
Second Fundamental  Form of a Map (*). 

Tnd~s~ No~v, 

S u m m a r y .  - This paper is devoted to the study o] the 2, ]undamental ]orm o] a map, which 
generalizes this notion, well known/or isometric immersions. We generalize results by Vilms, 
Zano, and Ishihara, and study in detail pro]ective and umbilical maps. 

The notion of 2rid fundamental form of a mapping between manifolds endowed 

with connections, first constructed by g. EELLS ([Ee])--for the study of harmonic 

mappings--, generalizes the 2nd fundamental form of a submanifold isometrically 

immersed, in a l~iemannian manifold, and has been used by g. VILXS [Vi] to study 

totally geodesic mappings and R.iemannian submersions. This author has proved 

the following theorems: 

THEoI~]~ A. - Zet ]: M ~ M' be a totally geodesic mapping between Riemannian 

manifolds. Then: 

1) ] is the product o] a totally geodesic tt iemannian submersion, lot[owed by a 

totally geodesic immersion, 

2) K e r / ,  has totally geodesic leaves. 

TI~EOlCE~ B. - .Let ]: M -~ M' be a l~iemannian submersion with 2nd ]undamental 

]orm o. Then: 

1) I] X and Y are in Ker]~, a(X, l r) = 0, 

2) al~ert.• 0 i]] K e r / ,  has totally geodesic leaves, 

3) a]~erf.• ---- 0 i]] Ker ix, is integrable. 

ZvI HA~'EL [Ha] has used a simib~r method in order to study projective mappings. 

In  a slightly different approach,--comput~tion in local coordinates--YA~O and 

ISHIHAlCA [u & Is]  define relatively affine mappings, the 2nd fundamental form 

of which is orthogonal to ](M), and prove: 

(*) Entrata in Redazione il 1O dicembre 1985. 
Indirizzo dell'A. : U.E.R. des Sciences de Limoges, D~partement de Math6matiques-Infor- 

matique, 123 rue Albert Thomas, 87060 Limoges Cedex, France. 
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Tm~0~L-r C. - Let /: M -+ M r be a relatively amine mapping between Riemannian 

manifolds. 

1) I f  M is connected, then / is of constant rank, 

2) K e r / ,  is a parallel distribution. 

A Thi rd  and frui t ful  use of the 2nd fundamenta l  form, in the light of some of 

its properties (nullity, umbilicity) is f requent ly  made for the  s tudy of isometric 

immersions between l~iemannian manifolds (e.g. [Ch]). Therefore  we have studied 

mappings of constant  rank  by  megns of their  2nd fundamenta l  form, f rom a more 

general viewpoint  t han  those of the gbove ment ionned authors.  

In  section I we int roduce the  various notions we shall need, abou t  which more 

details can be found in [Ee] and  [Do], and r emark  tha t :  

P~OPOSITIO~ 1.5.3. - Let /: M -+ M r be a mapping o/constant rank between mani- 

folds endowed with symmetric connections, and let a be its 2nd fundamental form 

R ' e r / ,  is parallel if/ it is included in 1Ter a .  

P~OP0SITIO~ 1.5.1. - 1Ker/,  is totally geodesic iff (; is null on ] ~ e r / ,  •  and 

P~OPOSITIO~ 1.5.4. - Assume M is a Riemannian manifold. K e r / ~  is intcgrable 

and totally, geodesic if/ a]~ers, • ~ ~. : 0. 

In  section I I ,  we factorize a m~p between t~iemannian manifolds into the product  

of a diffeomorphism followed by  a t~iemannian submersion ~nd by  a n  isometric 

immersion, which ~llows us to give the following results: 

T~v.oRv,~ II.3.1.  - [Generalization of theorem C, 2)]. 

Let /: M--~ M' be a map o/ constant rank between Riemannian manifolds, and v 

be the orthogonal projection o/i ts  2nd fundamental form a onto the tangent space o/ / (M).  

Then K ' e r / ,  is parallel if/ it is included in Ker  T: 

T K E O ~  II.3.4.  - Which supplements the results o/ theorem C. 

Zet ]: (M, g) -+ (M r, g') be a relatively af/ine mapping. Assume M is connected, 

simply connected and complete. Then 

1) M is isometric to a direct product MI•  where T M I =  ] ~ e r / . ,  and M2 

is locally diffeomorphic to /(M),  

2) if M2 admits the de Rham de composition, M~= M~•215 then~ /or a 

fixed i, the distribution f .TM~ defines a foliation of /(M), every lea/ o/ which is 

irreducible and homothetie to M~o Moreover the ratio o/ this  homothecy is independent 

o/ the leaf so that all reaves are isometric. 
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COROLLARY II.3.2. - Assume f: (M, g) --~ (M', g') is a map of constant rank bet- 

ween Riemannian manifolds. [(M) is a totally geodesic submanifold of M ~, i]f the 2nd 

fundamental form o/ [ is tangent to f (M).  

THEOZE~[ II.3.3. - Let (M, g) be a Riemannian manifold and ]: M -> M'  be a C ~ 

mapping of constant rank. Then there exists a metric g~ on M w.r. to which 

1) Ker f~ is a totally geodesic plane field, 

2) the integral ]oliation of Ker f ,  is Riemannian.  

In section III~ projective maps are investigated into: indeed we found that  there 

was an underlying confusion in the proof of ZvI HA~'EL [Ha]. We must distinguish 

between projective--preserving pieeewise geodesics--and strongly projective maps 

--which map any geodesic either into a geodesic, or a point-- .  As for geodesic 

preserving maps, they are necessarily immersions. (For the terminology, we refer 

to definitions I I I . l .1  and III.1.2.) 

Strongly projective maps are the only ones which satisfy the following theorem, 

generalizing the characteristic property of projective diffeomorphisms: 

Tm~ORE~ III.2.2. - Zet ]: (M, V) -* (M t, V') be a mapping of constant rank bet- 

ween manifolds endowed with torsionless linear connections. We denote by a its 2nd 

fundamental form. Then f is strongly projective iff it satisfies the following property: 

( , )  There exists a 1-form w on M such that 

VX, ~ e T M ,  a(X, Y) = ( o ( X ) f , Y §  

A counterexample shows that  this theorem cannot be generalized for just any 

projective map. 

Moreover for a strongly projective mapping f: M - * M  t, we have: 

PROPOSITION III .2 . l .  - 1) The foliation defined by Ker / ,  is totally geodesic, 

2) ](M) is a totally geodesic submanifold of M'.  

If  besides ] is a strongly projective map between Riemannian manifolds, then 

we have: 

THEORE~ III.3. - 1) Ker ]~, is integrable and defines a totally umbilical foliation, 

2) there exists a Riemannian metric gl on M ]or which f is totally geodesic. 

We give examples of projective maps which are not strongly projective, of 

strongly projective maps which do not satisfy K e r / , c  Ker a--which disagrees wi th  
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ZVI HA~'EL ' s  assert ions [ H a ] - - a n d  show t h a t  s t rongly project ive  maps  be tween 

euclidean spaces are necessari ly affme. 

I n  section I V  we offer 4 definitions for the  umbi l ic i ty  of ~ mapping ,  which 

generalize the  not ion of umbi l ic i ty  for isometr ic  immersions .  We display some 

e x a m p l e s ,  then  we p rove  the  results  given in the  following tab le :  

M = connected, simply connected complete manifold 
M'-~ space of constant curvature 
J: M - ~  M' mapping of constant rank. 

Hypothesis 

J weakly 
g-umbilicM 
of rank > 2 

M irreducible 
] strongly 
g-umbilical 

] weakly 
g'-umbilical 

] strongly 
g-umbilical 

Conclusions about 

immersion 

isometric to 
a sphere homotheey 

with parallel 
kernel 

M = M 1 • M S 

M S diffeomorphic 
to a sphere 

M = M~xM2 
M S isometric 
to a sphere 

~ homothecy 

](M) 

convex hyper- 
surface of a t.g. 
submf, of M' 

sphere 

sphere 

sphere 

g denotes the metric of M, and g' that of M'. 

