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Abstract We consider a generalization of the con-
stitutive equation for an incompressible second order
fluid, by including thermal and viscoelastic effects in
the expression for the stress tensor. The presence of the
histories of the strain rate tensor and its gradient yields
a non-simple material, for which the laws of thermo-
dynamics assume a modified form. These laws are
expressed in terms of the internal mechanical power
which is evaluated, using the dynamical equation for
the fluid. Generalized thermodynamic constraints on
the constitutive equation are presented. The required
properties of free energy functionals are discussed. In
particular, it is shown that they differ from the stan-
dard Graffi conditions. Various free energy function-
als, which are well-known in relation to simple mate-
rials, are generalized so that they apply to this fluid. In
particular, expressions for the minimum free energy
and a more recently introduced explicit functional of
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1 Introduction 78
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In this work we consider new constitutive equations ~ 8°
for incompressible second order fluids, which include ~ #'
memory effects. These are materials for which the
stress tensor is a function of the history of D and 83
V . VD, where D =VV+(24VV)T is the strain rate tensor o'
and v the velocity. It is the presence of the quantity 8
V - VD (= AD, where A is the Laplacian) which ren- 8
ders the material non-local or non-simple. The classi- &
cal laws of thermodynamics must be modified for such %8
materials either by introducing suitable extra fluxes, or 8
directly, by expressing these laws in terms of internal %
powers, characteristic of the material under considera- o
tion [13]. For the first method, there is the problem that 92
the vector fluxes are introduced a posteriori, in order 9
that compatibility with the laws of thermodynamics is o
maintained. The second formulation, in terms of in- 9
ternal powers, is more general than the first, since it %
is defined a priori by means of the constitutive equa- %
tions, taking into account the power balance laws. In %
this article we use the second method. ?zo
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The assumed constitutive equation includes ther-
mal and viscoelastic effects in the expression for the
stress tensor. We firstly discuss the laws of thermody-
namics and use the equations of motion of the fluid
to determine an expression for the internal mechanical
power. Also, thermodynamic constraints on the con-
stitutive equation are derived. Then, some free energy
functionals are generalized to apply to this new ma-
terial. This includes a functional of the minimal state
introduced in [7, 10] and an explicit formula for the
minimum free energy.

The layout of the paper is as follows. In Sect. 2, the
constitutive equation with memory effects is presented
and an expression for the internal mechanical power is
derived. Moreover, the concepts of a free energy and
of the corresponding internal dissipation rate are intro-
duced. Thermodynamic constraints on the constitutive
equation are also given. In Sect. 3, some free energies,
already introduced for simple viscoelastic materials,
are adapted to our non-simple fluid and their related in-
ternal dissipation rates are also deduced. The required
properties of free energies in this new context are dis-
cussed.

Various steps in the derivations are omitted or ab-
breviated when they are closely analogous to develop-
ments in [3] (also [4]) for non-simple heat conductors.

2 Basic equations

For an incompressible second order fluid without
memory, the stress tensor T is given by [14]

T=—pI+2uD— %V -VD 2.1

where p is the scalar function known as the reaction
pressure, 1 and s are two positive constants, while I
is the identity second order tensor.

In this work we generalize (2.1), by assuming that
the incompressible fluid, which is isotropic and ho-
mogeneous, exhibits both viscoelastic and thermal ef-
fects. The following constitutive equation is adopted:

+00
T(@) =—p(t)I+2/ 1 (s)D' () ds
0

+o0

—/ #(s)[V - VD' (s)] ds
0

+ a9 () — oL, 2.2)

where ¢ denotes the absolute temperature and 9 is a
fixed ambient absolute temperature, while i and s are

@ Springer

smooth functions which belong to L' (RT) N H!(R™).
It is assumed that the motions are infinitesimal so that
second order terms in v or D are neglected.

We consider this relation at a specific point x € £2,
which is the domain occupied by the fluid. For brevity,
however, the space dependence of the fields is hence-
forth generally omitted.

