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ABSTRACT

Sec61β, a subunit of the Sec61 translocon complex, is

not essential in yeast and commonly used as a marker

of endoplasmic reticulum (ER). In higher eukaryotes,

such as Drosophila, deletion of Sec61β causes lethality,

but its physiological role is unclear. Here, we show that

Sec61β interacts directly with microtubules. Overex-

pression of Sec61β containing small epitope tags, but

not a RFP tag, induces dramatic bundling of the ER and

microtubule. A basic region in the cytosolic domain of

Sec61β is critical for microtubule association. Depletion

of Sec61β induces ER stress in both mammalian cells

and Caenorhabditis elegans, and subsequent restora-

tion of ER homeostasis correlates with the microtubule

binding ability of Sec61β. Loss of Sec61β causes

increased mobility of translocon complexes and

reduced level of membrane-bound ribosomes. These

results suggest that Sec61β may stabilize protein

translocation by linking translocon complex to micro-

tubule and provide insight into the physiological func-

tion of ER-microtubule interaction.

KEYWORDS ER stress, Microtubule, Sec61β,

Translocon, Ribosome

INTRODUCTION

In eukaryotic cells, the endoplasmic reticulum (ER) is com-

posed of membrane tubules and sheets (Shibata et al.,

2006). Tubules are 30–50 nm in diameter and have a high

membrane curvature at their cross-section (Hu et al., 2011),

which is stabilized by a class of integral membrane proteins

including reticulons and DP1/Yop1p (Hu et al., 2008; Voeltz

et al., 2006). In contrast, sheets are formed by parallel

membranes ∼50 nm apart (Barlowe, 2010). The cisternal

spacing is regulated by Climp63 (Shibata et al., 2010), which

is proposed to be a luminal bridge, and the surface of the

sheets are kept flat, likely by kinectin and p180, which

scaffold the membrane as a rod-like structure (Shibata et al.,

2010; Zhang and Hu, 2016).

The distinct ER shapes are thought to carry out different

functions. Tubules are likely involved in membrane traffick-

ing, lipid metabolism, organelle contact, and stress sensing

(Wang et al., 2017), whereas sheets are mostly locations for

protein synthesis (Shibata et al., 2006; Voeltz et al., 2002).

Translating polysomes for ER-targeting proteins prefer the

more accommodating surface of ER sheets, and their

abundance could dictate the amount of ER sheets (Shibata

et al., 2010). Nascent polypeptides, when exiting ribosomes,

need to traverse ER membranes through a channel known

as the Sec61 complex or translocon (Rapoport, 2007).

Therefore, Sec61 and its associating proteins are enriched in

ER sheets (Shibata et al., 2010).

Newly synthesized proteins are modified and folded in the

ER. If misfolded proteins accumulate in the ER, they induce

ER stress and activate signaling events known as the

unfolded protein response (UPR) (Bernales et al., 2006; Ron
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and Walter, 2007; Schroder and Kaufman, 2005; Walter and

Ron, 2011). The UPR consists of three signaling arms: IRE1,

PERK, and ATF6. Initially, protective efforts are made, such

as increasing chaperones and decreasing translations.

Activated IRE1 splices XBP1 mRNA, which is translated into

an active transcription factor that up-regulates the levels of

chaperones (Calfon et al., 2002; Lee et al., 2002; Yoshida

et al., 2001). PERK phosphorylates eIF2α and inhibits

translation so that the burden on the ER can be relieved

(Harding et al., 2000; Harding et al., 1999), and ATF6 is

cleaved into a soluble transcription factor that also helps deal

with ER stress (Haze et al., 1999; Yoshida et al., 2001). If the

imbalance of proteostasis in the ER is sustained, pro-

grammed cell death is triggered (Tabas and Ron, 2011).

Indicators for UPR are often used as markers of ER health.

Like many other organelles, the ER, in the form of either

tubules or sheets, is closely associated with microtubules

(Friedman and Voeltz, 2011; Staehelin, 1997; Terasaki et al.,

1986; Voeltz et al., 2002). The microtubule cytoskeleton not

only helps position and support ER membranes, but also

actively participates in remodeling the ER (Wang et al.,

2013). ER tubules are constantly pulled out of existing ER

membranes, by either associating with the growing plus end

of the microtubule or sliding along the microtubule with

molecular motors (Friedman and Voeltz, 2011). When

microtubules are depolymerized by nocodazole treatment,

the peripheral tubular ER network retracts towards the center

of the cell, yielding an ER made up of mostly sheets (Ter-

asaki et al., 1986). Thus, the microtubule network plays an

important role in ER morphogenesis.