At  last,  s t a r t ing  f rom CHEN'S [Ch 1] definition of the  extr insic  sphere,  we define 

spheric  m a p p i n g s - - t h e  image  of which is an  extr insic  sphere in the  special ease of 

an  isometr ic  i m m e r s i o n - - a n d  we p rove :  

THE0~E~ IV.4.2.1. - Let ]: (M, g) ---> (M'~'~ g') be a spheric map, into a K~ihler 

mani]old o] real dimension 2n'. Assume M is connected, s imply connected and complete, 

and ] is analytic o] rank 2n r -  2. Then one o] the irreducible components o] (M~ g) is 

isometric to an even dimensional sphere. 

Which  we can compare  to Chen's  following result :  

THEOI~E~ D. - Let M 2" be a complete exinsie sphere in any Kghler mani]old ~ m .  

1] there exists 2m -- 2n mutually orthogonaI parallel unit vector ]ields along M 2~, then 

M 2~ is isometric to sphere S 2~, the radius o] which is the inverse of the length of the mean 

curvature vector. 



Tm~:~SE NORE: Second fundamental ]orm of a map 285 

In  section V, also devoted  to maps between Riemannian  manifolds, we display 

integral  formulas relating the norms of the 2nd fundamenta l  forms of f, f (M) ,  and 

of the leaves of K e r r . ,  in the  case when there  exists a funct ion ~ such tha t  for 

every  X orthogonM to Ker  f .  we have:  

l i f ,  x l t  =  tlXll �9 

In  par t icular  we obtain the:  

COI~OLLAICY V.3. - Assume f is a mapping of constant rank from a compact Rieman- 

nian manifold (M, g) into a Riemannian manifold (M% g'), which induces a Rieman- 

nian submersion from M unto (f(M), gr). I f  the fibre F of / is compact, with the nota- 

tions of 1.4, we have: 

fll ii,> flt oli, + (voa  )fll ,l/-o . 
3 /  .M M" 

This work is a pa r t  of a (( Doctora t  de sp6ciMit4 ~) defended at  the univers i ty  of 

Limoges on february  5, 1982, and done under  the guidance of Jean  ~a r i e  ~ o r v a n ,  

to whom I wish to express my  thanks  here. 

We shall omit  any  proofs tha t  are simple computat ions,  or t ha t  can be found  

in the  l i t terature.  

1. - Second f u n d a m e n t a l  form o f  a map .  

I n  this s tudy,  manifolds, mappings,  vector  fields, sections, and so on, will always 

be supposed of class C ~ . 

f will be a mapping of constant  rank,  f rom a manifold M into u manifold M' ,  

the respective dimensions of which we denote by  n and n r. f(M) is an (immersed) 

submanifold of M' .  We denote b y  f .  the differential of f. 

In  the  case when M (resp. M') is t~iemannian, its metr ic  is denoted b y  g (resp. g') 

and connection V (resp. V') will be its Levi-Civita 's connection. The points of M 

are denoted by  m . . .  (resp. m' . . . ) .  

1 . 1 . . ~ i b e r  bundles. 

We denote  by:  T M  the tangent bundle of M, with f iber  T ~ M  over m. 

]-I(TM') the f-induced bundle, with base-space M and  fiber 

T~(~M' over m. 
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- - W h e n  (M', g') is Riemannian ,  .g' induces a metr ic  on f-~(TM'), also denoted 

b y  g ' . - -  

/ , T  M the image bundle~ subbundle  of f-~( TM') with f i b e r / , T ~ M  

o v e r  m .  

K e r  ], the vertical distribution, in tegrable  subbundle  of T M  with 

fiber (Ker ],) , ,  over  m. 

The m ax i m a l  in tegral  submanifolds of K e r / ,  are called the  leaves of the  kernel.  

I n  the  case when (M, g) is Riemannian ,  we denote by :  

Ker  f,~ the horizontal distribution, subbandle  of T M  with fiber 

(Ker f , )~  over  m. 

I n  the  case when (M', g') is Riemannian ,  we denote  by :  

] , T M  -L the subbundle of /-~(TM'), with fiber ( f ,T~M)•  - 

gonal  complemen t  of f , T ~ M  for g ' - - o v e r  m. 

1.2. Fields along 1. 

Sections of ]-~(TM') are called (vector) fields along f. I n  par t icular  every  field X 

on M induces a vec tor  field / , X  along /, s.t. (],X)~ = (/,)~X~. 

E v e r y  field X '  on M '  induces  a vec tor  field f*X'  along f, s.t. (]*X')~ = X'1(m). 

For  clearness~ we shall  somet imes  wri te  X '  ins tead of f*X'.  

1.3. Zinear connections. 

Assume M and  M '  are  endowed with  linear connections V and V'. We have :  

D:EFINITION AND PROPOSITION 1.3.1. -- There exists one unique linear connection 

V' on f-I(TM') such that: 

(1) for every m~M~ every X e T m M ,  and every field 7g' on M': 

v ' -t', x" If(M) 

where we have put ~ '= ]* Y' and where [ denotes the restriction. V' is called the 

f-induced connection on f-I(TM'). 

PRooP. - Leg X e T m M  and ~'  be a field along f. 

I n  a neighborhood U ~ of f(m) we can find n '  fields (e'~) which fo rm a basis of 

Tm, M ~ a t  every  point  m ' e  U'.  
, t 

P u t  U = ~'-~(TU') and e~ = ] e~. 
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We can write, on U: 

Then we must  have:  

where 9" are fanctions on U .  

Vx~f-= (X 9 )e~ + 9 V~.xe~ �9 

! • / 

lV[oreover if (e~) is another moving frame on U 1 we can write e~ ~ P~e~, P~ being 

functions on U ' n  U~I. 

Then we ilavC: 

! 

~]'---- v?~e~ where ~ = (/*.P~)9 ~ and s~ = f*e~ 

so tha t :  

(29 )e~  + 9 y vr.=e~ = (X~~ + 9*(f,x)(P~)~a + 9~(f * .p~)v~,x*a 

= ( X ~ )  e~ + ~ vl, x e~. 

Thus, V' is well defined, not depending on the choice of the frame. One can easily 

see t ha t  V' is a linear connection. 

E~&SiPLE 1.3.2. - Assume 

~:{  ] - - e , e [ - +  M 

t ~ r ( t )  

is a regular curve. 

The T-induced connection on V-~(TM) yields just  what  one denotes by VdmV 

for every vector field V along y. 

1.3.3..Properties of V r. 

.For every X ,  ~ ,  fields on M 

~ ,  field on M'  

~', ~', fields along f, we have: 

- - !  f 
(1) if f is an immersion, V x f  , Y ~-V~,xf  , Y 

(2) if V'  is torsion free: V x f ,  Y - - V y f ,  X = f , [ X ,  Y] 

- - !  - - f  ~ l  - - '  - - !  ~ - - I  I (3) V x V r -- V y V  x ~'i-- V:x ,Y~ -~ K ' ( f . X ,  f ,  Y)~% where K ~ denotes the cur- 

vature tensor of V' 
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- - !  y !  
(4) if X e Ker f , ,  V x 0 

(5) if M' is t~iemannian, if X ~ K e r / , ,  and if 2' is (], TM)" valued: V'x~'e (],TM)" 

(6) if M' is Riemannian and V' its Levi-Civita's connection, V'g'-~ O. 

We omit  proofs. (2), (3), (6) are proved in [Do]. 

1.3.4. Important remark. 

. / , X  = 0 does not  imply,  for every ~', V x ~ ' =  O, though this equali ty does hold 

if ~ ' ~  I* Y ' - -Y '  being a field on M ~ - .  

1.3.5. Connection V denotes the direct snm of V and  V' on T M Q  ]-I(TM') and 

Its tensor algebra. 