Let

vu(t) + [Vu()]"
2

be the infinitesimal strain tensor at time ¢, where u is
the displacement vector. Then

E(t) =

(2.3)

d .
D) = EEO) =E(@). 2.4

.
Also, let E'(s) = w be the infinitesimal
strain history where

iE‘(s) =E'(5)=D'(s),

dt
L ()=~ LR (5) = D' (5) =
ds dt ’

We define the relative history as

E!(s) =E'(s) — E(?). (2.6)

The dependence of the stress tensor on D’ and V -
VD' in (2.2) can be expressed in terms of E!(s) and
V-VEL(s), since we have

+o0 +00 d
/ (D' (s)ds = —[ pu(s)—E'(s) ds
0 0 ds
+00 d ,
=—/(; u(s)%Er(s)ds
+00
:/0 W' (s)EL(s)ds 2.7)
and, analogously,

+00
/ #(s)V - VD' (s)ds
0

+o0
:/ #(s)V - VEL(s) ds. (2.8)
0

Thus, we can write (2.2) as follows:
T(t) = {—p@®) +a[?() — %] }1

+00
+2/ W ($)EL(s)ds
0

+00
- / 3+ (5)V - VE. (s) ds. (2.9)
0
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The extra stress tensor has the form
_ +00
T(t) = 2/ W ($)EL(s)ds

0

to0
— / + (s)V - VEL(s)ds. (2.10)
0

2.1 Thermodynamics

For a mechanical system, we have in general that

%T(;)+P;;1(z)=7>fn(t), (2.11)
where T (t) is the kinetic energy, while an (¢) and
Pg (t) denote the internal and external mechanical
power per unit volume of the system, respectively. In
the case of a simple fluid, P,"n (t) =T() - D(¢). Equa-
tion (2.11) is an expression of the balance of power.

For non-simple materials the first law assumes the
form

pé(t) = ph(t) + P! (1), (2.12)

where e is the internal energy and # is the specific in-
ternal heat power, defined as the rate at which heat is
absorbed per unit mass. The heat balance law

ph=—=V-q+pr, (2.13)

relates & to the heat supply » and the heat flux q. The
Fourier relation,

q=—koV¥, k>0, (2.14)

will be adopted. The second law yields the existence
of the entropy function 1 with the property that

P ) R 2.15)
pn = 9 1Y 3’ .
whence it follows that

. h ko 2

>p— — —|VO|“. 2.16
pNZ Py ﬂzl | (2.16)

Introducing the free energy ¥ = e — ¥, we can write
this as

1/}5—;719+179;;,+k—°|v19|2, (2.17)
P pVY
where (2.12) has been used.
The equation of motion for the material has the
form

pv=V-T+ pf, (2.18)

where f denotes the body forces. In order to derive an
expression for P, , we multiply this relation by v to
obtain

d(1,
'OE v | =(V-T) v+ pf-v, (2.19)

2

where, taking into account (2.9) and the incompress-
ibility condition V - v =0,

(V-T) - v=-T-Vv+4+ V- (Tv)

+00
=— / ,u'(s)Ei(s) -Vv(t)ds
0
+o0
—/ %’(s)VEi(s) -VVv(t)ds
0
+V. ({[—p +a(9@) — o)1
+00
+2/ W' (s)EL(s)ds
0
+00
—/ %’(s)V~VE’,(s)ds}v
0

+o0
~|—/ 3+ (s)VEL(s) dva(t)).
0

Therefore, the equation of power balance is given by
1 2 oo / t
o—|=v")+2 w($E.(s) - Vv(t)ds
0
+00
+ /0 + (s)VEL(s) - VVv(t)ds
=V. <{[—p +a(? () — o)1
+00
+ 2/ W ($)EL(s)ds
0
+00
- / + (s)V - VEL(s)ds }v(t)
0

+00
+/ + (s)VEL(s) dva(t)) + pf-v. (2.20)
0

We deduce from (2.11) that the internal power is ex-
pressed by

+o0
P =2 OB Tyods
0
+oo
+/ 5/ (s)VE,.(s) - VVV(t)ds
0
+00 X X
= 2/ w(E (s) - E(t)ds
0

+o00
+/ »#(s)VE! (s) - VE(t) ds. (2.21)
0

@ Springer
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The last form follows from (2.4), (2.5)1, (2.7) and
(2.8). The external power is given by the quantity at
the right-hand side of (2.20), since the divergence term
can be expressed as a surface contribution and the
body force is clearly external.