Several ER-resident proteins that associate with micro-

tubules have been identified. STIM1 binds to the microtubule

plus end, moving it closer to its interaction partner on the

plasma membrane, Orai (Carrasco and Meyer, 2011; Grig-

oriev et al., 2008; Park et al., 2009). Tubule-localized

REEP1, a homolog of DP1 (also known as REEP5), has a

C-terminal microtubule-binding domain, the loss of which

causes hereditary spastic paraplegia (Park et al., 2010). ER

sheet marker Climp63 also engages microtubules using its

cytosolic N-terminus in a phosphorylation-dependent man-

ner (Klopfenstein et al., 1998; Vedrenne et al., 2005). Dis-

ruption of the interaction likely alters the mobility of sheet-

localized translocon complex (Nikonov et al., 2007). These

findings suggest that the ER-microtubule association has

physiological importance. However, the specific roles of such

association are not clear.

As described here, we accidently discovered that

Sec61β, the β subunit of the Sec61 translocon complex,

interacts directly with microtubules. In the translocon, the α

subunit is the pore-forming component, the γ subunit hinges

the α subunit, and the transmembrane (TM) domain of the β

subunit attaches in the periphery of the channel. The bac-

terial homolog of Sec61β is non-essential (Rapoport, 2007).

In yeast, double deletion of the two Sec61β homologs (Sb-

h1p and Sbh2p) only causes a temperature-sensitive growth

defect and can be rescued by the TM domain of the protein

(Feng et al., 2007; Finke et al., 1996). Therefore, Sec61β is

better known as a frequently used ER marker (Shibata et al.,

2006; Voeltz et al., 2006; Voeltz et al., 2002; Zurek et al.,

2011) and a model substrate for tail-anchored insertion into

the ER (Abell et al., 2004; Favaloro et al., 2008; Stefanovic

and Hegde, 2007). Interestingly, Sec61β is essential for

Drosophila development (Valcarcel et al., 1999) and critical

for C. elegans development. Depletion of Sec61β in mam-

malian cells and C. elegans induces mild ER stress. The

microtubule-binding ability of Sec61β is associated with the

maintenance of ER homeostasis.

RESULTS

Overexpressed Sec61β bundles ER and microtubule

In the process of making various ER markers, we noticed

that Sec61β containing a C-terminal HA tag localizes prop-

erly in the ER, but its expression dramatically alters the ER

morphology (Fig. 1A and 1G); most of the ER becomes swirl-

like thick tubules. Similar ER patterns have been seen in

cells overexpressing ER-bound proteins that can interact

with microtubules (Klopfenstein et al., 1998; Miyazaki et al.,

2012; Park et al., 2010). When tubulin was visualized in

COS-7 cells expressing Sec61β-HA, the microtubule net-

work was drastically rearranged and completely overlapped

with the ER network, suggesting an augmented association.

The same phenomenon was seen when the HA tag was

placed on the N-terminus of Sec61β (Figs. S1A and 1G).

Conversely, in cells expressing N-terminal RFP-tagged

Sec61β, a frequently used version of the ER marker, no ER-

microtubule bundling was observed (Fig. 1B and 1G), similar

to untreated cells (Fig. 1C). To rule out artifacts that might be

introduced by protein tagging or cell fixation, we co-trans-

fected non-tagged Sec61β, ER-DsRed and mEmerald-En-

sconsin (microtubule binding protein) into COS-7 cells. Live

cell imaging showed same ER-microtubule bundling in

transfected cells (Fig. 1D). These results suggest that

Sec61β may interact with microtubules and the binding can

be prevented with a large tag at the N-terminus.

As a tail-anchored protein, human Sec61β contains an

N-terminal cytosolic domain (cytSec61β) of 70 amino acids

(Fig. S1B). To pinpoint the microtubule-associating region in

Sec61β, we performed a serial truncation of the domain

(Fig. 1E). When the first 19 residues were deleted, the Sec61β

mutant was still able to bundle microtubules with the ER

(Fig. 1F). However, when the deletion was extended to 44

residues, such defects were no longer seen in the ER and

microtubule morphology (Fig. 1F). We then removed residues

20–44 of cytSec61β and found that the mutant failed to tangle

the ER and microtubules (Fig. 1F and 1G). The region of resi-

dues 20–44 is enriched with positively charged amino acids.