1.3.6. V " ,  connection on ],TM-L 

In  the case where M'  is l~iem~nnian, we have:  

PROPOSITION AND DEPII~ITIO~ 1.3.6. -- ~or any field X on M and any section 2' 

of f ,  T M ' ,  we p u t :  

Vx'L~'-~ orthogonal projection o] Vx~' on f ,  T M  J- . 

Thus defined, V'~ is a linear connection on ] , T M  • such tha~ V " g ' - ~  0. 

V '~ is c~lled connection associated to ]. 

The proof, similar to the corresponding one for isometric immersions, is omitted.  

1.4. 2nd fundamental forms. 

IA.1. a, 2nd ]undamental form of ]. 

TttEOI~E~ A~ND DEFISTITIOST 1.4.1.1. -- /%r every fields X and Y on M, we have: 

(VI,) (X, ~) = V'~I, ~ - -  l ,  Vx Y 

The bilinear mapping a :  T M •  T M - ,  TM'  defined by 

~(x, ~) = ~'~/, ~ -  l ,  vx Y 

is called the 2nd fundamental form of /. 

I] moreover V and V' are torsion /tee, a is symmetric. 
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In  the sequel, all connections are supposed symmetric .  

P~ooF. - Apply the  definition of Vf , .  

1.4.2. ao, 2nd f~ndamental form of Ker  ] , .  

DEFINITI0~ 1.4.2. -- Assume M is Riemannian. We denote by 

a%: (Ker f,),~ • (Ker f,)m --> (K e r / , )~  

the 2nd fundamental form of the leaf of the kernel at m. 

1.4.3. a', 2nd fundamental form of f(M). - Is defined whenever  M'  is a Rieman-  

nian manifold,  f(M) being an isometrically immersed submanifold. 

1.4.4. ~1, 2nd fundamental form of (Kerf , ) •  

Recall  t ha t  if M is a l~iemannian manifold, V its Levi-Civita 's connection, P a 

plane field on M, and v the orthogonM project ion on P• then  the 2nd fundamenta l  

f o r m  0 of P is defined by :  

Y m e M ,  VX, Ye t ) ,~ ,  O(X, Y) -= � 8 9  VrX) 

~ c f .  [Re]-- .  

P is integrable iff O(X, Y) = v(VxY), and 0 is then the 2nd fundamentM form 

of the leaves of P.  

DEFInitION I.dA.1. - We denote by (rl the 2nd fundamental form of the distribution 

Ker  ]~. 

1.4.5. Composition of maps. 

Assume M, M',  M" are 3 manifolds endowed with linear connections a n d / :  M -> 

-~ M% f'  : M'--> M" are mappings with respective 2nd fundamenta l  forms a and a'. 

I f  a" denotes the 2nd fundamenta l  form of /'of, we have:  

VX, Y ~ TM , a"(X, Y) ~- f,'~a(X, Y) -~ a '( f ,X,  f ,  Y) . 

~ c L  [Fe & Sa] e .g . - - .  

1.5. Geometrical interpretation of a. 

We shall prove the following results:  

PROP0SIT~0N 1.5,1. - Ker  f ,  is totally geodesic iff ~ is null on Ker  f , •  f , .  
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1)l~oPoslPIo~r 1.5.2. - Assume M is a Riemannian maqiifold. I f  X and 7ff ~ (Ker ],),~, 

we have: 

a ( x ,  ~)  = - / , n o ( X ,  Y)  . 

P~OP0SITION 1.5.3. -- Ker  f ,  is parallel iff it is included in Ker  a. 

P~OPOSITION 1.5.~. - Assume M is a Riemannian manifold. Ker  fl, is integrable 

and totally geodesic iff alKerY.• = 0. 

Those propositions generalize results by  VrLMs [Vi]. The 3rd proposit ion then 

implies : 

T~tEO~E)r 1.5.5. - Assume (M~ g) and (M', g') are Riemannian manifolds and 

f: M --> M' is a C ~ map ol constant rank, the 2nd fundamental form of which we denote 

by a. 

I f  Ker  f ,  c Ker  a. 

Then M admits a local decomposition: 

M = M1 • M~, where TM1 = Ker  f ,  and TM~ = Ker  f~ .  

This theorem is a generalization of VILM's [Vi] result  about  to ta l ly  geodesic 

maps, and~ as we shall see later  on, of Y A l e  and ISHIXA~A'S [Ya & Is]  result  about  

relatively affine maps.  

I~E~r_~K. - I f  M is connected,  simply connected and complete, this theorem 

is then  global. 

COrOLLArY 1.5.6. - I f  M is locally irredueible~ every mapping f: M--->M' of 

constant non null rank~ satisfying Ker  f , c  Ker  (r, is an immersion. 

PROOF OF PI~OPOSITIO~S. ~ I t  i s  based on: 

LE~u2~A 1.5.7. - I] Y,~e (Ker f , ) ~  then a(X~, Y~) = -- f ,  Vx~ Y, for every X,~e T ~ M  

and every section ~ of Ker  f ,  talcing the value Y~ at m. 

This lemma is an immedia te  consequence of the definition of a. I t  implies pro- 

positions 1.5.1~ 1.5.2 and 1.5.3. 

To prove proposit ion 1.5.4, we first note  tha t  Ker  ],~ is h~tegrable and tota l ly  

geodesic iff for every  Ker  f~ valued fields X, ~ and for every  Ker  f ,  valued field U, 

we have:  

g(VxY, U) = 0 .  

But ,  V being metric:  g(Vx~, U) ~ - -  g(VxU, ~), so tha t  K e r ] ,  ~ is integrable and 

tota l ly  geodesic iff VxU e K e r f , ,  t ha t  is, b y  lemma 1.5.7, (r(X, U ) =  O. 
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2. - D e c o m p o s i t i o n  o f  a ma p  in the  R i e m a n n l a n  case .  

11.1. Metrics on M, / (M) ,  and /aetorization o/ /. 

II .1.1.  ( ] ( i ) ,  g~) and ~.  

The metr ic  g' of M'  induces a R iemann ian  s t ructure  on ](M), also denoted by  g'. 

The 2nd fundamenta l  form a' of ] (M)- -cf .  1.4.3.--is then  the 2nd fundamenta l  form 

of the canonical injection:  

i: q(M), g') (M', g'). 

11.1.2. Metrics g~ on M, ~2 and (~a. 

We now const ruct  a new metr ic  gl on M such tha t  ]8: (M, g~) ~ (](M), g'), defined 

by  Vme M, ]~(m)-~ ](m) be a Riemannian submersion: 

Fo r  X,  Y e T , ~ M ,  we pu t  

(g~)~(X, Y) = g~(X, Y) if X, Y e Ker  ] ,  

g~(X, ~) = 0 if X ~ Ker  ] ,  and :~ e Ker/ ,~ 

g~(X, ~) = g'(],X, ],  Y) if X, Y e Ker  ],~ 

and we extend gl into a bilinear symmetr ic  form on T , M •  T,~M. 

P~OPOSlTIO~ 11.1.2. - Tensor ]ield gl endows M with a l~iemannian structure, 

and f3 is a Biemannian submersion. 

P~ooF.  - Omitted.  

We shall denote  by  i the  ident i ty  diffeomorphism: (M, g) ,-~ (M, gl) and a~ its 

2nd fundamenta l  form. 

by  as the  2nd fundamenta l  form of the  Riemannian  sub- 

mersion ]3. 

~[I.1.3. Faetorization. 

We can regard ] as the  product  ] = jo]3oi: 

(M, g) Y > (M', g') 

1 T 
(M, t. if(M), g') 

where j is an isometric immersion;  f~ is a Riemannian submersion;  i is a diffeomor, 

lahism, 
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I I . 2 .  Tensors v and v. 