To characterize the behaviour of our fluid, we intro-
duce the state

ol(t) = (9,0(1)) = (9, EL(s), VEL(5)), (2.22)

and the process PT given by a piecewise continuous
map defined as

P (x)=(@p, P)
= (9p,Ep(r), VEp(v)) VT e[0,d), (2.23)

where d, which generally has a finite value, denotes
the duration of the process.

More details on this abstract terminology, which is
used below to a limited extent, may be found in [13],
for example.

Now, we seek a free energy ¥ having the form

¥ (0T (1)) = v1(9) + 2 (EL(s), VEL(5)),

expressed as the sum of (1), a temperature depen-
dent function, and ¥ (E.(s), VEL(s)), a functional of
(EL(s), VEL(5)).

Substituting into (2.17), we obtain

91 ()
B

(2.24)

n}‘a + 92 (EL(s), VEL(s))

1 __. ko
< =Pl +— |V 2.25
=" + p 5 VI (2.25)
The final term on the right is non-negative. This in-
equality, taking account of (2.21), is satisfied if

_ @)
o 9y
2 (EL(s), VEL(s))

e, (2.26)
< ;[2/0 W' ($)EL.(s) - E(1)ds

+00
+/  (s)VEL(s) - VE(1) ds:|.
0

The inequality (2.26) is an expression of the second
law for the mechanical aspect of the problem. Taking
account of the incompressibility of the fluid, we can
absorb the density into the kernels and write this rela-
tion as

Y2 (EL(s), VEL(5)) < A(o, P), (2.27)

@ Springer

where

A(t) = Ao, P) = %79};1@)
+00
:2/ W ($)EL(s)ds - E(1)
0
+00
+/ + (s)VEL(s)ds - VE(t)
I
= 2/ w(E (s)-E(t)ds
0
+oo
+/ »#(s)VE!(s) - VE(t) ds
0

t
= 2/ wt —wEw) du - E@)

t
o
—0o0
with the aid of (2.5)—(2.8) and a change of integra-
tion variables. This quantity, which is the internal me-
chanical power per unit mass, is analogous to what
was termed the entropy action in [3] and generalizes
the work function which is central to the discussion of
simple materials.
By introducing D> (X, t), a non-negative function
referred to as the internal dissipation rate, we can
transform the inequality (2.27) into an equality

Ua(t) + Da(t) = A(1).

The non-negativity of Dy in (2.29) is in effect a
statement of the second law for the mechanical aspect
of the problem.

Recalling (2.6), we see that E!(s) and VEL(s) de-
pend on the histories E’ (s), VE! (s) and current values
E(?) and VE(t). Thus,

Yo (t) = ¥ (E'(s), VE'(s), E(r), VE(?))

which is a functional of the histories and a function of
the current values.

The quantity A(z) allows us to derive the total me-
chanical work per unit mass B(o, P) done on the ma-
terial during the application of a process P of dura-
tion d,

x(t —uw)VE@)du - VE(@),  (2.28)

(2.29)

(2.30)

t+d
B(o, P) = / A&)ds. (2.31)
t
A consequence of the second law is expressed by the
following principle.
Referring to (2.22), we define the state o (¢) for the
mechanical aspect as
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o(t) = (Ei(s), VE:(S)), (2.32)

while P(7) = (Ep(t), VEp(1)). Let us denote by ¥
and [T the sets of states and processes, which are ad-
missible for the body. For any initial state o; € ¥
and any process P € I1, the state transition function
p provides the final state oy = p(0;, P) € X. More-
over, let P, € IT be any restriction of P to a sub-
set [0, t) C [0, d), with duration T < d. So, we have
o (t) = p(op, Pr). A cycle is defined as any pair (o, P)
for which p(o, P) =o0.