When all six of them (K20, R25, R32, R34, K35, andR42) were

substituted by alanine, themutant Sec61β-HA no longer linked

microtubule to the ER (Fig. 1F and 1G). In contrast and as

expected, when we replaced cytSec61β with a known
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Figure 1. Overexpressed Sec61β induces bundling of the ER and microtubule. (A) COS-7 cells transfected with Sec61β-HA

were immunostained for HA (green) and endogenous tubulin or luminal ER protein, calreticulin (red), and visualized by fluorescent

confocal microscopy. Insets show the enlargement of the indicated area. (B) As in (A), but with RFP-Sec61β-HA and were

immunostained only for tubulin or calreticulin (green). (C) As in (A), but wild type COS-7 cells were immunostained for calreticulin

(green) and tubulin (red). (D) COS-7 cells co-transfected with Sec61β, ER-DsRed (red), and mEmerald-Ensconsin (green) were

visualized live by fluorescent confocal microscopy. (E) Domain structures of constructs. (F) As in (A), but with various constructs

shown in (E), and were immunostained for HA-epitope (green) and tubulin (red). (G) The ER morphology of samples shown in (A) and

(B) was categorized as “bundled” and “normal” respectively. A total of 150 cells were counted for each sample. All graphs were

representative of three repetitions. In (A–D) and (F), scale bars are 10 μm.
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microtubule-binding (MTB) fragment (residues 1–80 of

Climp63), the chimeraMTBClimp63-TMSec61βbehaved the same

as Sec61β-HA in gluing the ER and microtubules into swirls

(Fig. 1F and 1G). Like all of the truncationmutants, the chimera

localized specifically to the ER (Fig. S1C). Notably, alterations

of the cytSec61β caused decreased expression level

(Fig. S1D). These results suggest that the microtubule-binding

site of Sec61β is within a middle region of its cytosolic domain.

Sec61β interacts directly with tubulin

To confirm the interactions between Sec61β and micro-

tubules, we performed microtubule sedimentation assays.

Endogenous Sec61β co-precipitated with tubulins when the

microtubules were reassembled in COS-7 cell lysates in the

presence of GTP and paclitaxel, and precipitated in a glycerol

cushion (Fig. 2A). Over-expressed wild-type Sec61β-HA

(Fig. 2B), but not the Δ20–44 mutant (Fig. 2C), also co-sedi-

mented with polymerized microtubule. Consistently, RFP-

Sec61β failed to settle with microtubules, even when

endogenous Sec61β did in the same lysates (Fig. 2D). These

results confirm that Sec61β interacts with microtubules.

To test whether the association is direct, we used purified

proteins to perform microtubule sedimentation assays. Wild-

type HA-cytSec61β was efficiently precipitated by micro-

tubules assembled with purified tubulins (Fig. 2E). The
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Figure 2. Sec61β interacts with microtubule. (A) COS-7 cells were harvested for microtubule co-sedimentation in the absence or

presence of GTP/paclitaxel (G/P). Samples of the supernatant (S) and pellet (P) were analyzed by Western blotting. (B–D) As in (A),

but transfected with full length Sec61β (B), Sec61β lacking residues 20–44 (C) or RFP-tagged Sec61β (D). The bands with asterisk

(*) may be degraded RFP-Sec61β-HA. (E) Purified wild-type HA-cytSec61β was incubated with microtubules (MT) or not, for

microtubule co-sedimentation. Samples were analyzed by Western blotting. (F) As in (E), but with HA-cytSec61β lacking residues

20–44. (G) Purified wild-type HA cytSec61β or HA-cytSec61β lacking residues 20–44 was incubated with tubulins and precipitated

with anti-HA antibody. The levels of indicated proteins were analyzed with Western blotting.
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deletion of residues 20–44 again disrupted the interactions

(Fig. 2F). Furthermore, when wild-type HA-cytSec61β but

not the Δ20–44 mutant, was incubated with tubulins, anti-HA

antibodies precipitated tubulins (Fig. 2G). These results

suggest that Sec61β engages tubulin directly in an assem-

bly-independent manner.

Depletion of Sec61β causes ER stress

To assess the role of Sec61β-mediated microtubule associ-

ation, we depleted Sec61β using RNA interference. Two

different shRNAs against Sec61β were individually intro-

duced into COS-7 cells using a viral vector. Sec61β deple-

tion was detected in both samples, with shRNA #2 being

more efficient than #1 (Fig. 3A). However, no obvious mor-

phological ER defects were seen in these cells (Fig. S2A).

The same applied to microtubules, Golgi, and mitochondria

(Fig. S2A). These results coincide with the redundancy of

ER-microtubule interactions.

Next, because Sec61β, as a component of the ER

translocon, is associated with the protein synthesis pathway,

we tested whether its depletion affects protein homeostasis

in the ER. Defective protein production in the ER activates

UPR signaling. In Sec61β-depleted COS-7 cells, splicing of

XBP1 mRNA (indicative of IRE1 activation) was detected

(Fig. 3A). The level of splicing was more prominent when

Sec61β was more efficiently depleted, but overall was

moderate compared to that triggered by thapsigargin (TG)

treatment (Fig. 3B). Similarly, eIF2α phosphorylation

(indicative of PERK activation) was elevated when Sec61β

was knocked down (Fig. 3A). XBP1 splicing was also

observed when Sec61β was depleted with siRNAs instead of
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shRNAs (Fig. 3C). In contrast, depletion of ER tubule marker

REEP1 or sheet marker Climp63 did not cause

detectable ER stress (Fig. S2C–E), even though both of

them interact with microtubules. These data demonstrate

that the loss of Sec61β induces ER stress.