DEFINITION I I .2 .1 .  - We de]ine 2 tensor ]ields 

: T M  • T M  --> ],  T M  

: T M  • T M  -> (], TM)  • 

by putting ~(X, Y) = orthogonal pro]eetion o] a(X, Y) o n / , T M ;  v(X, Y) = orthogonal 

projection o] a(X, Y)  on ( ] ,TM)  • 

Then  we h~ve :  

PROPOSITION I I .2 .2 .  - ~ = ]*a'. A n 4  its i m m e d i a t e  consequence .  

COROLLARY I I .2 .3 .  - Ke r  ] ,  c Ke r  

K e r / ,  (~ K e r v  c Ke r  ~ ~- Ke r  ~ n / , l ( K e r  ~ ' ) .  

PROOF. - A p p l y i n g  1.4:5, we h~ve  for  X,  Y e T M  

a(x, Y) = ~'(/,X, / ,  Y) + ~(x, ~) +/,or ~)  . 

As a ' ( / ,X ,  ], Y) e ( / , T M )  ~- a nd  a3(X, Y) 4- ],oa2(X, Y) e ] , T M  we can  see t h a t  

that is p ropos i t ion  II.2.2, 

v ( x ,  ~[) = a ' ( f , x ,  ] ,  ~ )  , 

I i . 3 .  Geometrical viewpoint. 

I I .3 .1 .  Study o] M. 

As K e r / , c  K e r  ~ a nd  g = ~ ~-v ,  one  can  r e fo rmu la t e  p ropos i t ions  1.5.1 to  1.5.4 

and  t h e o r e m  1.5.5 b y  replac ing  a b y  3. I n  pa r t i cu l a r  we h a v e :  

TttEOI~E]~ I I .3 .1 .  - Assume ]: (M, g) -~ (M', g') is a C ~' map o] constant rank bet- 

ween 2iemannian mani/olds. The conditions: 

(i) K e r  ] ,  c K e r  

(ii) ] K e r / ,  c Ke r  v 

are equivalent. 

I] they hold, then M admits a ~ocal decomposition M : M1 X M ~  where TM~-~ 

= Ke r  f ,  and TM~ = Ke r  ]#. 
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II.3.2. Study of f (M).  

Proposition II .2 .2 yields: 

COROLLA~u II.3.2. -- Assume f: (M, g) ~ (M', g') is a map of constant rank bet- 

ween Riemannian manifolds, f (M)  is a totally geodesic submanifold of M'  if] the 2nd 

fundamental form of f is tangent to f (M).  

For applications, see also w IV: umbilical maps. 

II.3.3. The integral ]oliation of Ker f .  and the distribution I~er f.• 

T]tEOI~E~ II.3.3. - .bet (M, g) be a Riemannian manifold and f: M --> M'  be a C r176 

mapping of constant rank. 

Then there exists a metric gl on M with respect to which 

1) K e r r .  ~ is a totally geodesic plane ]ield, 

2) the integral foliation of Ker f .  is Riemannian.  

P R O O F .  - -  I t  is based on lemma I.B.2 by CAlCg~g~n [Ca] who gives the following 

characterization of Riemannian foliations : a foliation 2" of a Riemannian manifold M 

is Riemannian with respect to the metric of M if] for every unitary field ~ orthogonal 

to :7", V ~  is orthogonal to ~" (V being the Zevi-Civita connection of M). 

This lemma implies tha t  the orthogonM complement  of a total ly geodesic plane 

field, whenever integrable, is l~iemannian for the metric used. 

Thus assertion 2) is an immediate  consequence of 1). We shall now prove 1): 

let g~ be the metric defined in II.1.2 and V ~ the associated Zevi-Civita connection. 

For  22 and If' Ker  f~-valued vector fields on M, Z Ke r / , - va lued  field, on M, we 

can compute g~(V~xI z, Z) and using properties (2) and (6) of V, we find: 

2g (Vi z) = g,([x, z ) .  

So we see tha t  the 2rid fundamenta l  form ~1 of Ker f~, defined in 1.4.4 is null, q.e.d. 

II.3.4. Relatively affine maps: the ease where ~ = O. 

A relatively affine map is a map 1)etweell 1-r manifolds the 2nd fun- 

damental  form of which is orthogonal to f(M) (ef. [Ya & Is]), i.e. such tha t  ~ = 0. 

Yano and Ishihara have proved tha t  every relatively affine map is of constant  rank. 

We supplement here the result obtained by  these authors, proving: 

T~t~onE~ II.3.4. - Assume f: (M, g) ~ (M',  g') is a relatively affine map. Assume 

moreover that M is connected, simply connected and complete. Then, 

1) M is isometric to a Riemannian product M I •  Ms, where TM~ = Ker f ,  and 

M2 is locally di]feomorphic to ](M). 
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2) I f  Ms admits the de Rham decomposition M~-~ M~X. . . xM~ ,  then for a 

fixed i, the distribution f ,  TM~ defines a foliation of ](M), every leaf of which is 

irreducible and homothetie to M~. Moreover the ratio of this homothecy is independent 

of the leaf so that all leaves are isometric. 

P~oo~. - Assertion 1) is proved by [Ya & Is]. Here we just apply 11.3.1. Asser- 

tion 2). f defines a local diffeomorphism from Ms unto f(M)--see [Di] e .g.~.So 

we cun define a metric g#= f ,g  on f(M) such that g#(f,X, f ,  Y) -~ g(X~ ~)for X, 

Y eTM~.  The Levi-Civita connection associated to g# satisfies V].xf, Y ~ f,VxY. 

On the other hand, by the definition of the 2nd fundamental form we have: 

V~f, Y = / , V x Y  + v(X, ~) = V~.xf, Iz + (r'(/,X, 1, :~) 

-~ Vt, x f  , ~ by property (1) of V.  

Thus, V # is the tangent component of V'. Hence g# and g' induce on f(M) the 

same Levi-Civita's connection, and f maps parallel distributions on (Ms, g) into 

parallel distributions on (f(M), g'). 

If  Ms = M~ • • M~ • • M~ is the de l~ham decomposition of Ms we see that 

for a fixed i, f ,  TM~ defines a totully geodesic foliation of ](M), with irreducible 

leaves. Let M~ ~ be a leaf of the integral foliation of TM~ in M, and M ~ :  ](M'~ ~) 

its image by  f. M~ ~ is a leaf of / ,TM~.  

M~ ~ and M~ '~ being totally geodesic--in f(M) and M respectively--~ metrics g# 

and g' induce the same Lcvi-Civita's connection on M~ ~ and by  lemma i in [Ko & 

l~o], p. 242, we see that  g# and g' are homothctic on M~ ~ : there exists ~ > 0 s.t. 

VX ~, X~e Ms,  g(X ~, Y~) 2~g'( f ,X~, f ,Y ~) 

We must now prove that 2 ~ is constant (does not depend on the choice of the leaf 

M~). Therefore ~or X e T M  we compute 

Xg(X ~, Y~) = (X2~)g'(f,X ~, f ,  Y~) ~- 2~Xg'(/,X ~, f ,  ~ )  

= g(VxX,, :~,) + g(x,,  v~ :~9. 

~aking use of property (6) of V w e  find: 

g(VxX ~, Y~) -~ g(X ~, Vx ~ )  = 

= (X29g ' ( f ,X  ~, ],Y~) ~- 2~g'(f, V x X  ~, f,Y~) -~ 2~g'(f,X ~ , / ,VxY  ~) 

But TM~ being parallel, VxX~eTM~. 

Hence 

2~g'(f, VxX  ~, f ,  Y~) = g(VxX ~, :Y~) and 2~g'(f,X ~, f ,  Vx Y~) = g(X ~, Vx Y~) �9 

Thus (X2 ~) = 0 q.e.d. 
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3.  - P r o j e c t i v e  m a p s .  

I i i .1 .  Definitions and remarks. 

I I I . l .1 .  Geodesics. 

A C ~ map t~-~y(t) from an open interval I c R into a mani]cld M endowed 

with a linear connection is said to be a geodesic if i t  satisfies a) et b); 

a) y is an iuemersion (i.e. ~=/= 0 ]or every t); 

b) Va/~ ~ : )~?, where ~ e Coo(I). 