Dissipation principle. On any cycle (o, P) we have

B(o, P) >0, (2.33)

in which the equality sign occurs if and only if the
cycle is reversible.

We define the total mechanical work per unit mass
done on the material up to time ¢ as

t
B(t) = / Au)du, (2.34)

where it is assumed that the infinite integral exists.
Substituting the last form of A, given by (2.28), into
(2.34), we obtain, after integrations by parts, change
of variables and other standard manipulations,

400  p+400
B(¢)=/ / M12(|M—S|)E£(s)-Ei(u)dsdu
0 0

1 “+0o0 +oo
w3 [ [ sy vE

. VE', (u)dsdu, (2.35)
where
52
MuOu—ﬂ)=5a?u0u—ﬂl 6
2 = 51) = = oe(u = 1)

2.2 Thermodynamic restrictions

The dissipation principle imposes thermodynamic re-
strictions on the constitutive equation (2.2). This can
be demonstrated by combining (2.28)3 and (2.31) with
periodic histories of period d = 27 /|w|, for E and VE
given by

E(s) = cosws €] + sinws ¢,

. (2.37)
VE(s) = cosws C| + sinws Cy

where w € R\{0} and ¢;, C; (i = 1,2) are arbitrary
non-zero second and third order tensors, respectively,
depending only of x. Following the steps outlined
in [3], we deduce that

Ue(w) >0, ».(w) >0 VYweR. (2.38)
These in fact require the extra assumptions
+00
e (0) :f p(s)ds #0,
0 (2.39)

+00
»#.(0) = /() »x(s)ds # 0.
Let
D'(s)=E VseR",
be a constant (in time) history. Then (2.2) yields

T() =T@) + {p —a[9(t) — 9|1
=2uVE — )V . VE,

where T is the extra stress tensor for constant histories
and

pd =1, 0)>0, %D =50 >0 (2.40)

by virtue of (2.38) and (2.39).

3 Free energies

We now consider some possible expressions for the
part of the free energy ¥ (1) = y2(EL, VEL) intro-
duced in (2.24). Our aim here is to adapt to non-simple
fluids several classical functionals already introduced
for simple linear viscoelastic solids and later modified
to apply to simple fluids [1, 2].

For a simple fluid, any free energy has the well-
known property that

9
IE(1)

Yo (t) =T(1) (3.1
where ’i‘(t) is the extra stress defined by the first term
on the right of (2.10). We will see that this does not
hold for non-simple materials. Instead, a generalized
version of this relation holds, which will be deter-
mined below.
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3.1 The Graffi—Volterra free energy

We firstly consider the important functional, fre-
quently used in applications, known as the Graffi—
Volterra free energy [19, 20, 22]. A generalization of
this functional to our non-simple fluid is given by

+00
Vo) = — /0 W SEL(s) - EL(s) ds

1 [t ; ‘
— 5/0 # (s)VE,(s) - VE, (s)ds. (3.2)
This is a free energy if the conditions

' (s) <0,

A'(s)>0 VseRT,

w'(s) <0,
w”(s) >0,

are satisfied. The first two relations yield that g is
positive, while the remaining relations are required to
ensure a non-negative rate of dissipation related to this
quantity. Indeed, differentiating ¥ ¢ and integrating by
parts, we can show, with the aid of (2.28); and (2.29)
that

(3.3)

+00 5
Dg(t):/(; w($)[EL(s)] ds

1 [t ! 2
[ om0 o8
0

can be identified as the internal dissipation rate.
Note that, by virtue of (2.6),

+o00
— / t
BE(I) V() = /O 1 ()EL(s) ds (3.5)
and (3.1) does not hold. Instead, we have
+00
_ / t
= oEw Vo = f # ($)VEL (5) ds (3.6)

and the extra stress tensor (2.10) obeys the relation

T(t) = ———vg(t) —

aE() Yg (1)

BVE(I)

= ~Yg(t), 3.7)

SE(I)
which is a variational derivative, in the sense of the
Calculus of Variations, for a function of (E(¢), VE(¢)).

