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Abstract

Clustered sensor networks have been shown to increase
system throughput, decrease system delay, and save energy.
While those with rotating cluster heads, such as LEACH,
have also advantages in terms of security, the dynamic na-
ture of their communication makes most existing security
solutions inadequate for them. In this paper, we show how
random key predistribution, widely studied in the context of
flat networks, can be used to secure communication in hier-
archical (cluster-based) protocols such as LEACH. To our
knowledge, it is the first work that investigates random key
predistribution as applied to hierarchical WSNs.

1 Introduction

Wireless sensor networks (WSNs) [6] are emerging as
a technology for monitoring different environments of in-
terest and they find applications ranging from battlefield
reconnaissance to environmental protection. When em-
bedded in critical applications, WSNs are likely to be at-
tacked [13, 19]. Aside from the well known vulnerabilities
due to wireless communication, WSNs lack physical pro-
tection and are usually deployed in open, unattended envi-
ronments, which makes them vulnerable to attacks. It is
thus crucial to devise security solutions to these networks.

An important issue one needs to tackle when using cryp-
tographic methods to secure a network is key distribution
(KD), which has been intensively studied (e.g., [3–5,10,11,
14,17,20,21]) in the context of WSNs. Note, however, that a
large number [1] of WSN architectures have been proposed
and a KD solution that is well suited to one architecture is
likely not to be the best for another, as different network
architectures exhibit different communication patterns.

Cluster-based organization (e.g., [8]) has been proposed
for ad hoc networks in general and WSNs in particular. In
cluster-based networks, nodes are typically organized into
clusters, with cluster heads (CHs) relaying messages from
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ordinary nodes in the cluster to the base stations (BSs).
Clustered WSNs were first proposed for various reasons in-
cluding scalability and energy efficiency. Those with rotat-
ing CHs, like LEACH [8], are also interesting in terms of
security, as their routers (the CHs), which are more promi-
nent targets for adversaries because of their role in rout-
ing, rotate from one node to another periodically, making it
harder for an adversary to identify the routing elements and
compromise them [13].

Adding security to LEACH-like protocols is challeng-
ing, as its dynamic and periodic rearranging of the net-
work’s clustering (and changing links) makes KD solutions
that provide long-lasting node-to-node trust relationships
(to be sure, provided by most existing solutions) inadequate.
And even though there is previous work [7] on security for
LEACH, it does not address all the problems.

In this paper, we focus on providing efficient security to
pairwise node-to-CH communications in LEACH-like pro-
tocols. To this end, we first propose SecLEACH, a modified
version of LEACH that bootstraps its security from random
key predistribution. We then give a detailed analysis and
performance evaluation of our scheme, and present num-
bers on how the various parameters impact the trade-offs
between cost and security. Our main contributions are: 1)
to have provided an efficient solution for securing pairwise
communications in LEACH; and;2) to have shown how ran-
dom key predistribution can be used to secure dynamic hi-
erarchical (cluster-based) sensor networks protocols,

To be sure, random key predistribution has been studied
profusely [10], but always in the context of flat WSNs. Due
to this fact, these studies have not taken into consideration
communication patterns of hierarchical (cluster-based) net-
works and thus cannot be applied, as is, to them. To the best
of our knowledge, ours is the first that investigates random
key predistribution as applied to hierarchical (cluster-based)
WSNs with rotating CHs.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the original LEACH protocol, and dis-
cuss its vulnerabilities. In Section 3, we discuss what is
needed to cryptographically secure LEACH’s communica-
tions and why existing solutions are inadequate. We present



our solution (SecLEACH) in Section 4, and analyze its per-
formance in Section 5. Finally, we discuss related work and
conclude in Sections 6 and 7, respectively.