III.1.2. Pieeewise geodesics. 

A r map t ~ y(t) from an open interval I c R into a manifold M endowed with a 

linear eonnection V is said to be a piecewise geodesie if it satisfies b). 

III .] .3.  Projective maps. 

A C ~ map ]: (M~ V) -~ (M r, V r) between manifolds endowed with linear connections 

is said to be projective if for every piecewise geodesic y on M , / o y  i s  a pieeewise geodesic 

on M r. 

III . l .4 .  Strongly projective maps. 

A Coo map ]: (M, V)--~ (M', V r) between manifolds endowed with linear conneo- 

tions is said to be strongly projective i f / o r  every geodesic ~ on M, either roy is a geodesic 

on Mr~ or the image of fo~ is a point. 

III.1.5. Remark. 

Mappings / that  map every geodesic ~ into a geodesic are immersions because 

they map regular curves into regular curves. 

III.1.6. Remark. 

If  f: (M, V) ~ (M',  V') is a strongly projective map, a geodesic on M is either 

tangent of transverse to K e r / ,  at every point. 

III.2. Study of strongly projective maps and projective maps between manifolds endowed 

with linear connections. 

We omit the proof of the following. 

P~oPosI~IO~ Ili .2.1.  - Assume f: (M, V) -~ (M', V') is a strongly projective map 

of constant ran~ between manifolds endowed with linear connections. Then 

1) the integral foliation of Ker f ,  is totally geodesic; 

2) ](M) is a totally geodesic submanifold of M r, 
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And we e~n now state  

FUNDA~-ENTAI~ TS~EOI~EM 111.2.2. - ]~et ]: (M, V ) ~  (M', V') be a mapping o/ 

eonstant rank between manifolds endowed with torsionless linear connections. We denote 

by a its 2nd /undamental form. Then f is strongly projective i f / i t  satisfies the following 

property: 

( , )  There exists a 1:form co on M sueh that: 

VX, Y e T M ,  a(X, Y) = o~(X)/,Y+ co(Y)l,X. 

In  the proof we shall use the following lemm~s 

LE~c~A 111.2.3. - Assume 1: (M, V) -+ (M' ,  V') is a map o/constant rank between 

manifolds endowed with linear connections, y: ]-- e, e[---> M is a regular curve on M, 

and V is a field along ~,. Then 

1) In  the neighborhood o/ any t ~ ]--e, e[, V can be regarded as the restriction 

along ~ o/ a field Y on M. 

2) We have (V~/J ,  V)I - -  (V~/, Y)v(o/or  any t e ] -  e, e[. 

L E n A  III .2.4.  - Assume / :  (M, V) --> (M', V') is a map of constant rank between 

manifolds endowed with linear connections , and ~: s ~ ~,(s) is a geodesic on M, with 

a/fine parameter s--i.e. Such that Va/a8 ~ -~ 0-- .  

Then we have: a ( % ~ ) :  Va/as/,?). 

PR00F 0Y L E ~ A  II1.2.3. - Assertion 1) follows f rom the fact  t ha t  ~ is ~n im- 

mersion. 

For  assertion 2), let (e'~)~= 1 ..... n' denote  a f rame of T M '  in the  neighborhood of 

m'o =/or(~o). 
We write / ,  Y----~0 e~, being functions on M. 

At the  point  m ~ 7(t) we have:  

I gr ! ! 

a n d ,  ms ( f ,  V'), : ~ ' %,(0(efls(,~) 

d ~, ' ' % " V' e' 
loy 

The identities ~ )~  ~,(d/dt) ~nd 1o 7 -----[,~) give the result 2). 

L E n A  III .2 .4 .  - Is  an immediate eonsequenee o/ lemma III .2 .3.  

Pr~OOF oF T~E ~HEO~E~r. - A) The condition is neeessary. The tota l ly  geo4esic 
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distribution K e r / ,  admits a (C ~) supplementary autoparallel distribution, 3r~. We 

shall now s tudy the eolinearity of a(T, T) and / , T  for T~TmM. 

Let  t ~-~ ?(t) be the geodesic from m, s.t. ~)(0) = T, with affine parameter  r 

I f  T ~  (Ker/,),~, by proposition II I .2 .1  and 1emma III .2.4,  a()~, ))) = 0. I 

I f  T~(Ker/,),~,/o? is a geodesic on M',y  is transverse to K e r / , ,  and by 

lemma I I I .2A,  a@, ~) is col[near to ] ,p.  So if Y e s there exis ts  a function 

~o~: N~--> R s.t. ~(T, T) = 2op~(T)/,T. 

Using a proof by  Z w  HA~'En [Ha] we see tha t  co~ is u linear map. [ ,  and a being 

~% SO is 03~. 

Now for T ~ K e r / ,  we write T = T, §  with To e K e r / , ,  T~ e N1 and we have: 

~(2 ~, T) = a(To, To) § 2r ~ )  § 2m1(T,)/,~ = 2a(To, T~) + 2od~(Td/ ,T.  

As a(T, T) is colinear to / ,T,  there exists a mapping too: K e r / , X 2 ~ - ~ R  such tha t :  

a(To, T~) = ~o(Yo, T~) / ,T  = ~o(To, ~1) / ,2~ .  

As / ,T~ is nowhere zero, a a n d / ,  being C ~, we see that O~o is C r176 

Now, using the bilinearity of ~ we can see tha t  ~oo is linear w.r. to T0 and does 

not  depend on T~. 

Se we define ~o: K e r / ,  --* t(. By  

~(/'o, ~'~) = ~(2 'o) / ,T  

and this equali ty still holds when T1 = 0.  

Put t ing  to(T) = cO(To) @ ~o1(T1) we have:  

a(T, T) = 2 ~ ( T ) / , T .  

Hence a(X, :Z) = [ [ ~ ( X  § Y, X §  Y) -- ~ ( X - -  Y, X - -  Y)] = ~o(X)/,Y§ ~o(Y)I,Y 
q.e.d. 

B) The condition is sufficient. I f  ( , )  holds, for two Ker [ ,-valued fields X 

and I r we have: 

a(X, Y) = 0 = - / , V x Y  

by 1emma 1.5.7, so tha t  K e r / .  is totMly geodesic. 

Using lemma I I I .2A,  it  is easy to see tha t  any  geodesic in M is mapped either 

into a geodesic on M',  or into a point. 

A piecewise geodesic ? being a geodesic o11 the open set where ~) # 0, 1emma III .2 .4 

provides also the following characterization for projective maps: 
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T~_EO~EX I I I . 2 .5 .  - Let ]: (M~ V) --* (M'~ V') be a mapping of constant rank bet- 

ween manifolds endowed with torsionless linear eonnections~ and denote by (~ its 2rid 

fundamental form. Then ] is pro~eetive iff for every X c TM,  a(X, X) and / , X  are 

eolinear. 

I I I . 3 .  The Riemannian case. 

B y  our definition I I I . l . 1 ,  a geodesic is an immers ion  a: I = ]--  s, e[ -> M such 

tha t  y(I) is a to ta l ly  geodesic submanifold  of M. E x a m p l e  1.3.2 shows t h a t  the 2n4 

fundamen ta l  fo rm of y satisfies av(d/dt , d/dt) ~ Vd/,t~, so t ha t  y is a to ta l ly  geodesic 

m a p  (i.e. a v = 0) iff t is ~n affine p a r a m e t e r  for ~,. One knows t h a t  every  geodesic 

admi t s  affine pa ramete r s .  I n  the  case when r a n k  f > 1 the  notion of geodesic curve 

is natura l ly  extended into the  notion of s t rongly project ive  mapp ing  (with charac- 

terist ic p r o p e r t y  ( , ) ) .  We shall show here t ha t  a change of metr ic  can make  any  

s t rongly project ive  m a p  into a to ta l ly  geodesic one. We have :  

Tn-EO]~E~ 111.3. - Assume f: (M, g) --> (M', g') is a strongly projective mapping 

between Riemannian manifolds. Then 

1) K e r  f~ is integrable and defines a totally umbilical foliation, which is totally 

geodesic iff Ker  ] ,  c Ke r  ~o. 