A relation exactly analogous to this form applies to
all the free energy functionals considered in this work,
and indeed to any free energy for any second order
material.

@ Springer

3.2 Conditions for a free energy

We can generalize the Graffi conditions [11, 19, 20]
for a free energy in the light of (3.7). The properties
listed below will apply to all free energies for all sec-
ond gradient materials, not just those discussed here.

P1 The first condition will be taken to be (3.7), replac-
ing (3.1), or for a general free energy,

T() = —w(>—

aE() ey A1)

aVE(t)

_—(SE(t)w()

which is a variational derivative with respect to the
dependence of i on the fields (E(¢), VE(¢)) at the
current time. For linear constitutive relations such
as (2.10), conditions analogous to (3.5) and (3.6)
hold, which yield (3.8).

P2 Let Ef be a static history equal to E(r) at the cur-
rent and all past times. Then

= ¢(E®), VE(1)),

where ¢ (E(r), VE(¢)) is the equilibrium free energy.
This is in fact a definition of ¢, included here for
completeness. It vanishes for the free energies relat-
ing to the material under discussion.

P3 For any history and current value (E’, VE!, E(¢),
VE()),

(3.8)

¥ (ET, VE, E(t), VE(1)) (3.9)

v (E', VE',Et), VE(1)) > ¢(E(1), VE@)). (3.10)

P4 Condition (2.29) holds or, omitting subscripts,
(1) + D(1) = A1),

where D(t) is the rate of internal dissipation. The
form of A(¢) will depend on the material. The first
relation is a statement of the first law, while the non-
negativity of D(¢) is in effect the second law.

D(t) >0, (3.11)

3.3 Dill’s free energy

The Dill functional [9] can be generalized to the form

+o00 +o00
Ypin(t) =/0 /0 w1+ E)EL(ED)

‘K. (&) d& d&
1 +00 +o0
+3 / / A (&1 + &) VEL (&)
0 0
- VEL(&) d& dé,. (3.12)
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Differentiating this with respect to time, as for the
Graffi-Volterra case, we find, after standard manipu-
lations ([3], for example) and using (3.11), that the as-
sociated rate of dissipation is given by

+oo oo .
Dpjy(t) = —/0 /0 w'(& +&)E (&)

B (&) dE) d&,
+00  p+o00 .
- / / (& + EDVE' )
0 0

- VE! (&) d) dé&.

Both of this functionals are non-negative for all his-
tories if u’ and » are strictly monotonic, as defined
in [6].

One can show that the equivalent of (3.5) and (3.6)
are true for {¥p;;, from which it follows that rela-
tion (3.8) holds.

(3.13)

3.4 A free energy in terms of the minimal state

A free energy ¥ r, recently introduced and considered,
in particular, in [10] and [7] for viscoelastic solids, can
be adapted to our fluid.

Two different histories (EY , VE?) and (EJ,,
VEgr) up to time ¢ = 0, which coincide after this time,
are in the same minimal state if they produce the same
stress function for # > 0. This terminology was intro-
duced in [11] where references to the earlier develop-
ment of the underlying ideas are given. The categories
of materials for which non-trivial examples of such
states can arise are discussed in [7]. A simple general-
ization of arguments in these and other references (e.g.
[1, 2]) yields that the quantities

I'(c.E) = 2/
0

+00
3 (v, VEL) = f #(z + MVEL () dn,
0

+00
W' (t +mEL(n) dn,
(3.14)

have the same values for different histories in the same
minimal state, in other words are functionals of the
minimal state. Consider the following functional

v (r)z_lmeyI’ (v.E!) [ dx
)y w0t

1 [t 1 . N2
_5/0 i P (e VEDPar Ga15)

where If;, and J{,) are the derivatives with respect to
7 of I and 7', giving

d
(e B) = Cr (e )

+o00
=2 / Wz + EL () d,
Od (3.16)
Iy (T, VE;) = Eﬁt(r, VE!)

