Turk J Math
(2017) 41: 694-706
(c) TÜBİTAK
doi:10.3906/mat-1602-25

Second Hankel determinant for certain subclasses of bi-univalent functions

Murat ÇAĞLAR ${ }^{1, *}$, Erhan DENİZ ${ }^{1}$, Hari Mohan SRIVASTAVA ${ }^{2,3}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey
${ }^{2}$ Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
${ }^{3}$ Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China

| Received: 08.02 .2016 | Accepted/Published Online: 30.06 .2016 | \bullet | Final Version: 22.05 .2017 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In the present paper, we obtain the upper bounds for the second Hankel determinant for certain subclasses of analytic and bi-univalent functions. Moreover, several interesting applications of the results presented here are also discussed.

Key words: Analytic functions, univalent functions, bi-univalent functions, subordination between analytic functions, Hankel determinant

1. Introduction and definitions

Let \mathcal{A} denote the family of functions f analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\}
$$

of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let \mathcal{S} denote the class of all functions in \mathcal{A} that are univalent in \mathbb{U}. The Koebe one-quarter theorem (see, for example, [9]) ensures that the image of \mathbb{U} under every $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Clearly, every $f \in \mathcal{S}$ has an inverse function f^{-1} satisfying $f^{-1}(f(z))=z(z \in \mathbb{U})$ and $f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f) ; r_{0}(f) \geqq 1 / 4\right)$, where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. Let σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1).

In 1967, Lewin [21] showed that, for every function $f \in \sigma$ of the form (1.1), the second coefficient of f satisfies the estimate $\left|a_{2}\right|<1.51$. In 1967, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leqq \sqrt{2}$ for $f \in \sigma$. Later, Netanyahu [22] proved that $\max _{f \in \sigma}\left|a_{2}\right|=\frac{4}{3}$. In 1985, Kedzierawski [17] proved the Brannan-Clunie conjecture for bi-starlike functions. In 1985, Tan [31] obtained the bound for a_{2}, namely that $\left|a_{2}\right|<1.485$, which is the best

[^0]known estimate for functions in the class σ. Brannan and Taha [3] obtained estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the classes of bi-starlike functions of order β and bi-convex functions of order β.

The study of bi-univalent functions was revived in recent years by Srivastava et al. [30] and a considerably large number of sequels to the work of Srivastava et al. [30] have appeared in the literature since then. In particular, several results on coefficient estimates for the initial coefficients $\left|a_{2}\right|,\left|a_{3}\right|$, and $\left|a_{4}\right|$ were proved for various subclasses of σ (see, for example, $[1,4,5,10,12,14,16,25,28,29,32,33]$).

Recently, Deniz [7] and Kumar et al. [19] both extended and improved the results of Brannan and Taha [3] by generalizing their classes by means of the principle of subordination between analytic functions. The problem of estimating the coefficients $\left|a_{n}\right|(n \geqq 2)$ is still open (see also [29] in this connection).

Among the important tools in the theory of univalent functions are Hankel determinants, which are used, for example, in showing that a function of bounded characteristic in \mathbb{U}, that is, a function that is a ratio of two bounded analytic functions, with its Laurent series around the origin having integral coefficients, is rational [6]. The Hankel determinants $H_{q}(n)(n=1,2,3, \cdots, q=1,2,3, \cdots)$ of the function f are defined by (see [23])

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| \quad\left(a_{1}=1\right)
$$

This determinant was discussed by several authors with $q=2$. For example, we know that the functional $H_{2}(1)=a_{3}-a_{2}^{2} \quad$ is known as the Fekete-Szegö functional and one usually considers the further generalized functional $a_{3}-\mu a_{2}^{2}$ where μ is some real number (see [11]). Estimating for the upper bound of $\left|a_{3}-\mu a_{2}^{2}\right|$ is known as the Fekete-Szegö problem. In 1969, Keogh and Merkes [18] solved the Fekete-Szegö problem for the classes of starlike and convex functions. One can see the Fekete-Szegö problem for the classes of starlike functions of order β and convex functions of order β in special cases in the paper of Orhan et al. [24]. On the other hand, quite recently, Zaprawa (see [34, 35]) studied the Fekete-Szegö problem for some classes of bi-univalent functions. In special cases, he gave the Fekete-Szegö problem for the classes of bi-starlike functions of order β and bi-convex functions of order β.

The second Hankel determinant $H_{2}(2)$ is given by $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$. The bounds for the second Hankel determinant $H_{2}(2)$ were obtained for the classes of starlike and convex functions in [15]. Lee et al. [20] established the sharp bound for $\left|H_{2}(2)\right|$ by generalizing their classes by means of the principle of subordination between analytic functionds. In their paper [20], one can find the sharp bound for $\left|H_{2}(2)\right|$ for the functions in the classes of starlike functions of order β and convex functions of order β. Recently, Deniz et al. [8] and Orhan et al. [26] found the upper bound for the functional $H_{2}(2)=a_{2} a_{4}-a_{3}^{2}$ for the subclasses of bi-univalent functions.