2 LEACH and its vulnerabilities

LEACH (Low Energy Adaptive Clustering Hierar-
chy) [8] was proposed to balance energy drainage among
nodes. It assumes that every node can directly reach a BS by
transmitting with high enough power. However, to save en-
ergy, sensor nodes send their messages to their CHs, which
then aggregate the messages, and send the aggregate to the
BS. To prevent energy drainage of a restricted set of CHs,
LEACH randomly rotates CHs among all nodes in the net-
work, from time to time, thus distributing aggregation- and
routing-related energy consumption among all nodes in the
network. LEACH thus works in rounds. In each round, it
uses a distributed algorithm to elect CHs and dynamically
cluster the remaining nodes around the CHs. The resulting
clustering structure is used by all sensor-BS communica-
tions for the remaining of the round.

2.1 Protocol Description

Rounds in LEACH (Fig. 1) have predetermined duration,
and have a setup phase and a steady-state phase. Through
synchronized clocks, nodes know when each round starts.

The setup consists of three steps. In Step 1 (advertise-
ment step), nodes decide probabilistically whether or not to
become a CH for the current round (based on its remaining
energy and a globally known desired percentage of CHs).
Those that decide to do so broadcast a message (adv) ad-
vertising this fact, at a level that can be heard by everyone
in the network. To avoid collision, a carrier sense multiple
access protocol is used. In Step 2 (cluster joining step), the
remaining nodes pick a cluster to join based on the largest
received signal strength of an adv message, and communi-
cate their intention to join by sending a join req (join re-
quest) message. Once the CHs receive all the join requests,
Step 3 (confirmation step) starts with the CHs broadcasting
a confirmation message that includes a time slot schedule to
be used by their cluster members for communication dur-
ing the steady-state phase. Given that all transmitters and
receivers are calibrated, balanced and geographically dis-
tributed clusters should result.

Once the the clusters are set up, the network moves on
to the steady-state phase, where actual communication be-
tween sensor nodes and the BS takes place. Each node
knows when it is its turn to transmit (Step 4), according
to the time slot schedule. The CHs collect messages from
all their cluster members, aggregate these data, and send the
result to the BS (Step 5). The steady-state phase consists of
multiple reporting cycles, and lasts much longer compared
to the setup phase.

Setup phase

1. H ⇒ G : idH, adv

2. Ai → H : idAi
, idH, join req

3. H ⇒ G : idH, (. . . , 〈idAi
, tAi

〉, . . .), sched

Steady-state phase

4. Ai → H : idAi
, idH, dAi

5. H → BS : idH, idBS,F(. . . , dAi
, . . .)

The various symbols denote:

Ai, H, BS : An ordinary node, a cluster head,
and the base station, respectively

G : The set of all nodes in the network
⇒,→: Broadcast and unicast,

transmissions respectively
idX : Node X’s id
dX : Sensing report from node X

〈idX, tX〉 : Node X’s id and its time slot tX

in its cluster’s transmission schedule
adv, join req, sched : String identifiers for message types

F : Data aggregation function

Figure 1. LEACH protocol

2.2 Security vulnerabilities

Like most routing protocols for WSNs, LEACH is vul-
nerable to a number of security attacks [13], including jam-
ming, spoofing, replay, etc. However, because it is a cluster-
based protocol, relying fundamentally on the CHs for data
aggregation and routing, attacks involving CHs are the most
damaging. If an intruder manages to become a CH, it can
stage attacks such as sinkhole and selective forwarding, thus
disrupting the workings of the network. Of course, the in-
truder may leave the routing alone, and try to inject bogus
sensor data into the network, one way or another. A third
type of attack is (passive) eavesdropping.

Note that LEACH is more robust against attacks than
most other routing protocols [13]. In contrast to more con-
ventional multihop schemes where nodes around the BS
are especially attractive for compromise (because they con-
centrate all network-to-BS communication flows), CHs in
LEACH communicate directly with the BS, can be any-
where in the network, and change from round to round. All
these characteristics make it harder for an adversary to iden-
tify and compromise strategically more important nodes.