We also tested whether Sec61β regulates ER home-

ostasis in the context of a multicellular organism. Y38F2AR.9

is the C. elegans homolog of Sec61β. A CHERRY::

Y38F2AR.9 reporter showed that, at the larval stage,

Y38F2AR.9 formed a reticular network and accumulated

around the nucleus, resembling the pattern of the ER

(Fig. 5A). In addition, CHERRY::Y38F2AR.9 co-localized

with ER marker GFP::TRAM-1, confirming that Y38F2AR.9

has the same localization as Sec61β (Fig. 5A). As in Dro-

sophila (Valcarcel et al., 1999), deletion of Y38F2AR.9

caused lethality. Thus, we used RNAi to deplete Y38F2AR.9.

Consistently, loss of Y38F2AR.9 caused a significant

increase in Phsp-4::GFP expression (Fig. 5B), indicative of

the induction of ER stress. These results confirm that the

function of Sec61β is essential and conserved in C. elegans.

Microtubule association by Sec61β regulates ER

homeostasis

To probe the role of Sec61β in the maintenance of ER

homeostasis, we tested whether Sec61β-mediated micro-

tubule association is critical. To this end, we generated Flp-

In-293 cells to stably express wild-type or mutant Sec61β

(Fig. S2F). Taken expression levels into consideration

(Fig. S1D), we chose two representative mutants:

B
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Figure 5. The function of Sec61β is essential and conserved in C. elegans. (A) Fluorescent micrographs of hypodermal cells in

gfp::tram-1 worms expressing CHERRY::Y38F2AR.9. DIC, differential interference contrast. Scale bar: 5 μm. (B) The y38f2ar.9 RNAi

was injected into worms carrying Phsp-4::GFP, and GFP fluorescence was assessed. For rescue assay, y38f2ar.9 RNAi was injected

into Phsp-4::GFP ER stress reporter worms carrying human SEC61B, MTBClimp63-TMSec61β or RFP-hSEC61B, and GFP

fluorescence was assessed. Scale bar: 100 μm.
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MTBClimp63-TMSec61β (microtubule-binding positive) and

RFP-Sec61β (microtubule-binding negative). The ectopic

expression of Sec61β was siRNA-resistant and induced by

the addition of tetracycline. Meanwhile, endogenous Sec61β

was depleted by the transfection of siRNA. As expected, the

moderate ER stress caused by Sec61β depletion and judged

by XBP1 splicing and PERK phosphorylation was alleviated

when Sec61β-HA was expressed at an equivalent level

(Fig. 4A). Notably, transfection of control siRNA or tetracy-

cline treatment per se did not trigger ER stress (Fig. 4A).

RFP-Sec61β, which does not bind to microtubules, failed to

rescue Sec61β-related ER stress (Fig. 4B). However, the

chimera MTBClimp63-TMSec61β was able to partially replace

Sec61β, maintaining ER proteostasis (Fig. 4B). When we

depolymerized microtubules using nocodazole (Fig. S3A),

presumably abolishing ER-microtubule interactions, weak

ER stress was detected (Fig. S3B and S3C).

To confirm the microtubule-binding role of Sec61β in a

physiological setting, we monitored the levels of ER stress in

C. elegans upon the expression of various Sec61β con-

structs. Elevation of the Phsp-4::GFP reporter caused by

depletion of Y38F2AR.9 was efficiently inhibited by the

expression of human Sec61β under a ubiquitous nfya-1

promoter, which resists RNAi treatments (Fig. 5B). ER stress

was partly suppressed when the chimera MTBClimp63-

TMSec61β was introduced, but not when RFP-Sec61β was

used (Fig. 5B). Interestingly, vectors containing human

SEC61B could only be injected at very low amounts in the

rescue experiments, suggesting that the Sec61β level needs

to be tightly regulated. Taken together, these results confirm

that the maintenance of ER homeostasis is likely linked to

interactions between Sec61β and microtubules.

ER-microtubule interaction plays a role in regulating

translocon mobility (Nikonov et al., 2007). To test whether

Sec61β has similar effect, we utilized M3/18 cells, in which

GFP-Dad1 (a subunit of the oligosaccharyltransferase)

reflects the lateral mobility of the translocon by being part of

the complex (Nikonov et al., 2002). The system was first

validated by FRAP analysis of GFP-Dad1 upon depletion of

Climp63 (Fig. 6A); as previously reported, the mobility of

translocon was increased (Fig. 6B). Consistently, depletion

of Sec61β promoted moving of the translocon (Fig. 6A and

6B) without compromising Sec61α-Dad1 association
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(Fig. 6C). These results suggest that microtubule binding by

Sec61β likely limits translocon mobility.