The object of the present paper is to seek the upper bound for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for $f \in \mathcal{N}_{\sigma}(\beta)$ and $f \in \mathcal{N}_{\sigma}^{\alpha}$, which are defined as follows.

Definition 1 (see [30]) A function $f(z)$ given by (1.1) is said to be in the class $f \in \mathcal{N}_{\sigma}(\beta)(0 \leqq \beta<1)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \sigma \quad \text { and } \Re\left(f^{\prime}(z)\right)>\beta \quad(z \in \mathbb{U} ; 0 \leqq \beta<1) \tag{1.2}
\end{equation*}
$$

ÇAĞLAR et al./Turk J Math

and

$$
\begin{equation*}
\Re\left(g^{\prime}(w)\right)>\beta \quad(w \in \mathbb{U} ; 0 \leqq \beta<1) \tag{1.3}
\end{equation*}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.4}
\end{equation*}
$$

Definition 2 (see [30]) A function $f(z)$ given by (1.1) is said to be in the class $f \in \mathcal{N}_{\sigma}^{\alpha}(0<\alpha \leqq 1)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \sigma \quad \text { and } \quad\left|\arg \left(f^{\prime}(z)\right)\right| \leqq \frac{\alpha \pi}{2} \quad(z \in \mathbb{U} ; 0<\alpha \leqq 1) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(g^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U} ; 0<\alpha \leqq 1) \tag{1.6}
\end{equation*}
$$

where the function g is defined by (1.4).
For special values of the parameters α and β, we have

$$
\mathcal{N}_{\sigma}(0)=\mathcal{N}_{\sigma}^{1}=\mathcal{N}_{\sigma}
$$

Let \mathcal{P} be the class of functions with positive real part consisting of all analytic functions $\mathcal{P}: \mathbb{U} \rightarrow \mathbb{C}$ satisfying $p(0)=1$ and $\Re(p(z))>0$.

To establish our main results, we shall require the following lemmas.
Lemma 1 (see, for example, [27]) If the function $p \in \mathcal{P}$ is given by the following series:

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots, \tag{1.7}
\end{equation*}
$$

then the sharp estimate given by

$$
\left|c_{k}\right| \leqq 2 \quad(k=1,2,3, \cdots)
$$

holds true.
Lemma 2 (see [13]) If the function $p \in \mathcal{P}$ is given by the series (1.7), then

$$
\begin{align*}
& 2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{1.8}\\
& 4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \tag{1.9}
\end{align*}
$$

for some x and z with $|x| \leqq 1$ and $|z| \leqq 1$.

2. Main results

Our first main result for the class $f \in \mathcal{N}_{\sigma}(\beta)$ is stated as follows:
Theorem 1 Let $f(z)$ given by (1.1) be in the class $\mathcal{N}_{\sigma}(\beta)(0 \leqq \beta<1)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \begin{cases}\frac{(1-\beta)^{2}}{2}\left(2(1-\beta)^{2}+1\right) & \left(\beta \in\left[0, \frac{11-\sqrt{37}}{12}\right]\right) \tag{2.1}\\ \frac{(1-\beta)^{2}}{16}\left(\frac{60 \beta^{2}-84 \beta-25}{9 \beta^{2}-15 \beta+1}\right) & \left(\beta \in\left(\frac{11-\sqrt{37}}{12}, 1\right)\right)\end{cases}
$$

ÇAĞLAR et al./Turk J Math

Proof Let $f \in \mathcal{N}_{\sigma}(\beta)$ and $g=f^{-1}$. Then

$$
\begin{equation*}
f^{\prime}(z)=\beta+(1-\beta) p(z) \text { and } g^{\prime}(w)=\beta+(1-\beta) q(w) \tag{2.2}
\end{equation*}
$$

where the functions $p(z)$ and $q(z)$ given by

$$
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots
$$

and

$$
q(w)=1+d_{1} w+d_{2} w^{2}+\cdots
$$

are in class \mathcal{P}.
Comparing the coefficients in (2.2), we have

$$
\begin{align*}
& 2 a_{2}=(1-\beta) c_{1}, \tag{2.3}\\
& 3 a_{3}=(1-\beta) c_{2}, \tag{2.4}\\
& 4 a_{4}=(1-\beta) c_{3}, \tag{2.5}
\end{align*}
$$

and

$$
\begin{align*}
-2 a_{2} & =(1-\beta) d_{1}, \tag{2.6}\\
3\left(2 a_{2}^{2}-a_{3}\right) & =(1-\beta) d_{2} \tag{2.7}\\
-4\left(5 a_{2}^{3}-5 a_{3} a_{2}+a_{4}\right) & =(1-\beta) d_{3} . \tag{2.8}
\end{align*}
$$

