { 79AF160B } \\
& \text { C75FCA4D } & \text { 37FD3D10 } & \text { EA05D658 } & \text { BAD0B23F } & \text { A3BF7EBC } & \text { C239EA30 } &
\end{array}
$$

G was selected from S as specified in SEC X.1 [1] in section 3.1.3.2.
Finally the order n of G and the cofactor are:

$$
\begin{array}{lllllll}
n= & \text { 1FFFF } & \text { FFFFFFFF } & \text { FFB00000 } & 00000000 & \text { 04FFFFFF } & \text { FFCB2305 }
\end{array} \text { 2FF95755 }
$$

1.3 Recommended 427-bit Elliptic Curve Domain Parameters over an odd characteristic extension field $\mathbb{F}_{p^{m}}$

This section specifies the two recommended 427-bit elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ in this document: parameters seco427k associated with a Koblitz curve, and verifiably random parameters seco427r.
Section 1.3.1 specifies the elliptic curve domain parameters seco427k, and Section 1.3.2 specifies the elliptic curve domain parameters seco427r.

1.3.1 Recommended Parameters seco427k

The elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ associated with a Koblitz curve seco427k are specified by the ocptuple $T=(p, m, f(x), a, b, G, n, h)$ where $p=2^{61}-1, m=7$ and the representation of $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
p & =2^{61}-1 \\
& =1 \text { FFFFFFF FFFFFFFF } \\
f(x) & =x^{7}-3
\end{aligned}
$$

The curve E: $y^{2}=x^{3}+a x+b$ over $\mathbb{F}_{p^{m}}$ is defined by:

$$
a=\begin{array}{rrrrrrr}
0000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 1 \text { FFFFFFF } & \text { FFFFFFFC } \\
0000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & \text { 02ADD02E } & 768 \mathrm{~A} 202 \mathrm{C}
\end{array}
$$

E was chosen verifiably at random from the seed:

$$
S=4 \mathrm{E} 545420 \quad 436 \mathrm{~F} 7270 \quad 6 \mathrm{~F} 726174 \quad 696 \mathrm{~F} 6 \mathrm{E} 00 \quad 07006400
$$

E was selected from S as specified in SEC X. 1 [1] in section 3.1.3.1.
The base point G in compressed form is:

$$
G=\begin{array}{rrrrrrr}
020363 & \text { 0C3DBA08 } & \text { 22C233D0 } & \text { D60BF2C8 } & \text { 51FB907B } & \text { 32DA9960 } & \text { OB1608F2 } \\
\text { 56FC5D09 } & \text { 963501EF } & \text { 135D35D6 } & \text { 5C02A14D } & \text { BAFD5065 } & \text { C3DD7403 } & \text { 68EF6F2B }
\end{array}
$$

and in uncompressed form is:

$$
G=\begin{array}{rrrrrrr}
04 & \text { 03630C3D } & \text { BA0822C2 } & \text { 33D0D60B } & \text { F2C851FB } & \text { 907B32DA } & \text { 99600B16 } \\
& \text { 08F256FC } & \text { 5D099635 } & \text { 01EF135D } & \text { 35D65C02 } & \text { A14DBAFD } & \text { 5065C3DD } \\
& \text { 740368EF } \\
& \text { 6F2B0732 } & \text { 9DD20851 } & \text { CBF0648C } & \text { A866E706 } & \text { B4F9EDF5 } & \text { 4B01B380 }
\end{array} \text { 2D0BD08D }
$$

G was selected from S as specified in SEC X.1 [1] in section 3.1.3.2.
Finally the order n of G and the cofactor are:

$$
\begin{aligned}
& n=\begin{array}{rrrrrrr}
3 F F F & \text { FFFF295D } & \text { 7D42CFDO } & \text { 66D2958D } & \text { 0A0A4A6C } & \text { 1FF5C071 } & \text { 2E26C0D2 } \\
5 \text { 5864565 } & \text { 81E78118 } & \text { 14207946 } & \text { E4FBC329 } & \text { 32B1872D } & & \\
h= & 2000000 & \text { 6B514159 } & & & &
\end{array}
\end{aligned}
$$