3 Adding Security to LEACH: Background

One of the first steps to be taken to secure a WSN is to
prevent illegitimate nodes from participating in the network.
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This access control can preserve much of a network’s op-
erations, unless legitimate nodes have been compromised.
(Note that access control does not solve all security prob-
lems in WSNs. E.g., it is ineffective against DoS attacks
based on jamming wireless channels, or manipulating a
node’s surrounding environment to induce the reporting of
fabricated conditions.) Access control in networks has typ-
ically been implemented using cryptographic mechanisms,
which rely critically on KD.

3.1 Why Existing KDs Are Inadequate

There are a number of KD schemes in the security litera-
ture [18], most of which are ill-suited to WSNs: public key
based distribution, because of its processing requirements;
global keying, because of its security vulnerabilities; com-
plete pairwise keying, because of its memory requirements;
and those based on a key distribution center, because of its
inefficiency and energy consumption [20].

Some KD schemes (e.g., [4, 10, 11, 14, 17, 20, 21]). have
been specifically designed for WSNs. While they are well-
suited for network organizations they were designed for,
they are inadequate for others . These schemes typically as-
sume that a node interacts with a quite static set of neighbors
and that most of its neighborhood is discovered right after
the deployment. However, clusters in LEACH are formed
dynamically (at random) and periodically, which changes
interactions among the nodes and requires that any node
needs to be ready to join any CH at any time.

For instance, LEAP [20], a proposed scheme based on
local distribution of keys among nodes in a neighborhood, is
rather efficient for flat networks where nodes interact with a
rather static set of neighbors. However, if LEAP were used
to secure communication in LEACH, a new KD could be
required per round. This not only would be inefficient, but
also infeasible, as LEAP relies on a master key that is erased
from nodes’ memory as soon as the first KD is performed.

In what follows, we discuss the network model assumed
in LEACH, and the requirements it sets for key distribution.

3.2 KD for LEACH: Requirements and
Constraints

Our discussion in Section 2.2 shows the need for the
nodes to authenticate each other as legitimate members of
the network both in the setup interactions and the sensor
data reporting communications. Given the communication
patterns in LEACH, two different types of authentication
are required: authenticated broadcast, for broadcasts from
the CHs to the rest of the network (Fig. 1, Steps 1 and 3);
and pairwise authentication for the remaining (node-to-CH
and CH-to-BS) communications.

Symmetric-key authenticated broadcasts for WSNs, both
global (µTESLA [16]) and local (LEAP [20]), share the

Setup phase

1.1. H ⇒ G : idAi
, idH,mackH(idH | cH | adv)

Ai : store(idH)
BS : if mackH(idH | cH | adv) is valid,

add(idH,V)

1.2. BS ⇒ G : V,mackj (V)

1.3. BS ⇒ G : kj

Ai : if
(
f

(
kj

)
= kj+1

)
and (idH ∈ V) ,

H is authentic
2. Ai → H : idAi

, idH, join req

3. H ⇒ G : idH, (. . . , 〈idAi
, tAi

〉, . . .), sched

Symbols as previously defined, with the following additions:

kX : Symmetric key shared by node X and BS
kj : j-th key in a one-way key chain;
cX : Counter shared by node X and BS
V : An array of node ids

f() : One-way hash function
mack(msg) : MAC calculated using key k

store(idH) : Store idH for future validation
add(idH,V) : Add idH to V

Figure 2. F-LEACH’s setup protocol

core idea of using a one-way key chain (a sequence of keys
k1, . . . kn, where ki+1 is generated from ki by applying a
one-way hash function f(), i.e., ki+1 = f(ki)) to achieve
authentication. These schemes cannot be applied, as is, to
LEACH because: 1) the key chain would require significant
storage space in the broadcasting CHs; and more impor-
tantly, 2) all nodes in the network would need to store one
key for each node in the network, which is neither practical
nor scalable. (Each node needs to store one key for every
other node in the network because an ordinary node needs
to be able to authenticate the CHs in each round, which can
be arbitrary nodes in the network.)