From (2.3) and (2.6), we find that

$$
\begin{equation*}
c_{1}=-d_{1} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}=\frac{(1-\beta)}{2} c_{1} \tag{2.10}
\end{equation*}
$$

Now, from (2.4), (2.7) and (2.10), we get

$$
\begin{equation*}
a_{3}=\frac{(1-\beta)^{2}}{4} c_{1}^{2}+\frac{(1-\beta)}{6}\left(c_{2}-d_{2}\right) \tag{2.11}
\end{equation*}
$$

Also, from (2.5) and (2.8), we find that

$$
\begin{equation*}
a_{4}=\frac{5(1-\beta)^{2}}{24} c_{1}\left(c_{2}-d_{2}\right)+\frac{(1-\beta)}{8}\left(c_{3}-d_{3}\right) \tag{2.12}
\end{equation*}
$$

Thus, we can easily establish that

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| & =\left\lvert\,-\frac{(1-\beta)^{4}}{16} c_{1}^{4}+\frac{(1-\beta)^{3}}{48} c_{1}^{2}\left(c_{2}-d_{2}\right)\right. \\
& \left.+\frac{(1-\beta)^{2}}{16} c_{1}\left(c_{3}-d_{3}\right)-\frac{(1-\beta)^{2}}{36}\left(c_{2}-d_{2}\right)^{2} \right\rvert\, \tag{2.13}
\end{align*}
$$

ÇAĞLAR et al./Turk J Math

According to Lemma 2 and (2.9), we write

$$
\left.\begin{array}{l}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) \tag{2.14}\\
2 d_{2}=d_{1}^{2}+y\left(4-d_{1}^{2}\right)
\end{array}\right\} \Longrightarrow c_{2}-d_{2}=\frac{4-c_{1}^{2}}{2}(x-y)
$$

and

$$
\begin{aligned}
& 4 c_{3}=c_{1}^{3}+2\left(4-c_{1}^{2}\right) c_{1} x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \\
& 4 d_{3}=d_{1}^{3}+2\left(4-d_{1}^{2}\right) d_{1} y-d_{1}\left(4-d_{1}^{2}\right) y^{2}+2\left(4-d_{1}^{2}\right)\left(1-|y|^{2}\right) w
\end{aligned}
$$

Moreover, we have

$$
\begin{align*}
c_{3}-d_{3} & =\frac{c_{1}^{3}}{2}+\frac{c_{1}\left(4-c_{1}^{2}\right)}{2}(x+y)-\frac{c_{1}\left(4-c_{1}^{2}\right)}{4}\left(x^{2}+y^{2}\right) \\
& +\frac{\left(4-c_{1}^{2}\right)}{2}\left(\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right) \tag{2.15}\\
c_{2}+d_{2} & =c_{1}^{2}+\frac{\left(4-c_{1}^{2}\right)}{2}(x+y) \tag{2.16}
\end{align*}
$$

for some x, y and z, w with $|x| \leqq 1,|y| \leqq 1,|z| \leqq 1$ and $|w| \leqq 1$. Using (2.14) and (2.15) in (2.13), and applying the triangle inequality, we have

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right|=\left\lvert\,-\frac{(1-\beta)^{4}}{16} c_{1}^{4}+\frac{(1-\beta)^{3}}{96} c_{1}^{2}\left(4-c_{1}^{2}\right)(x-y)\right. \\
& \quad+\frac{(1-\beta)^{2}}{16} c_{1}\left[\frac{c_{1}^{3}}{2}+\frac{\left(4-c_{1}^{2}\right) c_{1}}{2}(x+y)-\frac{\left(4-c_{1}^{2}\right) c_{1}}{4}\left(x^{2}+y^{2}\right)+\frac{\left(4-c_{1}^{2}\right)}{2}\left(\left(1-|x|^{2}\right) z-\left(1-|y|^{2}\right) w\right)\right] \\
& \left.\quad-\frac{(1-\beta)^{2}}{144}\left(4-c_{1}^{2}\right)^{2}(x-y)^{2} \right\rvert\, \\
& \leqq \frac{(1-\beta)^{4}}{16} c_{1}^{4}+\frac{(1-\beta)^{2}}{32} c_{1}^{4}+\frac{(1-\beta)^{2}}{16} c_{1}\left(4-c_{1}^{2}\right) \\
& \quad+\left[\frac{(1-\beta)^{3}}{96} c_{1}^{2}\left(4-c_{1}^{2}\right)+\frac{(1-\beta)^{2}}{32} c_{1}^{2}\left(4-c_{1}^{2}\right)\right](|x|+|y|) \\
& \quad+\left[\frac{(1-\beta)^{2}}{64} c_{1}^{2}\left(4-c_{1}^{2}\right)-\frac{(1-\beta)^{2}}{32} c_{1}\left(4-c_{1}^{2}\right)\right]\left(|x|^{2}+|y|^{2}\right)+\frac{(1-\beta)^{2}}{144}\left(4-c_{1}^{2}\right)^{2}(|x|+|y|)^{2} .
\end{aligned}
$$