Because co-translational translocation requires a

stable association between the translating ribosome and

translocon, we further tested whether microtubule binding by

Sec61β regulates ribosome-translocon complex formation.

Cytosolic ribosomes were collected after plasma membrane

permeablilization, with the remaining ribosomes considered

membrane-bound (i.e., ER-associated through interactions

with translocons). When ribosomal profiling was analyzed

using density gradients, Sec61β-depleted cells contained

increased cytosolic ribosomes and decreased membrane-

bound ribosomes compared to cells treated with control

siRNA (Figs. 7A and S4A), even though the total amount of

ribosomes judged by immunoblotting of ribosomal protein

L7a remained unchanged (Fig. 7B). Consistently, RFP-tag-

ged Sec61β failed to restore membrane attachment of ribo-

somes (Fig. 7C, 7D, and S4B), but the chimera MTBClimp63-

TMSec61β succeeded (Fig. S4C–E). These results suggest

that Sec61β may facilitate the attachment of ribosomes to

translocons using its microtubule-binding ability.

DISCUSSION

Our results characterize a previously unidentified activity of

the cytosolic domain of Sec61β. We show that Sec61β

interacts directly with microtubules, and is involved in the

maintenance of ER homeostasis. Specifically, depletion of
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Sec61β causes ER stress in both C. elegans and mam-

malian cells, and rescue of the stress appear to associate

with the microtubule-binding activity, even when the cytosolic

domain of Sec61β is replaced by the MTB domain of

Climp63. Our results also suggest that the microtubule-

binding activity of Sec61β likely stabilizes ribosome-

translocon interactions. These findings provide important

insights into the physiological role of the ER-microtubule

association mediated by Sec61β.

Previous work on Sec61β focused mainly on its TM

region. As part of the translocon, the TM of Sec61β facili-

tates the organization of the translocon-associated complex,

including the interactions with signal peptidase and Sec62/

63 (Kalies et al., 1998; Meyer et al., 2000). In yeast, the

growth defects caused by double deletion of SBH1 and

SBH2, paralogs of Sec61β, can be restored by expression of

only the TM region of yeast or human Sec61β (Feng et al.,

2007; Leroux and Rokeach, 2008). Whether the transloca-

tion role associated with the TM of Sec61β is more important

in other eukaryotic organisms is yet to be determined.

The cytosolic domain of Sec61β has been proposed to

interact with ribosomes or exocyst complexes (Levy et al.,

2001; Lipschutz et al., 2003; Toikkanen et al., 2003).

Because Sec61β integrates into the ER membrane as a tail-

anchored protein, it also frequently associates with cytosolic

chaperones before membrane insertion (Abell et al., 2007).

Our results add microtubules to the list of cytSec61β binding

partners. Overexpression of Sec61β causes bundling

between the ER and microtubules, endogenous Sec61β

precipitates with reassembled microtubules, and purified

cytSec61β co-sediments with microtubules formed in vitro

using purified tubulin. The interaction requires the middle

region of cytSec61β, which has a poorly conserved

sequence but bears several basic residues and may directly

engage tubulin, which contains an acidic tail. Interestingly,

the interaction is inhibited when a RFP tag is added to the

N-terminus of Sec61β, explaining why this activity was not

seen previously (Sec61β is most commonly used in the form

of a GFP/RFP fusion protein as an ER marker for live cell

imaging).

The ER-microtubule association is thought to play a key

role in ER morphogenesis and positioning (Goyal and

Blackstone, 2013; Terasaki et al., 1986). However, due to the

redundancy of microtubule-binding proteins on the ER,

individual depletion rarely causes the morphological ER

defects that occur when microtubules are mostly depoly-

merized. Consistently, knocking down Sec61β does not alter

ER morphology, but causes ER stress. Restoration of the ER

homeostasis is only achieved when wild type Sec61β or the

chimera MTBClimp63-TMSec61β is reintroduced, implicating an

involvement of ER-microtubule interaction in ER homeosta-

sis, instead of ER shaping. Poor expression of the micro-

tubule-binding mutants of Sec61β limits our analysis and

leaves the possibility that cytSec61β is critical for other

functions.

We also found that Sec61β stabilizes the ribosome-

translocon association. These findings are consistent with

previous reports showing that ER stress is triggered when

ribosomal membrane-targeting is reduced (Gamerdinger

et al., 2015). The stress is possibly caused by a shortage of

necessary factors for maintaining ER homeostasis and/or

mistakes resulting from premature separation of the ribo-

some-translocon complex. It is also likely that loss of Sec61β

interferes with recently reported functional linkage between

translocon and IRE1 (Plumb et al., 2015; Sundaram et al.,

2017), which in turn triggers UPR. However, IRE1 engages

translocon mainly through its TM segment, whether

cytSec61β is involved remains to be investigated.