+o00
=/ ' (r 4+ n)VE.(n)dn.
0

The absolute value squared notation in (3.15) indicates
scalar products of 121) and 321) with themselves in the
appropriate vector spaces. Under the hypotheses (3.3),
this functional is a free energy. Note that

“+00
I(0.E!) =2 /0 W EL(n) dn,

(3.17)
+00
TO.VE) = [ < VELdn
0
and
+o00
I, (0.E) =2 / W (ELGr) d,
0 (3.18)

+00
jt(l)(O, VE;) = /0 " (n)VEL(n) dn.

Use of (3.17) and (2.28), gives that ¥/ £(¢) obeys
(3.11) where the associated rate of dissipation has the
form

1 +00 /J/”(T)
D;(t):Z/O mugl)(z,l«:;)\zdr

1 2
N 4/ (0) |121>(07E§)|
1 [t %/(‘E) 5
5/0 oo P (@ VE)[Fde
1
- 2%/(0) ijt(l)(o’ VE;) |2 >0, (3.19)

because of the hypotheses (3.3).

The functional ¥ is manifestly a functional of the
minimal state. This is not a necessary requirement for
a free energy (and in particular is not true for ¥g given
by (3.2)) though it is an attractive property from a the-
oretical viewpoint. The Dill free energy and the mini-
mum free energy, derived in the next section, both have
this property.

The equivalent of (3.5) and (3.6) for ¥ can be
obtained within the manipulations leading to (3.19).
These then imply that relation (3.8) holds.
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3.5 The minimum free energy

The form of the minimum free energy for second gra-
dient incompressible viscoelastic fluids of the kind un-
der discussion can be derived by generalizing one of
the direct methods outlined in [8, 11, 16] or [1, 2, 15],
which was done in [3]. However, we shall adopt a sim-
pler approach here, namely by using a precise analogy
between the present theory and that for a simple mate-
rial.

The core observation is that an explicit formula for
the minimum free energy can be derived by exactly
the same formalism for materials described on differ-
ent vector spaces, provided that the work function has
the same general structure in each case. Thus, we have
the theory developed in [8] for a simple material with
independent and dependent field variables in Sym and
relaxation tensors in Lin(Sym), while in [12, 18], non-
isothermal theories were developed on more general
vector spaces. However, the procedures and results are
precisely analogous for these materials. In particular
they all depend on the factorization of a positive defi-
nite tensor which arises in the work function. The level
of practical difficulty associated with carrying out this
factorization will of course depend on the details of
the material.

For a second gradient incompressible viscoelas-
tic fluid, the underlying vector space is I" = Sym x
(Sym x R) associated with states o (t) = (E., VEL).

Referring to (2.6), we introduce the compact notation
C@) = (E(t), VE(t)) er,

(3.20)
Cl(s) = (E;(s), VEL (s)) =C'(s)—C@)eT.

The quantity B(), given by (2.35), can be written in
the form

1 oo oo
B() = 5/ / Lia(lu — 5])C(s)
0 0

-Cl(u)duds, 3.21)
where I € Lin(I") is the diagonal tensor
L(s) =2u(s)Ps + 2¢(s)Psr, (3.22)

where the quantities Pg, Psg € Lin(I") are real orthog-
onal projectors on Sym and Sym x R, respectively.
The quantity B(¢) corresponds to the work function
for simple materials and crucially for our purposes,
has exactly the same general form. Using the convolu-
tion theorem and Parseval’s formula, we can write it in
terms of the frequency domain quantities, as follows:

@ Springer

B(r) = % / h H(w)C!, () - CL, (w)dw,  (3.23)

where C!_ () is the Fourier transform of C.(s), de-
fined by (4.2),, while (Cﬁ o (w) is its complex conju-
gate. The tensor H € Lin(I") is given by

H(w) = —oL}(w)

=20 e (@)Ps + 0 s (@)Pspr = 0, (3.24)

where (4.4) has been used.

Therefore, for purposes of deriving the form of the
minimum free energy, the only difference relating to
non-simple materials is that they are described on a
larger vector space. Indeed, the same is true for any
other free energy. Such a formulation is being de-
veloped in the context of a general theory of non-
simple materials and the free energies associated with
them [5]. It emerges from this work that the free en-
ergies discussed here are special (diagonal) cases of
more general formulae.