Since $p \in \mathcal{P}$, we have $\left|c_{1}\right| \leqq 2$. Letting $c_{1}=c$, we may assume without loss of generality that $c \in[0,2]$. Thus, for $\lambda=|x| \leqq 1$ and $\mu=|y| \leqq 1$, we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq T_{1}+T_{2}(\lambda+\mu)+T_{3}\left(\lambda^{2}+\mu^{2}\right)+T_{4}(\lambda+\mu)^{2}=F(\lambda, \mu)
$$

where

$$
\begin{aligned}
& T_{1}=T_{1}(c)=\frac{(1-\beta)^{2}}{32} c\left[\left(1+2(1-\beta)^{2}\right) c^{3}+2\left(4-c^{2}\right)\right] \geqq 0, \\
& T_{2}=T_{2}(c)=\frac{(1-\beta)^{2}}{96} c^{2}\left(4-c^{2}\right)(4-\beta) \geqq 0, \\
& T_{3}=T_{3}(c)=\frac{(1-\beta)^{2}}{64} c\left(4-c^{2}\right)(c-2) \leqq 0, \\
& T_{4}=T_{4}(c)=\frac{(1-\beta)^{2}}{144}\left(4-c^{2}\right)^{2} \geqq 0 .
\end{aligned}
$$

Now we need to maximize $F(\lambda, \mu)$ in the closed square $\mathbb{S}=\{(\lambda, \mu): 0 \leqq \lambda \leqq 1,0 \leqq \mu \leqq 1\}$ for $c \in[0,2]$. We must investigate the maximum of $F(\lambda, \mu)$ according to $c=(0,2), c=0$ and $c=2$, keeping in view the sign of $F_{\lambda \lambda} F_{\mu \mu}-\left(F_{\lambda \mu}\right)^{2}$.

First, let $c \in(0,2)$. Since $T_{3}<0$ and $T_{3}+2 T_{4}>0$ for $c \in(0,2)$, we conclude that

$$
F_{\lambda \lambda} F_{\mu \mu}-\left(F_{\lambda \mu}\right)^{2}<0 .
$$

Thus, the function F cannot have a local maximum in the interior of the square \mathbb{S}. Now we investigate the maximum of F on the boundary of the square \mathbb{S}.

For $\lambda=0$ and $0 \leqq \mu \leqq 1$, we obtain

$$
F(0, \mu)=G(\mu)=\left(T_{3}+T_{4}\right) \mu^{2}+T_{2} \mu+T_{1} .
$$

We consider the following two cases separately.
Case 1. Let $T_{3}+T_{4} \geqq 0$. In this case, for $0<\mu<1$ and for any fixed c with $0<c<2$, it is clear that

$$
G^{\prime}(\mu)=2\left(T_{3}+T_{4}\right) \mu+T_{2}>0 \quad(0<\mu<1),
$$

that is, that $G(\mu)$ is an increasing function. Hence, for fixed $c \in(0,2)$, the maximum of $G(\mu)$ occurs at $\mu=1$, and

$$
\max \{G(\mu)\}=G(1)=T_{1}+T_{2}+T_{3}+T_{4} .
$$

Case 2. Let $T_{3}+T_{4}<0$. Since

$$
T_{2}+2\left(T_{3}+T_{4}\right) \geqq 0
$$

for any fixed c with $0<c<2$, it is clear (in this case) that

$$
T_{2}+2\left(T_{3}+T_{4}\right)<2\left(T_{3}+T_{4}\right) \mu+T_{2}<T_{2} \quad(0<\mu<1),
$$

which shows that $G^{\prime}(\mu)>0$. Hence, for fixed $c \in(0,2)$, the maximum of $G(\mu)$ occurs at $\mu=1$. Similarly, for $\mu=0$ and $0 \leqq \lambda \leqq 1$, we get

$$
\max \{F(\lambda, 0)\}=\max \{G(\lambda)\}=G(1)=T_{1}+T_{2}+T_{3}+T_{4} .
$$

For $\lambda=1$ and $0 \leqq \mu \leqq 1$, we obtain

$$
F(1, \mu)=H(\mu)=\left(T_{3}+T_{4}\right) \mu^{2}+\left(T_{2}+2 T_{4}\right) \mu+T_{1}+T_{2}+T_{3}+T_{4} .
$$