Pairwise authentication is also challenging to implement
in LEACH, because of KD issues. Given that any node
needs to be ready to join any CH (which could be any node
in the network), it would need to have shared pairwise keys
with every other node in the network. Just like in authenti-
cated broadcast, this is neither practical, nor scalable.

3.3 Existing Work on Securing LEACH

Cryptographic protection for LEACH has been studied
before. Ferreira et al. [7] proposed a scheme (henceforth
refereed as F-LEACH) where each node has two symmetric
keys: a pairwise key shared with the BS; and the last key of
a key chain held by the BS, used in authenticated broadcast.
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F-LEACH (Fig. 2) implements authentication for CHs’
broadcasts in two smaller steps, leveraging on the BS, who
is trusted and has more resources. Briefly, each CH sends
(Step 1.1) a slightly modified adv message consisting of:
1) the id of the CH in plaintext, used by the ordinary nodes
as before; and 2) a MAC1 produced using the key the CH
shares with the BS (which will be used by the BS for the
purpose of authentication). The BS waits to hear and au-
thenticate (modified) adv messages from all CHs; compiles
the list of legitimate CHs; and sends the list to the network
using the µTESLA [16] broadcast authentication scheme
(Steps 1.2 and 1.3). Ordinary nodes now know which of the
adv messages they received are from legitimate nodes, and
can proceed with the rest of the original protocol, choosing
the CH from the list broadcast by the BS. The other broad-
cast by the CHs (Step 3) is authenticated the same way. For
clarity of presentation, we do not reproduce the full-blown
authenticated version here.

Using only two keys per node, F-LEACH does not man-
age to provide a complete and efficient solution for node-to-
CH authentication. In particular, join req messages (Step
2) in the setup protocol are not authenticated; and ordi-
nary nodes only share keys with the BS. This means that
the CHs are prevented from verifying the sensing reports’
MACs and, in turn, have to forward them, which incurs a
considerable energy consumption.

In this paper, we propose an alternative, using random
key predistribution, to set up keys for securing node-to-CH
communication in LEACH. The solution is meant to protect
the network from attacks by outsiders, i.e., adversaries that
do not have credentials (e.g., keys or certificates) to show
that they are members of the network Another rather ordi-
nary trust assumption we make is that BSs are trusted.

4 SecLEACH – Random KD to LEACH

In this section, we first describe the main ideas behind
random key predistribution schemes, (Section 4.1), then
show how they can be used to secure node-to-CH communi-
cations in LEACH (Section 4.2). Note that we use LEACH
to be concrete, but our proposal should have a wider appli-
cability, and be easily adaptable to other similar protocols.

4.1 Random Key Predistribution

Random key predistribution for WSNs was first pro-
posed by Eschenauer and Gligor [5], and has since been
studied by several research groups [10]. In a random key
predistribution scheme, each node is assigned a set of keys
drawn from a much larger key pool. Different schemes have
different assignment algorithms, but they all result in prob-
abilistic key sharing among the nodes in the network.

1Note that MAC is often used to stand for medium access control in
networking papers. Here, MAC stands for message authentication code.

To bootstrap security using Eschenauer and Gligor’s
original scheme [5], a network goes through three phases.
In the first phase (key predistribution), which takes place
prior to network deployment, a large pool of S keys and
their ids are generated. Each node is then assigned a ring of
m keys, drawn from the pool at random, without replace-
ment. In the second phase (shared-key discovery), which
takes place during network setup, all nodes broadcast the
ids of the keys on their key rings. Through these broad-
casts, a node finds out with which of their neighbors (as de-
termined by communication range) they share a key. These
keys can then be used for establishing secure links between
the two neighbors. Finally, during path-key establishment
phase, pairs of neighboring nodes that do not share a key
can set up their own keys, as long as they are connected by
two or more secure links at the end of shared key discovery.