Another ER sheet-enriched protein that interacts with

microtubules is Climp63. The microtubule association by

Climp63 has been proposed to regulate the mobility of the

translocon and, thus, may indirectly regulate the stability of

the translocating complex. We found that depletion of either

protein increases translocon mobility. However, depletion of

Climp63 does not cause ER stress as seen with Sec61β,

suggesting that the microtubule-binding ability of Sec61β

has a direct impact on translocon, and that of Climp63 may

have other functions, such as positioning ER sheets in the

perinuclear region.

Our findings partly explain why Sec61β is essential in

higher eukaryotes. Sec61β has also been reported to have

specific roles, such as regulating the transport of Gurken, an

EGF homolog in Drosophila, to the plasma membrane

(Kelkar and Dobberstein, 2009), and its involvement in the

inner nuclear membrane transport of EGFR (Liao and Car-

penter, 2007; Liao and Carpenter, 2009; Wang et al., 2010).

Whether these activities are associated with the microtubule-

binding ability identified here remains to be tested. Notably,

C. elegans lines expressing Sec61β can only be obtained

when vectors are injected at a very low level, implying that

overexpression of Sec61β is hazardous and its level needs

to be fine-tuned in higher organisms.

MATERIALS AND METHODS

Constructs

Fragments of human SEC61B were amplified from its cDNAs and

connected using overlap PCR to generate truncations and chimeras.

MTB domain of Climp63 (residues 1–80) was amplified from a

plasmid coding mouse Climp63. For mammalian cell expression, the

indicated fragments were PCR-amplified with an N- or C-terminal HA

tag and ligated into pcDNA4/TO or pcDNA5/TO vector. The plasmid

mEmerald-Ensconsin is a gift from Dong Li’s lab. For Caenorhabditis

elegans expression, y38f2ar.9 containing its 3′-untranslated region

(3′-UTR) was amplified and subcloned into pPD49.26 vector with the

promoter of hyp7 and cherry on the N terminus. The rescue frag-

ments, which were the same with those in mammalian cells, were

subcloned into pPD49.26 vector with the promoter of nfya-1. For

protein purification, the indicated fragments were subcloned into

pSUMO vector.
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siRNAs, shRNAs and gRNA for indicated proteins

SiRNA oligonucleotides targeting Sec61β (Wang et al., 2010),

REEP1 and nonspecific siRNA control were purchased from Ribo-

Bio. The siRNA sequences are as following: Sec61β siRNA #1, 5′-

GCAAGUACACUCGUUCGUA-3′; Sec61β siRNA #2, 5′-CUGUAA

GCUUGCUGUUUUA-3′; Sec61β siRNA for M3/18 cells, 5′-GCAA-

GUACACACGCUCAUA-3′; REEP1 siRNA #1, 5′-GGCUGGUG-

GUGCUUAUAUU-3′; REEP1 siRNA #2, 5′-CCUCCUUUACAGGA

AGUUU-3′; Climp63 siRNA for M3/18 cells, 5′-CCAAGUCCAU-

CAAUGACAA-3′ (Nikonov et al., 2007). The shRNA coding plas-

mids were purchased from Sigma. The shRNA coding sequences

are as following: Sec61β shRNA #1, 5′-CCGGCAGTATTGGTTAT-

GAGTCTTCCTCGAGGAAGACTCATAACCAATACTGTTTTTTG-3′;

Sec61β shRNA #2, 5′-CCGGCCCAACATTTCTTGGACCAAACTC

GAGTTTGGTCCAAGAAATGTTGGGTTTTTTG-3′. The sequence

of gRNA used in U2OS Climp63 deletion cell line is 5′-

CGCCGCGCCCGCCATGCCCT-3′.

Cell culture, transfection, and co-immunoprecipitation

COS-7 cells (ATCC), U2OS cells (ATCC), MEF cells and M3/18 cells

(a gift from Gert Kreibich’s group) were maintained in Dul-

becco’s Modified Eagle’s medium (DMEM; Invitrogen) supple-

mented with 10% fetal bovine serum (Gibico) at 37 °C (but M3/18

cells at 39.5 °C) in 5% CO2. Flp-InTM T-RExTM-293 (Invitrogen)

expression cell lines were generated following Invitrogen’s protocol

and maintained in DMEM (Invitrogen) with 10% fetal bovine serum

(HyClone), 2 mmol/L L-glutamine (Invitrogen), 15 μg/mL Blasticidin,

100 μg/mL Hygromycin and Penicillin-Streptomycin (Invitrogen) at

37 °C in 5% CO2. The Sec61β shRNA stable cell lines were gen-

erated following the pLKO.1 protocol (Addgene). Transfections were

performed using TurboFect (Thermo) for plasmids and Lipofec-

tamine RNAiMAX (Invitrogen) for siRNAs according to the manu-

facturer’s instructions. For co-immunoprecipitation experiments,

45% confluent M3/18 cells were transfected with indicated siRNAs

and harvested 48 h later in IP buffer (25 mmol/L HEPES pH 7.4, 150

mmol/L KAC, 2 mmol/L Mg(AC)2 and protease inhibitors) containing

1% digitonin. Cell lysates were incubated with anti-GFP agarose

(MBL) for 2 h at 4 °C. Washed precipitates were separated by SDS-

PAGE and immunoblotted with anti-GFP and anti-Sec61β antibodies

(Sigma).