Thus, from the above Case 1 and Case 2 for $T_{3}+T_{4}$, we get

$$
\max \{H(\mu)\}=H(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

Similarly, for $\mu=1$ and $0 \leqq \lambda \leqq 1$, we have

$$
\max \{F(\lambda, 1)\}=\max \{H(\lambda)\}=H(1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4}
$$

Since $G(1) \leqq H(1)$ for $c \in(0,2)$, we have

$$
\max \{F(\lambda, \mu)\}=F(1,1)
$$

on the boundary of the square \mathbb{S}. Thus, clearly, the maximum of the function $F(\lambda, \mu)$ occurs when $\lambda=1$ and $\mu=1$ in the closed square \mathbb{S} and for $c \in(0,2)$.

Let $K:(0,2) \rightarrow \mathbb{R}$ be given by

$$
\begin{equation*}
K(c)=\max \{F(\lambda, \mu)\}=F(1,1)=T_{1}+2 T_{2}+2 T_{3}+4 T_{4} . \tag{2.17}
\end{equation*}
$$

Substituting the values of T_{1}, T_{2}, T_{3}, and T_{4} into the function $K(c)$ defined by (2.17) yields

$$
K(c)=\frac{(1-\beta)^{2}}{144}\left[\left(9 \beta^{2}-15 \beta+1\right) c^{4}+(34-12 \beta) c^{2}+64\right]
$$

We now investigate the maximum value of $K(c)$ in the interval (0,2). By elementary calculation, we find that

$$
\begin{equation*}
K^{\prime}(c)=\frac{(1-\beta)^{2}}{36}\left[\left(9 \beta^{2}-15 \beta+1\right) c^{3}+(17-6 \beta) c\right] \tag{2.18}
\end{equation*}
$$

As a result of some calculations, we can accomplish the following results.

Result 1. Let

$$
9 \beta^{2}-15 \beta+1 \geqq 0
$$

that is,

$$
\beta \in\left[0, \frac{5-\sqrt{21}}{6}\right]
$$

Then $K^{\prime}(c)>0$ for every $c \in(0,2)$. Furthermore, since $K(c)$ is an increasing function in the interval $(0,2)$, it has no maximum value in this interval.

Result 2. Let

$$
9 \beta^{2}-15 \beta+1<0
$$

that is,

$$
\beta \in\left(\frac{5-\sqrt{21}}{6}, 1\right) .
$$

Then $K^{\prime}(c)=0$ implies the real critical point given by

$$
c_{0_{1}}=\sqrt{\frac{6 \beta-17}{9 \beta^{2}-15 \beta+1}} .
$$

In the case when

$$
\beta \in\left(\frac{5-\sqrt{21}}{6}, \frac{11-\sqrt{37}}{12}\right]
$$

then $c_{0_{1}} \geqq 2$, that is, $c_{0_{1}}$ lies outside of the interval $(0,2)$. In the case when

$$
\beta \in\left(\frac{11-\sqrt{37}}{12}, 1\right)
$$

then $c_{0_{1}}<2$, that is, $c_{0_{1}}$ is in the interior of the interval [0,2]. Furthermore, since $K^{\prime \prime}\left(c_{0_{1}}\right)<0$, the maximum value of $K(c)$ occurs at $c=c_{0_{1}}$ for

$$
\beta \in\left(\frac{11-\sqrt{37}}{12}, 1\right)
$$

Thus, clearly, it is observed that

$$
\begin{equation*}
\max _{0<c<2}\{K(c)\}=K\left(c_{0_{1}}\right)=K\left(\sqrt{\frac{6 \beta-17}{9 \beta^{2}-15 \beta+1}}\right)=\frac{(1-\beta)^{2}}{2}\left(\frac{15 \beta^{2}-21 \beta-\frac{25}{4}}{18 \beta^{2}-30 \beta+2}\right) \tag{2.19}
\end{equation*}
$$

for

$$
\beta \in\left(\frac{11-\sqrt{37}}{12}, 1\right)
$$

Secondly, let $c=2$ and $(\lambda, \mu) \in \mathbb{S}$. We then obtain a constant function of the dependent variables λ and μ as follows:

$$
\begin{equation*}
F(\lambda, \mu)=\frac{(1-\beta)^{2}}{2}\left(2 \beta^{2}-4 \beta+3\right) \tag{2.20}
\end{equation*}
$$

for every $0 \leqq \beta<1$.
Finally, let $c=0$ and $(\lambda, \mu) \in \mathbb{S}$. We then find that

$$
F(\lambda, \mu)=\frac{(1-\beta)^{2}}{9}(\lambda+\mu)^{2}
$$

We can easily see that the maximum of $F(\lambda, \mu)$ occurs at $\lambda=\mu=1$ and we have

$$
\begin{equation*}
\max \{F(\lambda, \mu)\}=F(1,1)=\frac{4(1-\beta)^{2}}{9} \tag{2.21}
\end{equation*}
$$

for every $\beta \quad(0 \leqq \beta<1)$.