Because of the way keys are assigned, a key can be found
in more than two nodes, and used in multiple communica-
tion links. When a node is compromised, all its keys are
compromised, and all the links secured by these keys are
also compromised.

The initial assignment of key rings to nodes can also
be done pseudorandomly [17, 21]. Pseudorandom schemes
make both the key predistribution and the shared-key dis-
covery more efficient.

4.2 SecLEACH – Protocol Description

In our solution, we propose to generate a large pool of S
keys and their ids prior to network deployment. Each node
is then assigned a ring of m keys drawn from the pool pseu-
dorandomly [21], without replacement, as follows. For each
node X , we use a pseudorandom function (PRF) to generate
its unique id idX. idX is then used to seed a pseudorandom
number generator (PRNG) of a large enough period to pro-
duce a sequence of m numbers. RX, the set of key ids as-
signed to X , can then be obtained by mapping each number
in the sequence to its correspondent value modulus s. Also
prior to deployment, for each node is assigned a pairwise
key shared with the BS.

The LEACH clustering algorithm can then be run with
the following modifications: when a self-elected CH broad-
casts its adv message , it includes the ids of the keys in its
key ring; the remaining nodes now cluster around the clos-
est CH with whom they share a key. Fig. 3 shows the details
of our SecLEACH protocol.

In Step 1, a self-elected CH H broadcasts its id idH and a
nonce. In Step 2, ordinary nodes Ai compute the set of H’s
key ids (using the pseudorandom scheme described above),
choose the closest CH with whom they share a key k[r], and
send it a join req message, protected by a MAC. The MAC
is generated using k[r], and includes the nonce from H’s
broadcast in Step 1 (to prevent replay attacks), as well as
the id r of the key chosen to protect this link (so that the re-
ceiving CH knows which key to use to verify the MAC). In
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Step 3, the CHs send the time slot schedule to the nodes that
chose to join their clusters, and conclude the setup phase.

In the steady-state phase, node-to-CH communications
(Step 4) are protected using the same key used to protect
the join req message in Step 2. A value computed from the
nonce (nonce) and the reporting cycle (j) is also included
to prevent replay. The CHs can now decrypt the sensing
reports they receive, perform data aggregation, and send the
aggregate result to the BS (Step 5). The aggregate result is
protected using the symmetric key shared between the CH
and the BS. For freshness, a counter (shared between the
CH and the BS) is included in the MAC value as well.

Fig. 3 shows only one reporting cycle in the steady-state
phase. In practice, there will be multiple cycles in a round.
In each round j, the value of the “freshness token” (denoted
by “nonce+j” in Step 4, and “cH” in Step 5) needs to be
incremented by 1. Note also that, in Fig. 3, Steps 1 and 3
are not protected. In fact, the random key predistribution is
not helpful for authenticating these broadcasts. We envision
our scheme to work in conjunction with the authenticated
broadcast proposed in F-LEACH (Fig. 2).

At the end of the clustering process, we expect that a
fraction of the ordinary nodes will be matched with a CH,
though not necessarily the one they would have matched
with in the basic LEACH, because of key sharing con-
straints; the remaining would not have any CH to match
with. We call these nodes orphans.

There are different ways to deal with the orphans: we can
have them sleep for the round; we can add a small protocol
that would allow the “already-adopted children” to bring the
orphans into their clusters; or we can have them communi-
cate directly with the BS for the round. In any case, the
number of orphans will depend on the the size of the key
pool, the size of the key ring, and the number of CHs, and
will have an impact on the performance of the network.

In Section 5, we show the cost, efficiency, and security
of SecLEACH, as well as the tradeoffs when we vary the
various parameter values.