Strains

Caenorhabditis elegans were cultured according to standard tech-

niques (Brenner, 1974). The following strains were used in this work:

zcIs4 (Phsp-4::GFP) and qxIs439 (Phpy7::gfp::tram-1). All experi-

ments were performed at 20 °C unless otherwise noted.

Immunofluorescence and confocal microscopy

COS-7 cells or U2OS cells were fixed with 4% paraformaldehyde

(PFA) in PBS for 25 min, permeabilized with 0.1% Triton X-100/PBS

for 10 min, and blocked with 3% BSA for 1 h at room temperature.

Fixed cells were then incubated with primary antibodies for 1 h at

room temperature or overnight at 4 °C, including rabbit anti-calreti-

culin (Abcam; 1:800), mouse anti-Tubulin (Thermo; 1:200), rabbit

anti-Tubulin (Abcam; 1:1000), mouse anti-HA (Sigma; 1:500), rabbit

anti-HA (Abcam; 1:1000), mouse anti-GM130 (BD; 1:500) and

mouse anti-TOM20 (BD; 1:500), followed by incubation with various

fluorophore-conjugated secondary antibodies (Alexa Fluor

488-conjugated anti-rabbit or mouse, Alexa Fluor 568-conjugated

anti-mouse or rabbit, Invitrogen) for 1 h at room temperature. All

images were captured on Leica TCS SP5 or Zeiss LSM700 confocal

microscope with a 63× objective. Brightness and contrast were

adjusted across the entire image using Adobe Photoshop.

Microtubule co-sedimentation assay

For in vivo assay, following 10 min’s incubation on ice in 500 μL MME

buffer (100 mmol/L MES pH 6.8, 1 mmol/L MgCl2, 1 mmol/L EGTA, 1

mmol/L DTT and protease inhibitor) containing 1% Trition X-100,

COS-7 cells from a 6-cm dish were homogenized by the tight-fitted

Dounce homogenizer for 150 strokes, and then placed on ice for 30

min before centrifugation for 10 min at 20,000 × g. The supernatant

was added to 30 μmol/L paclitaxel (Sigma) and 1mmol/L GTP

(Sigma) in a 100 μL reaction volume followed by incubation at 37 °C

for 30 min, and the mixture was loaded over the MME Cushion buffer

(100 mmol/L MES pH 6.8, 1 mmol/L MgCl2, 1 mmol/L EGTA, 1 mmol/

L DTT, 20% glycerol and protease inhibitors) containing 30 μmol/L

paclitaxel and centrifuged at 32 °C for 50 min at 100,000 × g. The

negative control was incubated on ice without GTP and paclitaxel,

and centrifuged at 4 °C for 50 min at 100,000 × g. The pellet (con-

taining microtubules and associated proteins) and supernatant frac-

tions were then collected and examined by Western blotting. For

in vitro assay, microtubules were assembled with 5 μmol/L bovine

brain tubulin (Cat. #TL238, Cytoskeleton; a gift from Jun Zhou’s lab)

in 100 μL BRB80 buffer (80 mmol/L PIPES pH 6.8, 1 mmol/L EGTA, 1

mmol/L MgCl2, 5% glycerol and protease inhibitor) in the presence of

1 mmol/L GTP at 37 °C for 30 min, and then added to 30 μmol/L

paclitaxel and 1.5 μmol/L purified protein (centrifuged at 4 °C for 10

min at 100,000 × g) followed by incubation for another 20 min at 37 °

C. The reaction mixture was then analyzed as above.

Protein expression, purification, and pull-down assay

The cytosolic domain of human Sec61β and its Δ20–44 truncation

fused with an N-terminal cleavable His-SUMO tag followed by an HA

tag were expressed in Escherichia coli. The cells were lysed in lysis

buffer (50 mmol/L Tris pH 8.0, 300 mmol/L NaCl, 2 mmol/L β-mer-

captoethanol and 20 mmol/L imidazole) containing 1 mmol/L PMSF.