From (2.19), (2.20), and (2.21), it is easily seen that

$$
\frac{4(1-\beta)^{2}}{9}<\frac{(1-\beta)^{2}}{2}\left(2 \beta^{2}-4 \beta+3\right)<\frac{(1-\beta)^{2}}{2}\left(\frac{15 \beta^{2}-21 \beta-\frac{25}{4}}{18 \beta^{2}-30 \beta+2}\right)
$$

for

$$
\beta \in\left(\frac{11-\sqrt{37}}{12}, 1\right)
$$

We thus obtain the second inequality of (2.1) for

$$
\beta \in\left(\frac{11-\sqrt{37}}{12}, 1\right)
$$

On the other hand, since the following inequality:

$$
\frac{4(1-\beta)^{2}}{9}<\frac{(1-\beta)^{2}}{2}\left(2 \beta^{2}-4 \beta+3\right)
$$

is satisfied for every $\beta(0 \leqq \beta<1)$, we obtain the first inequality of (2.1) for

$$
\beta \in\left[0, \frac{11-\sqrt{37}}{12}\right] .
$$

This completes the proof of Theorem 1.
Our second main result for the class $\mathcal{N}_{\sigma}^{\alpha}$ is given by Theorem 2 below.

Theorem 2 Let the function $f(z)$ given by (1.1) be in the class $\mathcal{N}_{\sigma}^{\alpha}(0<\alpha \leqq 1)$. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \begin{cases}\frac{4 \alpha^{2}}{9} & \left(0<\alpha \leqq \frac{7}{24}\right) \tag{2.22}\\ \frac{\alpha^{2}}{48}\left(\frac{64 \alpha^{2}-144 \alpha+5}{12 \alpha^{2}-12 \alpha+1}\right) & \left(\frac{7}{24} \leqq \alpha \leqq \frac{1+\sqrt{2}}{4}\right) \\ \frac{\alpha^{2}\left(8 \alpha^{2}+1\right)}{6} & \left(\frac{1+\sqrt{2}}{4} \leqq \alpha \leqq 1\right)\end{cases}
$$

Proof Let $f \in \mathcal{N}_{\sigma}^{\alpha}, 0<\alpha \leqq 1$, and $g=f^{-1}$. Then

$$
\begin{equation*}
f^{\prime}(z)=[p(z)]^{\alpha} \quad \text { and } \quad g^{\prime}(w)=[q(w)]^{\alpha} \tag{2.23}
\end{equation*}
$$

where the functions $p(z)$ and $q(z)$ given by

$$
p(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad \text { and } \quad q(w)=1+d_{1} w+d_{2} w^{2}+\cdots
$$

are in class \mathcal{P}.

ÇAĞLAR et al./Turk J Math

Now, upon equating the coefficients in (2.23), we have

$$
\begin{align*}
& 2 a_{2}=\alpha c_{1} \tag{2.24}\\
& 3 a_{3}=\alpha c_{2}+\frac{\alpha(\alpha-1)}{2} c_{1}^{2} \tag{2.25}\\
& 4 a_{4}=\alpha c_{3}+\alpha(\alpha-1) c_{1} c_{2}+\frac{\alpha(\alpha-1)(\alpha-2) c_{1}^{3}}{6} \tag{2.26}
\end{align*}
$$

and

$$
\begin{align*}
-2 a_{2} & =\alpha d_{1} \tag{2.27}\\
3\left(2 a_{2}^{2}-a_{3}\right) & =\alpha d_{2}+\frac{\alpha(\alpha-1)}{2} d_{1}^{2} \tag{2.28}\\
-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) & =\alpha d_{3}+\alpha(\alpha-1) d_{1} d_{2}+\frac{\alpha(\alpha-1)(\alpha-2) d_{1}^{3}}{6} . \tag{2.29}
\end{align*}
$$

From (2.24) and (2.27), we obtain

$$
\begin{equation*}
c_{1}=-d_{1} \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}=\frac{\alpha c_{1}}{2} \tag{2.31}
\end{equation*}
$$