4.3 Security Analysis

SecLEACH provides authenticity, integrity, confidential-
ity, and freshness to node-to-node communications. The
message in Step 2, Fig. 3, is encrypted with a key in the key
pool; and a successful decryption of this message allows H
to conclude that the message originated from a legitimate
node in the network. Because the encrypted message in-
cludes the nonce from Step 1, H can also conclude that it is
not a stale message being replayed. The freshness of all sub-
sequent sensor reports from the ordinary nodes to their BS
is guaranteed by nonces values that are incremented each
time. For the message in Step 5, the freshness is guaranteed
by the counter value shared between the CH and the BS;
the counter value also being incremented each time the CH
sends a new report to the BS.

Because link keys used for node-to-CH communications
are not pairwise in SecLEACH (i.e., a number of other
nodes other than the end points of a compromised link may
have the key used in the link), the biggest security issue in
SecLEACH is likely to be its resiliency against node cap-
tures. We discuss this issue in Section 5.2.

5 Evaluation of our scheme

In flat WSNs where security is to be bootstrapped from
random key predistribution, there is a (secure) link between
two nodes only if they are within each other’s communi-
cation range and share a key. In this new context, a (se-
cure) forwarding route can be established between any two
nodes (including the BS) only if one can overlay a con-
nected graph on the network using secure links. Given that
it is possible that a physical (range-defined) link will be
(logically) severed by lack of a shared key between the two
end nodes, one needs to choose the parameters S (size of
the key pool) and m (size of the key ring) in such a way that
the resulting network is still (securely) connected, with high
probability.

In the context of LEACH, the assumptions are slightly
different: 1) any node in the network is reachable from any
other node in single hop; but 2) node-to-BS communica-
tions are typically carried out in two-hops: from ordinary
nodes to CHs, and from CHs to the BS. Because of the first
assumption, any ordinary nodes can theoretically join any
CH; in practice, they choose the closest to save energy. For
energy efficiency, however, a network needs to use just the
right number of CHs, as different number of CHs leads to
different energy consumptions.

In SecLEACH, because of the constraints imposed by
key sharing, not all CHs are accessible to all ordinary nodes.
In fact, depending on the values of S and m, which deter-
mine the probability that two nodes will share a key, an or-
dinary node will have a larger or smaller number of CHs
to choose from. To achieve maximum energy efficiency in
the context of SecLEACH, therefore, one needs to find right
values for S, m, and the number of CHs. In what follows,
we show how different parameter values impact a network,
in terms of security and energy efficiency.

5.1 Parameters: Impact on Performance

Given a WSN, the amount of storage reserved for keys
in each node is likely to be a preset constraint, which makes
the size of the key ring m a fixed parameter. Once m is set,
the choice of S will impact the system in two ways:

1. Its security level:

Given a (S, m)-network, a network where each node
is assigned m keys from a key pool of size S, m

S is the
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Setup phase

1. H ⇒ G : idH, nonce, adv

Ai : choose r such that r ∈
(
RH ∩RAi

)
2. Ai → H : idAi

, idH, r, join req,mackr (idAi
| idH | r | nonce)

3. H ⇒ G : idH, (. . . , 〈idAi
, tAi

〉, . . .), sched

Steady-state phase

4. Ai → H : idAi
, idH, dAi

,mac
k[r]

(idAi
| idH | dAi

| nonce + j)

5. H → BS : idH, idBS,F
(
. . . , dAi

, . . .
)
,mackH(F

(
. . . , dAi

, . . .
)
| cH)

Symbols as previously defined, with the following additions:

r : Id of the keys in the key ring
RX : Set of key ids in node X’s key ring

k[r] : Symmetric key associated with id r
j : Reporting cycle within the current round

Figure 3. SecLEACH protocol

probability that a randomly chosen link will be com-
promised when a node that is not either end of the
link is compromised. The security level sl of a (S, m)-
network can then be defined as:

sl = 1− m

S

which gives the probability that a randomly chosen
link is not compromised when a node that is not either
end of the link is compromised.