1.3.2 Recommended Parameters seco427r

The verifiably random elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ seco427r are specified by the ocptuple $T=(p, m, f(x), a, b, G, n, h)$ where $p=2^{61}-1, m=7$ and the representation of $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
p & =2^{61}-1 \\
& =1 \text { FFFFFF } \quad \text { FFFFFFFF } \\
f(x) & =x^{7}-3
\end{aligned}
$$

The curve E: $y^{2}=x^{3}+a x+b$ over $\mathbb{F}_{p^{m}}$ is defined by:

$$
a=\begin{array}{rrrrrrr}
0000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
0000000 & 00000000 & 00000000 & 00000000 & 00000000 & \text { 1FFFFFFF } & \text { FFFFFFFC } \\
\text { 4DFF } & \text { B7A2CEC7 } & \text { D877A2F1 } & 416033 A 6 & \text { CCE84DD } & 9301 F A 23 & 6 \text { A254818 } \\
\text { 8DA1C1CB } & \text { 1DE92903 } & \text { EB3E9372 } & \text { 76E5240C } & \text { 11A15F48 } & \text { E8B36379 } & \text { FA5B579F }
\end{array}
$$

E was chosen verifiably at random from the seed:

$$
S=4 \mathrm{E} 545420 \quad 436 \mathrm{~F} 7270 \quad 6 \mathrm{~F} 726174 \quad \text { 696F6E00 } 06 \mathrm{OABAOO}
$$

E was selected from S as specified in SEC X.1 [1] in section 3.1.3.1.

$$
G=\begin{array}{rrrrrrr}
020000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
0000000 & 0000000 & 25 A 0 F 41 E & 124 C 90 C 2 & \text { E3AE8FB8 } & \text { EE228EAC } & \text { 1BEAF72A }
\end{array}
$$

and in uncompressed form is:

$$
\begin{array}{rlrlllll}
G= & 04 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
& 00000000 & 00000000 & 000025 A 0 & \text { F41E124C } & \text { 90C2E3AE } & \text { 8FB8EE22 } & \text { 8EAC1BEA } \\
& \text { F72A042F } & \text { 38ACC12B } & \text { DC9C5CE5 } & 7251 \text { C039 } & 81863365 & \text { A9C80199 } & \text { OF0AB1CE } \\
& 462 C 2538 & \text { 6D34ACC5 } & 24 F 20452 & \text { 6D6C79FC } & 065 F F 797 & \text { F426C4D9 } & \text { 66B92113 }
\end{array}
$$

G was selected from S as specified in SEC X.1 [1] in section 3.1.3.2.
Finally the order n of G and the cofactor are:

```
n= 7FF FFFFFFFF FFFE4000 00000000 0029FFFF FFFFFFFF FDCFFFFF
    FFED95A5 B02D31FF FB2115C1 AB3D0D3B D4477989 A552CAB0 60D8C4AF
h= 01
```


1.4 Recommended 671-bit Elliptic Curve Domain Parameters over an odd characteristic extension field $\mathbb{F}_{p^{m}}$

This section specifies the two recommended 610 -bit elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ in this document: parameters seco671k associated with a Koblitz curve, and verifiably random parameters seco671r.
Section 1.4.1 specifies the elliptic curve domain parameters seco671k, and Section 1.4.2 specifies the elliptic curve domain parameters seco671r.