Now, from (2.25), (2.28), and (2.31), we find that

$$
\begin{equation*}
a_{3}=\frac{\alpha^{2} c_{1}^{2}}{4}+\frac{\alpha\left(c_{2}-d_{2}\right)}{6} \tag{2.32}
\end{equation*}
$$

Also, from (2.26) and (2.29), we get

$$
\begin{equation*}
a_{4}=\frac{\alpha(\alpha-1)(\alpha-2) c_{1}^{3}}{24}+\frac{5 \alpha^{2} c_{1}\left(c_{2}-d_{2}\right)}{24}+\frac{\alpha\left(c_{3}-d_{3}\right)}{8}+\frac{\alpha(\alpha-1) c_{1}\left(c_{2}+d_{2}\right)}{8} \tag{2.33}
\end{equation*}
$$

We can thus easily establish that

$$
\begin{align*}
\left|a_{2} a_{4}-a_{3}^{2}\right| & =\left\lvert\, \frac{\alpha^{2}(\alpha-1)(\alpha-2) c_{1}^{4}}{48}-\frac{\alpha^{4} c_{1}^{4}}{16}+\frac{\alpha^{3} c_{1}^{2}\left(c_{2}-d_{2}\right)}{48}\right. \\
& \left.+\frac{\alpha^{2} c_{1}\left(c_{3}-d_{3}\right)}{16}-\frac{\alpha^{2}\left(c_{2}-d_{2}\right)^{2}}{36}+\frac{\alpha^{2}(\alpha-1) c_{1}^{2}\left(c_{2}+d_{2}\right)}{16} \right\rvert\, \tag{2.34}
\end{align*}
$$

Using (2.14), (2.15), and (2.16) in (2.34), we have

$$
\begin{aligned}
& \left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \frac{\alpha^{2}(\alpha-1)(\alpha-2) c_{1}^{4}}{48}+\frac{\alpha^{4} c_{1}^{4}}{16}+\frac{\alpha^{2} c_{1}^{4}}{32}+\frac{\alpha^{2}(\alpha-1) c_{1}^{4}}{16}+\frac{\alpha^{2} c_{1}\left(4-c_{1}^{2}\right)}{16} \\
& \quad+\frac{\alpha^{3} c_{1}^{2}\left(4-c_{1}^{2}\right)}{24}(|x|+|y|)+\frac{\alpha^{2} c_{1}\left(4-c_{1}^{2}\right)\left(c_{1}-2\right)}{64}\left(|x|^{2}+|y|^{2}\right)+\frac{\alpha^{2}\left(4-c_{1}^{2}\right)^{2}}{144}(|x|+|y|)^{2} .
\end{aligned}
$$

Since $p(z) \in \mathcal{P}$, we obtain $\left|c_{1}\right| \leqq 2$. Taking $c_{1}=c$, we may assume without any loss of generality that $c \in[0,2]$. Thus, for

$$
\lambda=|x| \leqq 1 \quad \text { and } \quad \mu=|y| \leqq 1
$$

we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq M_{1}+M_{2}(\lambda+\mu)+M_{3}\left(\lambda^{2}+\mu^{2}\right)+M_{4}(\lambda+\mu)^{2}=\Psi(\lambda, \mu),
$$

where

$$
\begin{aligned}
& M_{1}=M_{1}(c)=\frac{\alpha^{2}}{96}\left[\left(8 \alpha^{2}+1\right) c^{4}-6 c^{3}+24 c\right] \geqq 0, \\
& M_{2}=M_{2}(c)=\frac{\alpha^{3}}{24} c^{2}\left(4-c^{2}\right) \geqq 0, \\
& M_{3}=M_{3}(c)=\frac{\alpha^{2}}{64} c\left(4-c^{2}\right)(c-2) \leqq 0, \\
& M_{4}=M_{4}(c)=\frac{\alpha^{2}}{144}\left(4-c^{2}\right)^{2} \geqq 0 .
\end{aligned}
$$

Therefore, we need to maximize $\Psi(\lambda, \mu)$ in the closed square \mathbb{S} given by

$$
\mathbb{S}=\{(\lambda, \mu): 0 \leqq \lambda \leqq 1 \quad \text { and } \quad 0 \leqq \mu \leqq 1\} .
$$

In order to determine the maximum of $\Psi(\lambda, \mu)$, we can analogously follow the derivation of the maximum of $F(\lambda, \mu)$ in Theorem 1. Thus, clearly, the maximum of $\Psi(\lambda, \mu)$ occurs at $\lambda=1$ and $\mu=1$ in the closed square \mathbb{S}. Let $\Phi:(0,2) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\Phi(c)=\max \{\Psi(\lambda, \mu)\}=\Psi(1,1)=M_{1}+2\left(M_{2}+M_{3}\right)+4 M_{4} . \tag{2.35}
\end{equation*}
$$