2) There exists a metriv g~ on M /or which ] is totally geodesic. 

PROOF OF 1). -- Assume X~ Y arc Ker  ],i va lued fields and  Z is a K e r  f ,  va lued  

field on M. V~e have:  

(a) a(X, ~) = - f ,  VxZ = ~(Z)f,X. 

Hence  g(Vx Y , Z) = -- g(Y, VxZ ) = o~(Z)g(X, Y) and  b y  s y m m e t r y :  

g([X, r],  z)  = 0 

so t h a t  Ker/ ,~ is integrable.  

5~oreover g (~ (X,  ~),  Z ) ~ :  ~o(Z)g(X, Y), so t ha t  Ke r  f~ is umbi l i ca l - - to t a l ly  geo- 

desic iff Ke r  ] ,  c Ke r  co--. 

P~OOF OF 2). - Le t  gl be the  metr ic  defined in 11.1.2. ~u shall p rove  t h a t  Ke r  ] ,  

is to ta l ly  geodesic w.r. to g~. 

Using the  iden t i ty  

2gl(V~ Iz, Z) = Xg~(Y, Z) -~ Ygl(X, Z) -- Zg~(X, ~) ~- 

+ g!([x, ~], z)  + gl(Fz, x ! ,  ~) + g~(X, [z, r]) 
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and the definition of g~, we find, for X and Y~ Ker  f ,  

2m(v~ ]G z) = 2g(V~ ~, z).  

K e r / ,  being total ly  geodesic for g, taking Z in Ker  ],~ we see tha t  Ker  ] ,  is to ta l ly  

geodesic for gz. 

&pplying theorem 3.3 by  J. VIL~S [Vi] we see tha t  the 2nd fundamenta l  form a3 

of ]3: (M, g~) -+ (/(M), g') is mlli. 

The 2rid fundamenta l  form of jo/ :  (M, g~) -+ (M', g') being g3 + v is null. So ] 

is to ta l ly  geodesic with respect  t o  gx. 

I I I . 4 . .Examples .  

III .4.1.  ,First example o] strongly projective map. 

/ let  ]: E ~ --> E 2 

(x ~, x -~) ~+ (sin s xl, cos 2 x ~) 

f is of rank  one whenever  x~#  k~]2. 

I t  maps E s into the total ly  geodesic submanifold:  

xl_[_xS= 1 

0 < x ~ < l .  

We have a(X, Y) = co(X) ], Y + co(Y) l ,X  with 

co(X) = X ~ cotg 2x 1 

so tha t  / is s trongly project ive without  being to ta l ly  geodesic. Ker  ],~ is a line so 

tha t  we have Kcr  ] ,  c Ker  a. 

I I I .4 .2 .  Second example o] strongly pro~ective map. 

Consider the ~A~0F,  A_~V [Vr] {~xfaee M~c E 4, the points of which satisfy: 

x 1 = r(u) cos u cos v 

x s = r(u) cos ~ sin v 

x3 = r(u) sin u cos v 

x d =  r(u) sin u sin v 

P u t  M' -~  S2 \{N,  S} parametr ized  by  the lat i tude 0 ~ ]-- ~I2, ~/2[, al~d the lon- 

gitude ~0 e [0, 2~[. Define ]: M --~ M'  by  ](u, v) = (0, v). ~Ve can see tha t  ] , X  -~ 

= Xs(~/~)  and ~(X, Y ) =  co(X) / ,Y  + co(Y)] ,X with c o ( X ) = -  Xl(i'/r) so tha t  ] 

is s t rongly project ive an4 Ker  ] ,  r Ker  co. 
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I I IA.3 .  Example o] projective, not strongly projective map. 

Let  p be the  or thogonal  project ion f rom the sphere S~\(N, S} c E 8 on its axis 

iN, S[. Being R-valued, p is projective. But  it  maps a great  circle (e) on S 2 into 8, 

twice covered segment:  its image i s  ~ to ta l ly  geodesic  submanifold of [~r S]~ bu t  

p oc is not  an immersion.  The leaves of Ker  ] ,  ~.re the horizonta, l circles (not to ta l ly  

geodesic). On the other  hand,  a computa t ion  shows tha t  the 2nd fundamenta l  form 

of p does not  satisfy ( , ) .  

III .4.4.  Example o/ strongly projective map satis]ying Ker  a = {0}. 

l(m) 

! 

! 

I 
1 I ( D )  

! f 

D 

), X2 

Fig. 1. 

Consider the map ]: E3\{0} -~ S 2 

(xl, ~ x3) ~ 7 '  r ' 

where r = ~(wl)~ + (m~)2 + (xa)~. 
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Let  D be ~ straight  line in E S. I f  0 E D, ](D) is the p o i n t / )  ~ S ~. I f  0 ~ D, ](D) 

is included in the  intersection of the plane defined by  (0, D) and $2: i t  is an open 

subset of a great  circle. Thus ] is s trongly projective.  

The leaves oi Ker  ] ,  are the  straight  fines through 0 (0 being excluded). The 

kernel  of ] ,  ~t a point  m e E 3 is generated by  the position vector  ~ .  Being non 

parallel, Ker  f ,  is not  included in Ker  a (proposition 1.5.3). In  fact,  using lemma 1.5.7 

one can easily compute  the 2nd fundamenta l  ~orm ~ of ]. We have:  

a(x,  :r) = o~(x) / ,Y  § co ( y ) / , x ,  

where ~ o ( ~ ) ~ -  1 and Ker  co-~ Ker / , l .  

Thus Ker  a ~ {0). 

P~oPosITIo~ III .4.5.  Strongly projeetive maps of rank ~ 2 between euelidean spaees 

are af/ine. 

IDEA OF THE ]?ROOF. - -  We first establish tha t  we nee4 only investigate the case 

of immersions, then  we show strongly project ive immersions map straight lines 

into s traight  lines. 

1) Consider ]: M - ~  E " - + M ' =  E ~' and suppose ] is s t rongly projective,  of 

cons tant  rank  k. 

The leaves of Ker  ] ,  (resp. Ker  ]$) 

leaf of Ker  ],~ and z the  or thogonal  

the  following factorizat ion of ]: 

are n -- k planes (resp. k-planes). I f  H is a 

project ion o n / / - - t o t a l l y  geodesic--consider  

M ~ > M '  

H 

where ]', restr ict ion of ] to 11, is an immersion.  

Being parallel, Ker  f ,  is inclu4e4 in Ker  ~ (Prop. 1.5:3). Hence one can see t h a t  f 

is s t rongly project ive  iff so is / ' ,  and ] is affine iff so is f .  

2) Suppose now moreover  tha t  ] is an immersion of r ank  k>~2. ](M) is a con- 

nee te4  open subset of a k-plane in M'.  The image of a s traight  line b y  ] is included 

in a s t ra ight  line. 

Thus one can eas i ly  state tha t ,  if D'  is a s traight  line in M: 

1) ]-I(D') is ei ther 0 or a s traight  line D in M; 

2) we have ](D)-~ D'; 

3) f satisfies the hypothesis  of the fundamenta l  theorem of affine geometry,  

and hence is affine. 
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4.  - U m b i l i c a l  m a p s .  

IV.1.  Definitions. 

The following 4 definitions can be regarded ~s na tu ra l  extensions of the  usual  

notion of umbi l ic i ty  for submanifolds .  

Zet ]: ( M, g) --~ ( M',  g') be a map o] constant rank between t t iemannian mani fo lds ,  

with 2nd fundamental form a. 

IV.1.1. g-umbilicity. 

] is said to be weakly g-umbilical if there  exists 

1) ~ field ~ ~long f~ nowhere 0, wi th  values in K e r f , ' ;  

2) u field Z on M, such t h a t  for every  X ,~nd Y in T M  we have:  r ]7) = 

= g(X, ~)(r + f , z ) .  