Note that given a fixed m, the larger the S, the larger
the sl (the higher the security level).

2. The probability that two nodes will share a key:

Given any two nodes in a (S, m)-network, the proba-
bility Ps that they will share a key is given by:

Ps = 1− Ps̄

where Ps̄, the probability that they will not share a key,
is given by:

Ps̄ =
[(S −m)!]2

S!(S − 2m)!

Note that given a fixed m, the larger the S, the smaller
the Ps.

The number h of CHs in the network is another param-
eter in the system. In LEACH, the density of CHs in a
network determines the average distance between a node
and its closest CH. This distance, in turn, determines the
amount of energy needed in node-to-CH communications:
the denser the CHs, the shorter the average node-to-CH dis-
tance, and the smaller the energy consumption for node-to-
CH communications. On the other hand, CHs communi-
cate with the BS in single hop. Thus, the larger the number

of CHs, the more nodes will be communicating single-hop
with the BS, and the more energy will be spent. Taking
both reasonings into account, one can find an optimal value
for h, which minimizes the total energy consumption, and
maximize the network’s lifetime.

In SecLEACH, only a fraction of h CHs is probabilis-
tically accessible (as determined by key sharing) by an or-
dinary node. That is, h is actually a nominal value; what
ultimately matters is the effective value, he, given by he =
h × Ps. Note that, to obtain a given he, one does not need
to start with a fixed h. In fact, one can first fix a value for
Ps, and adjust h accordingly.

Ps and h will also determine the expected orphan rate,
that is, the probability that an ordinary node will be orphan.
Given Ps (and consequently Ps̄) and h, the expected orphan
rate Po is given by Po = (Ps̄)h. In a network with n nodes,
it is then expected that n × Po nodes will be orphans, and
communicating single-hop with the BS. Fig. 4 shows Po as
function of h under a sl = 0.99. Because Po depends of the
absolute number of the CHs, no matter the network size n,
the amount of orphan nodes will be negligible for h ≤ 7 .

To show concrete numbers and the tradeoffs induced
by different parameter values, we provide estimates on en-
ergy consumption for different scenarios. For our estimates,
we assume a network as in LEACH original paper, i.e.,
n = 100 nodes, uniformly distributed at random in a 104m2

square area; and a BS located at the center of the square.
We consider three key ring sizes for a fixed sl value (m =
50, 100, 150, for sl = 0.99) and three security levels for a
fixed m value (sl = 0.95, 0.98, 0.99, for m = 100). Ta-
ble 1 shows the respective Ps values for these scenarios. In
each case, we take into account only the energy consumed
for communication in the steady-state phase. Because Se-
cLEACH adds just a few extra bytes in the setup phase com-
munication (| nonce | and | r +mack[r](msg)− crc | bytes,
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Figure 4. Orphan
rate (sl=0.99)

Figure 5. Avg.
node-CH distance

Figure 6. Energy
consumpt (m=100)

Figure 7. Energy
consumpt (sl=0.99)

Fig. 3, Step 1 and 2, respectively), we expected this over-
head will be amortized among the cycles of the subsequent
steady-state phase. In addition, we do not consider the cost
incurred by the crypto operations, as the operations we use
have been shown [16] to incur a very small overhead com-
pared to that incurred by communication.

Also, we set SecLEACH messages to be 36 bytes long
(the default TinyOS message size [9]) and LEACH mes-
sages to be 30 bytes long. The difference is meant
to account for the size difference between the MAC (8
bytes [16]) and CRC (2 bytes [12]) – the former present
in SecLEACH, but absent in LEACH; and the latter present
in LEACH, but absent in SecLEACH.