1.4.1 Recommended Parameters seco671k

The elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ associated with a Koblitz curve seco671k are specified by the ocptuple $T=(p, m, f(x), a, b, G, n, h)$ where $p=2^{61}-1, m=11$ and the representation of $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
p & =2^{61}-1 \\
& =1 \text { FFFFFFF FFFFFFFF } \\
f(x) & =x^{11}-3
\end{aligned}
$$

The curve E: $y^{2}=x^{3}+a x+b$ over $\mathbb{F}_{p^{m}}$ is defined by:

$$
\quad a=\begin{array}{lllllll}
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 1 \text { FFFFFFF } & \text { FFFFFFFC } \\
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 00000000 \\
00000000 & 00000000 & 00000000 & 00000000 & 00000000 & 07 D 5 B 59 B & 5 \text { A5E5429 }
\end{array}
$$

E was chosen verifiably at random from the seed:

$$
S=4 \mathrm{E} 545420 \quad 436 \mathrm{~F} 7270 \quad 6 \mathrm{~F} 726174 \quad 696 \mathrm{~F} 6 \mathrm{E} 00 \quad 06 \mathrm{BC} 1300
$$

E was selected from S as specified section 3.1.3.1 in SEC X. 1 [1] in section 3.1.3.1. The base point G in compressed form is:

$$
G=\begin{array}{rrrrrrr}
03 & 24293 b 96 & \text { 4B416E53 } & \text { BDAB2713 } & \text { 33AE270B } & \text { 014EDB71 } & \text { 3C6947A5 } \\
& \text { E747BD9B } & \text { 276C4F0D } & \text { 5A95649C } & \text { AF96C63E } & \text { 34304E22 } & \text { 04E1DD2B } \\
\text { DAFEF27C } \\
& \text { C2C3B321 } & \text { C931E182 } & \text { 34DB653D } & 216610 E C & \text { DF661912 } & \text { 33E3AD13 }
\end{array} \text { 0123B520 }
$$

and in uncompressed form is:

$G=$| 04 | 24293b96 | 4B416E53 | BDAB2713 | 33AE270B | 014EDB71 | 3C6947A5 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | E747BD9B | 276C4F0D | 5A95649C | AF96C63E | 34304E22 | 04E1DD2B |
| CAFEF27C | | | | | | |
| | C2C3B321 | C931E182 | 34DB653D | 216610EC | DF661912 | 33E3AD13 | 0123B520

G was selected from S as specified in SEC X. 1 [1] in section 3.1.3.2.
Finally the order n of G and the cofactor are:

$n=$	03	FFFFFF1	8C568094	36B2E5E4	78B92E0A	117C2B3E	F36B0E42
	57FA68EF	DB9F9E62	EE411700	5C737B6B	7FC9989E	EE472ACB	99927E19
	9CEE7135	DB0E5499	6BFAE625	D90B03E1	FF5BA546	8798E6F7	
$h=$	2000000	739D4BF2					

1.4.2 Recommended Parameters seco671r

The elliptic curve domain parameters over $\mathbb{F}_{p^{m}}$ associated with a Koblitz curve seco671r are specified by the ocptuple $T=(p, m, f(x), a, b, G, n, h)$ where $p=2^{61}-1, m=11$ and the representation of $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
p & =2^{61}-1 \\
& =1 \text { FFFFFF FFFFFFFF } \\
f(x) & =x^{11}-3
\end{aligned}
$$

The curve E: $y^{2}=x^{3}+a x+b$ over $\mathbb{F}_{p^{m}}$ is defined by:

$$
\begin{aligned}
& a=00 \\
& 00 \\
& 00 \text { 1FFFFFFF FFFFFFFC }
\end{aligned}
$$

E was chosen verifiably at random from the seed:
$S=4 \mathrm{E} 545420$ 436F7270 6F726174 696F6E00 ??????00
E was selected from S as specified in SEC X. 1 [1] in section 3.1.3.1.
to be completed ...

References

[1] SEC X. 1 Supplemental Document for Odd Characteristic Extension Fields. Nippon Telephone and Telegraph Corporation, June, 2008.
[2] SEC 1. Elliptic Curve Cryptography. Standards for Efficient Cryptography Group, September, 2000. Working Draft. Available from: http://www.secg.org/