If moreover  ~ is or thogonal  to f ,  T M  ( that  is Z ----- 0) ] is said to be strongly 

g-umbilical. 

I~ .1 .2 .  g'-umbilicity. 

f is said to be weakly g'-umbilical if there  exists fields ~ ~nd Z as in IV. I .1 ,  such 

t h a t  for every  X and  ~ in T M  we have:  a(X,  Y)  ~ g ' ( f , X , f , Y ) ( ~  - ~ f , Z ) .  I f  

moreover  ~ is or thogonal  to ], T M  (Z -~ O) ] is sai4 to be strongly g'-umbilical. 

BE~AI~IC. - No tCiemannian submersion can be umbil ical  because for such maps ,  

0"lKerll, xKerf. 1 :  0--C le, [Vi]--, which would imp ly  ~ : 0 in the  umbil ical  case. 

IV.2.  Examples. 

IV.2.1. g-umbilicity. 

PROI~OSITIO~ IV.2.1.  - Let M be a convex hypersur]ace of the euclidean space E *+I. 

We denote by g the metric in E '~+1 and V the associated Levi-Civita connection. 

1) There exists one unique metric g~ on M s.t. if ]1: (M, g~) -~ (E '~+~, g) denotes 

the canonical injeotion, and v the orthogonal projection of its 2rid fundamental form 

on T M  J- we have: 

VX, Y e T M  , v(X, ]~) = g~(X, ~)~ , 

being a unitary vector field orthogonal to M. 
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2) f~ is weakly g~-umbilical i f / there  exists a field U on M such that the 2nd fun- 

damental form (~' of M isometrically immersed in F, ~+~ satisfy: 

v x ,  ~ ,  z e ~ M ,  (~,~') (X,  Jr) = .gg(a'(X, ]0, a'(Y, Z)) .  

3) f~ is strongly g~-umbilieal if/  (~' is parallel ( V a ' ~  0). 

P~ooF. - Assertion 1) As M is convex, T M  J- is orientable." Le t  ~ be a un i t a ry  

field in T M  • Define a bilinear symmetr ic  form g~ on T M  by:  

re(x,  ~;) = <a'(x, y) ,  ~>. 

M being convex, we can chose ~ such tha t  g~ be positive definite at  every  point .  

Thus (M, g~) is a l~icmannian manifold. Factorize f~ as in II .1.3.  

(M, g~) ~ > (E'+I~ g) 

(M, g) 

By  proposit ion I I .2 .2  and by  the definition of gl we have v(X, Y)  ~- g'(X, Y) = 

= g~(X, Y)~, and 1) is satisfied. As any  change of metr ic  on M does not  al ter  r, g~ 

is the  only suitable metric.  

Assertion 2) The tangent  component  v of the 2n4 fundamenta l  form of ]~ is 

�9 (x,  ]0 = v , ~ - v i ~ .  

We seek for a condition tha t  i t  satisfy 

(i) ~(x ,  Y) = re(x,  Y) ~; , 

U being a field on M. 

A computa t ion ,  using the Codazzi equat ion for M immersed  in E "+1 yields: 

- z), @ = 
~' being definite, we see tha t  condition (i) is equivalent  to (Vza')(X,  :Y) 

= 2g(~'(x,  y) ,  ~ '(~,  z)) .  

Assertion 3) Is an immedia te  consequence of the  definition of strong umbilicity.  

IV.2.2.  g'-umbilicity: Projection of S " •  into S ~. 

Consider the cylinder M = S~• R and the map from M into E ~'+~ 

/ :  M ->  E ~+: 

(m, z) ~ m .  



304 Tm~m~sE Nom~: Second /undamental /orm o/ a map 

We can factorize ] as follows: 

k} 
S- 

where p :  (m, z ) ~ . m  is t h e - - t o t a l l y  geodesic--or thogonal  project ion on S~, ~nd 

where ] is t h e - - t o t a l i y  umbil ical--canonical  isometric immersion. 

Denot ing by  H the mean curva ture  vector  of S '~ immersed in E ~+~, using lem- 

ma 1.5.7 and IA.5 we find: 

(~(x, ~) = < / , x , / ,  r } . ~  

so tha t  ] is s trongly g'-umbilieal. 

IV.3. Theorems. 

IV.3.1. g-umbilical maps. 

TI~EO~E~ IV.3.1.1. - Let ]: (M, g) --~ (M', g') be a weakly g-umbilical map. Then 

1) f is an immersion. 

2) I/ranlc ] > 2  and i / M '  is a space o] constant curvature, ](M) is a convex hyper- 

sur]ace o] a totally geodesic submani/old o] M'. 

Tn-EO~E~ IV.3.1.2. - Assume /: (M, g) --> (M', g') is a strongly g-umbilical map 

]rom a simply connected irreducible mani/old into a space o] constant curvature. Then M 

is isometric to a sphere. 

P]~ooF. - 1st theorem. 1) I f  ] is weakly g-umbilical we have Ker  v ~-- {0}. t tence  ], 

is injective by  corollary II .2 .3  (Ker f , c  Kerv) .  

2) Assume now tha t  M '  is a space of constant curvature .  Consider metr ic  gl 

as in I I .1 .2:  g~(X, ~ ) ~  g'(].X, f ,  ~) and the fuctorization of II .1.3.  

Using IA.5, we see tha t  the 2nd fundamenta l  form as of the isometric immersion 

]o/~ satisfies : 

~ ( x ,  ~) = r  / ,  ~) �9 

By proposit ion II .2 .2  ad(X, Y) = v(X, Y) -= g(X, Y)$. We shall now prove,  using 

a method  of Gl~n~o~E and l~Ol~VA~ [Gr & Mo], t ha t  ~ is parallel  in the normal  bundle 

] , T M  • Let  us write the Codazzi equat ion for ]of~--cf. [Ch] e .g . - -  for X, Y, Z e TM: 

l /  t.. L v~ ~(Y, z) - v~ ~(x, z) -- ~(v~ ]5, z)- ~(v~x, z) + ~(Y, v~z) - ~(x, v~z) 
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where V 'x is the  connection induced by  V' on f ,  T M ' .  That is 

peg(y, 7,)$ § g(y ,  z ) v ~  - g(V~ ]~, z )~  - g (y ,  v ~ z ) ~  = 

= Yg(X, z)~ ~- g(X, z ) v ~  - g(V~rX, z)~ - g(X, V~ z ) ~ .  

I f  V'• is non zero on an open set, the  project ion of this equat ion on the distribu- 

tion1 or thogonal  to ~ in ] . T M  -L yields g(Y, Z)V~I$ = g(X, Z ) V ~ .  

Defining L: T M  -->f, T M  J- by  L(X) = V ~ ,  one can easily see tha t  Z would be a 

rank  1 linear map, satisfying moreover  Ker  L = Ker  g, which is impossible. Hence 

V'• and the dis tr ibut ion M" generated by  ] . T M  and $ is integrable and 

to~a]ly geodesic. The 2nd f t tndamental  form of M isometrically immersed  in M" 

is the definite form ad: VXv a 0, a~(X, X) ve 0. Thns M is a convex hypersurface  

of M'% 

2nd theorem. - Being strongly g-umbilical, f is relat ively affine and weakly 

g-umbilical. Thus by  ~heorem 11.3.4, f is an homothecy  amd one can easily see tha t  

](M) is a to ta l ly  umbilical, closed submsnifold of M' ,  wi thout  boundary .  Thus ](M) 

is an hypersphere  of a to ta l ly  geodesic submanifold of M'  ([Ch]). 

I'V.3.2. gr-umbilieal maps. 

TItEORE~ IV.3.2.1. - The image of M by a weakly g'-umbilical map is a totally 

umbilical submanifold of M'. 

TttEORE~[ IV.3.2.2. - Assume ] is a weakly g'-umbilieal map from a simply con- 

nected complete manifold M into a space of constant curvature M'. Then 

! )  f(M) is a sphere. 