Because of the thermodynamic constraints (2.38),
the scalar functions u.(w) and s (w) in (3.24) can be
factorized [16] to give
pe(@) = py(@)u—(w), (3.25)
e (w) = 4 (W) (),
where .y (w) and sy (w) are analytic in C~ while
p_(w) and »_ (w) are analytic in CT. Therefore

H(w) = Hy (0)H_ ()
= [Hyut (@)Ps + Hyor (0)Psg]

x [(Hy—(0)Ps + Hs—(0)Psg],

Hy(0) = V201 (),

which gives the required factorization of H for the
present diagonal case. The general non-diagonal case
is discussed in [5].

The derivation of the form of the minimum free en-
ergy proceeds exactly as described in earlier papers,
for example [8, 11, 16]. We simply present the results
here. The Plemelj formulae [21] give that

H-(0)C} 1 (0) = p_ (@) — P (),
00 Nt
P (@) = —— / Ho@)Cr @)

; /
271 J_oo 0 — T

(3.26)

H, 1 (0) = 0t (w),

(3.27)

E)

where T =1lim,_, ¢+ (w + i) and the limit is under-
stood to take place after the integration has been car-
ried out. The form of the minimum free energy is
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1 o0
V() = 5 / p" ()|’ do
T J—c0

R Y 2
_E/_oo|pu—(w)| dw

+i/w! (@) do 3.28
27T oo p%* ’ ( )

1 ® H, (o")E' (o)
t Hw + !
L e S
Pu-(@) 2mi /_oo o — ot @
1 [® H,_(o)VE' (o)
t > + /
= — do'.
P (@) =0 /_oo o —wt

The second form of v, (¢) follows from the properties
of the projectors. Using the method outlined in [17]
for example, one can show that results corresponding
to (3.5), (3.6) and (3.8) hold. These may be written in
the compact notation

]
Mw(r) =D(t) = (Di (1), Da(1)) € T,

+00
D(t) = 2[ W ()EL(s)ds € Sym,
0

oo (3.29)
Dy (1) =/ 5+ (s)VEL(s)ds € Sym x R,
0
. NG
T@)=D1(t) =V -Dy(t) = SEQ)

From (2.28),, we have the relation A(¢) = ID(7) - C(t),
and (3.11) can be written as

Y (1) + Dy (1) =D(2) - C(1), (3.30)

where D,, is the rate of dissipation corresponding to
the minimum free energy and must be non-negative by
the second law. Referring to the formulae developed in
[8, 11, 16] for example, we see that it is given by

Du(0) = [K, () + [K.. 0],

1 o
K. ()= / Hy— (@)E,, (0) do, (3.31)

1 o
K. (1) = —/ H,.—(w)VE! | (»)do,
27 J oo
again with the use of the properties of projectors.
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Appendix

Various notations used in the main paper are defined
here.

The real axis is denoted by R, while RT = [0, 4-00)
and R™ = (—00,0]. Also, R~ = (—00,0) and
R = (0, +00).

The Fourier transform of any function f: — R —
R” is defined by

+00

fr(w) = f(s)e " ds
= f_(w)+ f+(w) YoweR, 4.1
where
0 o
f-(w) 2/ f(s)e " ds,
% 4.2)

+00

fi(w) = g f(s)e S ds.

The half-range Fourier cosine and sine transforms are
given by

00

fe(w) = f(s)coswsds,

0 4.3)
fs (@) =/ f(s)sinwsds.

0

If f(u) vanishes as u — +o00, we have
fi(w) = —of (o). (4.4)
If f£/(0) is non-zero, then
1im_iof (@) =f/0)= lim of]®)
=— lim o’ fo(w). (4.5)

by virtue of (4.4).
Finally, we define the following subsets of the com-
plex z-plane C:

C={zeC;ImzeR 7},
cH = {zeC;Imz e RTH},
C = {z €eC;Imz ERf},
Ct={zeCiImzeR"}.

(4.6)
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