To estimate the energy consumption, we assume the
same radio energy model used in LEACH [8] . In Figs. 6
and 7, the values are for one cycle of sensor data reporting
in the steady-state phase. Fig. 6 shows the energy consump-
tion in node-CH communication for different security lev-
els. Note that the consumption level is smaller in LEACH
than in any instantiations of SecLEACH, and larger values
of sl lead to larger overheads. On the other hand, the higher
the h, the smaller the overhead. For a given security level,
larger key rings decrease the energy consumption (Fig. 7).
Note that, in all cases, there is a value of h for which the
energy consumption is minimum.

We also estimated how scalable SecLEACH is. Table 2
shows the overhead incurred by SecLEACH, under the var-
ious parameter values and under different network sizes n,
as compared to LEACH. In the estimates, we assume a con-

stant node density (i.e., the larger the n, the larger the net-
work area, as well) and a single BS. The overheads were
computed using the values of h for which the energy con-
sumption, in each scenario, is minimum. It is worth men-
tioning that overhead in SecLEACH is due to two factors:
the increased message size (20% larger) and the increased
node-CH distance – the CH-BS distance in SecLEACH is
not increased as compared to LEACH, as every CH shares
a key with the BS.

5.2 Resiliency against node capture

In KD schemes, resiliency against node capture mea-
sures how much of the network (its communication links) is
compromised when a node is compromised. It is a critical
performance measure that gauges the robustness of a solu-
tion. In SecLEACH, the values of m and S determines the
probability that a random link will be compromised when a
node (that is not either end of the link) is compromised.

The resiliency of random key predistribution has been
studied before [3] in the context of flat networks. The same
analysis is applicable in our context.

6 Related Work

The number of studies specifically targeted to secu-
rity of resource-constrained WSNs has grown significantly.
Due to space constraints, we provide a sample of stud-
ies based on cryptographic methods, and focus on those
targeted to clustered networks. Perrig et al. [16] pro-
posed a suite of efficient symmetric key based security
building blocks. Eschenauer et al. [5] looked at random
key predistribution schemes (which we discussed in Sec-
tion 4.1), and originated a large number of follow-on stud-
ies (e.g., [3, 4, 10, 11, 14, 17, 21]). Most of the proposed KD
schemes, probabilistic or otherwise (e.g., [20]), are not tied
to particular network organizations, although they mostly
assume flat network, with multi-hop communication. Thus
they are not well suited to clustered networks.

Among those specifically targeted to cluster-based sen-
sor networks, Bohge et al. [2] proposed an authentication
framework for a concrete 2-tier network organization, in
which a middle tier of more powerful nodes between the BS
and the ordinary sensors were introduced for the purpose of
carrying out authentication functions. In their solution, only
the sensor nodes in the lowest tier do not perform public key
operations. More recently, Oliveira et al. [15] propose solu-
tion that relies exclusively on symmetric key schemes and
is suitable for networks with an arbitrary number of levels;
and Ferreira et al. [7] proposed F-LEACH, which we dis-
cussed in Section 3.
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m
sl 50 100 150

0.95 – 0.995 –
0.98 – 0.870 –
0.99 0.396 0.636 0.780

Table 1. Prob. Ps of key sharing as a function of
security level sl and key ring size m

sl (m=100) m (sl=0.99)
n 0.95 0.98 0.99 50 100 150

100 20,1% 22,9% 30,0% 42,9% 30,1% 25,3%
1000 20,2% 25,6% 39,8% 65,6% 39,8% 30,3%
10000 20,3% 27,4% 46,1% 80,6% 46,1% 33,6%

Table 2. Energy Overhead

7 Conclusion

In this paper, we presented SecLEACH, a protocol for
securing node-to-node communication in LEACH-based
networks. SecLEACH bootstraps its security from random
key predistribution, and can yield different performance
numbers on efficiency and security depending on its various
parameter values. Our estimates show that the overhead in-
curred by SecLEACH is manageable; and memory usage,
energy efficiency, and security level can be each traded off
for another, depending on what is most critical in a system.
Finally, we showed concrete numbers for these trade-offs.
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