2) M admits a decomposition MI•  where T M I =  K e r / .  and Ms is dine- 

omorphie to the sphere f(M) c M'. 

T]~EORE)[ IV.3.2.3. - Assume] is a strongly g'-umbilieal map from a simply con- 

neeted complete manifold M into a space of constant curvature. Then 

1) ](M) is a sphere. 

2) M admits a decomposition MI • Ms where TMI ~ Ker  f .  and Ms is isometric 

to a sphere. 

P R O O F .  - The ]st theorem. Is an application of II .2.2.  

The 2nd theorem. We have K e r f . c 1 K e r  a, thus by  theorem 1.5.5 we can write 

M = M~xMs,  Ms being diffeomorphie to f(M), which is to~ally umbilical, hence 

included into a sphere. ]~{oreover ] ( M ) i s  complete an has no boundary  since f is 

el  constant  rank.  f(M) is then  the  whole sphere. 
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The 3rd theorem. By similar argllments as in I1.3.4 we can see tha t  M~, as f(M), 

is irredllcible, and tha t  f ,  induces an homothecy:  T M ~ - , f ,  TM. Hence M~ 

is isometric to a sphere. 

I'g.4: Spherical maps. 

Generalizing the definition of ((extrinsic sphere )~ by B. Y. Cltn~r [Ch 1] we set: 

IV.4.1. Definition. 

A map f: (M, g) -~ (M ~, g') is said to be spherical if i t  is strongly g'-umbilic~l 

and if its mean curvature vector ~ is parallel in the normal bundle ( that  is for V'• 

of. 1.3.6), and non null. 

IV.4.2. Spherical maps into a KShler manifold. 

We shall now prove 

THEOI~E~ IV.4.2.1. - Assume ]: (M, g) -+ (M '~', g') is a spherieal map, with values 

in a Kiihler manifold of real dimension 2n'. I] M is simply connected oomplete, and f 

analytical of rangk 2n'--2,  then one of the irredueiMe com2oonents of (M, g) is iso- 

metric to an even dimensional sphere. 

This theorem is based on two lemmas. 

LE~C~A I V . 4 . 2 . 2 . -  Assume X E T ~ M  and ~ is a section o] ] , T M  -L. Denoting 

by A' the 2nd /undamental tensor o f / (M)  isometrically immersed in M', we have: 

= - A ' d , x  + 

L E ~ ,  I~.4.2.3. - A s s u m e  X e T,~M and ~ is a field along ]. Denoting by J 

the complex strueture of M' we have: 

PRoof  oF THE LE~AS.  - 1st lemma. Proper ty  (5) of V' shows tha t  the tangent  

component of V~$ depends only on ] ,X.  

On the other hand for Y e T ~ M  and for any  section Y' of ] , T M  such tha t  

:Y'.,= f , Y ,  we have:  

g (Vx~ , ] ,  17) _-- -- g'(~, ~ X') as V' is metric 

= - r ) )  = - i , r ) )  

by prop. II .2.2,  

of A':. 

---- -- g '(A'J,X,  ], :Y) by  the definition 
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Hence we get the lemma. 

2rid lemma. We omit the  proof, which is a computat ion in local coordinates. 

P~00F OP THE THEOnEH. -- We shall use here the me thod  of CHE~ [Ch 1]. By  

oar  assumptions,  ] is s t rongly g-umbil ical :  

a(X, Y) = g'(],X,  ], Y)~, l ~ l s  paral lel  for V '~ , 

and [l~[[ is constant .  

We can apply  theorem II .3.4 : M = M1 • M2 where TM~ = K e r / ,  and if M2 

admits  the de Rham decomposition M2 = M~ •  • M~, ] induces an homothecy  of a 
zi submanifold M~ in M-- i somorph ic  to M~---into a leaf M~ ~ o f / , T M ~ :  We denote 

its rat io by  ~ .  

We can chose a un i t a ry  section of ] , T M  J-, ~, orthogonal  to ~. V '• being metric,  
- - r  t ~f.L 

we have V ' ~  ~ 0. Hence Vx~ ~ -- A ~ / , X  -~ V x ~? ~- 0, ~ being orthogonal  to the  

mean curvature  vector  of ](M). We define a funct ion ~ on M~ by  

,(.,) 
B y  a computa t ion  we can see that 

vxdv = )v. 

lVforeover there  exists at  least  one i for which ~ is non constant ,  for if the con t ra ry  

held, one could see tha t  {~, J,} would generate ] , T M ' ,  hence we would have 

]l JJ = 0 .  

The result  of OSATA [Ob] then  proves tha t  M~ is isometric to the sphere of 

radius ~/~l]~]l in E ~+1, where 2r-----dim M~. 

5. - In tegra l  formulas .  

We shall here state formulas relating the  norms of the  2rid fundamenta l  forms 

of ], of ](M), and of K e r ] , ,  in the  case where / induces a conformal  map h 'om 

Ker]~, into / ,TM---e.g.  when ] is a Riemannlan submersion or a mapping of 

rank  1 - - .  In  the sequel we denote by  H" " "H the norm of any  type  of tensor, for either 

metr ic  g, or metr ic  g'. 

V.1. The eon/ormal ease. 

Our results will follow from the  

PI~OPOSI~Io~ V.1.1. - Assume/ :  (M, g) -+ (M', g') is a mapping o] constant rank 

between Riemannian mani]olds. ~quplaose there exists a /unction ~ on M s.t. ]or any 
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X e  K e r / ~  we have: II/,X[1 = ~]]XII. With the notations o/1.4,  we have at any point 

o/ M 

II~ll ~ > e  ~lI~oll ~ + r ~. 

t tenee  we obtain:  

CO]r V.1.2. - Assume /: (M, g) --> (M', g') is a mapping o/ constant rank 

between Riemannian manifolds, M being compact. 

Suppose there exists a function Q on M s.t. for X e K e r / ~  we have: 

IIf.xll = ellxll �9 

�9 Then, with the notations o/ 1.4 we have: 

M M M 

where Qo denotes the lower bound of ~. 

P~ooF oF P~O~OSI~Io~ 7.1.1.  - Is ~ direct computa t ion  of Ila[I , using at  m an 

or thonormal  f rame {e~, ..., e~} s.t. {e~_r+x, ..., e,} generates Ker/ .x.  

We have II/.e,II = el[viii for i > n - r and  

[I,~11 ~= ~ II,~(e,,e~)ll ~= ~. II~(e~,e~)ll~+ ~ ll~(e, ej)II ~. 

Using propositions 1.5.2 snd II.2.2~ and the definitions of the norms~ we find 

the  required equality.  

V.2. The Case of a /ibration. 

Whenever  / defines a fibration with compact  fiber E, we obtain:  

COROLLARY V.2.1. - W i t h  the hypothesis o/corollary V.1.2, if / defines a fibration 

with compact fiber E, we have: 

M M f(M) 
and 

COI~OLLAI~Y V.2.2. - Assume / is a map o/ constant rank 1 from an orientable 

compact Riemannian manifold into a Riemannian manifold (M', g'). Suppose moreover 

that / defines a/ibration with compact fiber E. With the notations of 1.4, we have: 

f ]fall 2 >ini~ ]If, If : [ f  I]ao]] ~ -~ infM Hf*I'2 ( v o l E ) f k  21 
M 21/s O 

where C is the curve / (M) and k its curvature. 
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V.3.  Case of a Riemannian submersion. 

U s i n g  ~ r e s u l t  b y  H E n ~ A ~  [He] we obtMn. 

COIr V.3.  - Assume f is a mapping o/constant rank from a compact Rieman.  

nian manifold (M, g) into a Riemannian manifold (M',  g~)~ which induces a ~ieman- 

nian submersion from M unto (f(M)~ g'). I f  the fibre ~ or ] is compact, with the nota- 

tions of 1.4, we have: 

M M M 
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