The proteins were isolated with Ni-NTA, washed, and eluted with

300 mmol/L imidazole in lysis buffer. The His-SUMO tag was

cleaved with His-tagged SUMO protease Ulp1p and removed by Ni-

NTA chromatography followed by gel filtration. For pull-down assay,

5 μmol/L tubulin and 1.5 μmol/L purified protein were precipitated

with anti-HA agarose (Sigma) in IP buffer (50 mmol/L Tris pH 7.5,

150 mmol/L NaCl, 1 mmol/L EDTA, 30% glycerol and protease

inhibitors) containing 1% NP-40 for 2 h at 4 °C. Washed precipitates

were separated by SDS-PAGE and immunoblotted with anti-HA and

anti-Tubulin antibodies (Abcam).

RNA isolation and RT-PCR

Cells were lysed using Trizol (Invitrogen) and total RNA was col-

lected. cDNA reverse-transcribed from poly-A mRNA was used as
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template for PCR with the following primers: specific for human and

monkey XBP1, 5′-CCTTGTAGTTGAGAACCAGG-3′ and 5′-

GGGGCTTGGTATATATGTGG-3′ (Szczesna-Skorupa et al., 2004);

specific for mouse XBP1, 5′-CCTTGTGGTTGAGAACCAGG-3′ and

5′-GAGGCTTGGTGTATACATGG-3′; specific for monkey REEP1

#1, 5′-TTGTAGCCTGGCTGCTGTCTCC-3′ and 5′-AAGCAGCCAT-

CACAGCCGCTG-3′; monkey REEP1 #2, 5′-GGACAGGGTGCCTT

ATCAG-3′ and 5′-ACTCCTGGACATCTTAGGCTG-3′; for monkey

GAPDH, 5′-GAAGGTGAAGGTCGGAGTCA-3′ and 5′-GAA-

GATGGTGATGGGATTTC-3′. PCR products were resolved on a

2.5% agarose/1× TAE gel. A hybrid amplicon species consisting of

unspliced XBP1 annealed to spliced XBP1 was also produced

through the PCR and was visible as a slower migrating band above

the unspliced amplicon (Li et al., 2010).

RNAi and rescue assay in C. elegans

To determine the localization of Y38F2AR.9, the cherry::y38f2ar.9

construct was injected into gfp::tram-1 animals at the concentration

of 1ng/μL and pRF4(rol-6[su1006]) was co-injected. The F1 animals

were checked with Zeiss LSM710 META confocal microscope. For

RNAi injection experiments, single-stranded RNA was transcribed

from T7- and SP6-flanked PCR templates. ssRNAs were then

annealed and injected into animals carrying Phsp-4::GFP. The F1

animals were checked. The DNA template used for RNA synthesis

was y38f2ar.9 (YAC Y38F2AR: nt 56335–56636). For rescue assay,

the indicated construct was injected into the Phsp-4::GFP worms

together with pRF4(rol-6[su1006]) and y38f2ar.9RNAi was then

injected into the F2 animals. The F3 animals were checked with

Zeiss LSM710 META confocal microscope.

Fluorescence recovery after photobleaching

M3/18 cells were seeded and grown overnight at 39.5 °C on glass-

bottom 35-mm tissue culture dishes (MatTek) in complete growth

medium. After siRNA transfection for 48 h, the cells were ready for

FRAP at 39.5 °C in 5% CO2. FRAP experiments were performed on

a Leica TCS SP5 confocal microscope as previously described

(Nikonov et al., 2002).

Isolation of cytosolic and membrane-bound ribosomes

U2OS cells were seeded on two 15-cm plates for each group and

allowed to grow to 100% confluence. 100 μg/mL of cycloheximide

was added to the cells for 15 min before harvest as described

(Zhang and Zhou, 2012). Cells were resuspended in Polysome

Extraction Buffer (PEB; 20 mmol/L Tris pH 7.5, 50 mmol/L KCl, 10

mmol/L MgCl2, 1 mmol/L DTT, 100 μg/mL CHX, 500 U/mL RNasin

and protease inhibitors) containing 0.008% (w/v) digitonin, incubated

for 5 min on ice (Gamerdinger et al., 2015) and centrifuged at 800

rpm for 4 min. The supernatant containing cytosolic ribosomes was

collected. After two washing steps in PEB buffer, membrane-bound

ribosomes were released by incubating pellets in PEB buffer sup-

plemented with 1% (v/v) Triton X-100 for 30 min on ice. After cen-

trifugation at 14,000 rpm for 30 min, the supernatant containing

membrane-bound ribosomes was collected. The cytosolic and

membrane fractions were then loaded on a 10%–50% linear sucrose

gradient and sedimented in a SW41 rotor at 247,600 × g for 2 h at 4 °

C. The gradients were fractionated using a piston gradient frac-

tionator (BioComp Instruments, Fredericton, NB, Canada) and UV

absorbance at 254 nm was monitored by a UV-Monitor (BioRad,

Hercules, CA).
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