Substituting the values of M_{1}, M_{2}, M_{3}, and M_{4} into the function $\Phi(c)$ given by (2.35), we get

$$
\Phi(c)=\frac{\alpha^{2}}{144}\left[\left(12 \alpha^{2}-12 \alpha+1\right) c^{4}+(48 \alpha-14) c^{2}+64\right] .
$$

Let

$$
\begin{equation*}
P=12 \alpha^{2}-12 \alpha+1, \quad Q=48 \alpha-14, \quad \text { and } \quad R=64 . \tag{2.36}
\end{equation*}
$$

Then, since

$$
\max _{0 \leqq t \leqq 4}\left\{\left(P t^{2}+Q t+R\right)\right\}= \begin{cases}R & \left(Q \leqq 0 ; P \leqq-\frac{Q}{4}\right), \tag{2.37}\\ 16 P+4 Q+R & \left(Q \geqq 0 \text { and } P \geqq-\frac{Q}{8} \text { or } Q \leqq 0 \text { and } P \geqq-\frac{Q}{4}\right), \\ \frac{4 P R-Q^{2}}{4 P} & \left(Q>0 ; P \leqq-\frac{Q}{8}\right),\end{cases}
$$

we have

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \frac{\alpha^{2}}{144} \begin{cases}R & \left(Q \leqq 0 ; P \leqq-\frac{Q}{4}\right), \\ 16 P+4 Q+R & \left(Q \geqq 0 \text { and } P \geqq-\frac{Q}{8} \text { or } Q \leqq 0 \text { and } P \geqq-\frac{Q}{4}\right), \\ \frac{4 P R-Q^{2}}{4 P} & \left(Q>0 ; P \leqq-\frac{Q}{8}\right),\end{cases}
$$

where P, Q, and R are given by (2.36).
This completes the proof of Theorem 2.
For $\beta=0$ in Theorem 1 or for $\alpha=1$ in Theorem 2, we obtain the coefficient estimate given by the corollary below.
Corollary. Let $f(z)$ given by (1.1) be in the class \mathcal{N}_{σ}. Then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leqq \frac{3}{2}
$$

Acknowledgment

The authors wish to thank the referees for their valuable suggestions.

References

[1] Altınkaya Ş, Yalçın S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C R Acad Sci Paris Sr I 2015; 353: 1075-1080.
[2] Brannan DA, Clunie JG. Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study Institute Held at the University of Durham. New York, NY, USA: Academic Press, 1980.
[3] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Mazhar SM, Hamoui A, Faour NS, editors. KFAS Proceedings Series, Vol. 3. Oxford, UK: Pergamon Press, 1988, pp. 53-60.
[4] Bulut S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C R Acad Sci Paris Sr I 2014; 352: 479-484.
[5] Çağlar M, Orhan H, Yağmur N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013; 27: 1165-1171.
[6] Cantor DG. Power series with integral coefficients. B Am Math Soc 1963; 69: 362-366.
[7] Deniz E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J Class Anal 2013; 2: 49-60.
[8] Deniz E, Çağlar M, Orhan H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl Math Comput 2015; 271: 301-307.
[9] Duren PL. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259. Berlin, Germany: Springer, 1983.
[10] Eker SS. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk J Math 2016; 40: 641-646.
[11] Fekete M, Szegö G. Eine Bemerkung uber ungerade schlichte Funktionen. J London Math Soc 1933; 8: 85-89 (in German).
[12] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Appl Math Lett 2011; 24: 1569-1573.
[13] Grenander U, Szegö G. Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences. Berkeley, CA, USA: University California Press, 1958.
[14] Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C R Acad Sci Paris Sr I 2014; 352: 17-20.
[15] Janteng A, Halim SA, Darus M. Hankel Determinant for starlike and convex functions. Int J Math Anal 2007; 1: 619-625.
[16] Kanas S, Kim SA, Sivasubramanian S. Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent function. Ann Polon Math 2015; 113: 295-304.

ÇAĞLAR et al./Turk J Math
[17] Kedzierawski AW. Some remarks on bi-univalent functions. Ann Univ Mariae Curie-Sklodowska Sect A 1985; 39: 77-81.
[18] Keogh FR, Merkes EP. A coefficient inequality for certain classes of analytic functions. P Am Math Soc 1969; 20: 8-12.
[19] Kumar SS, Kumar V, Ravichandran V. Estimates for the initial coefficients of bi-univalent functions. Tamsui Oxford Journal of Information and Mathematical Sciences 2013; 29: 487-504.
[20] Lee SK, Ravichandran V, Supramaniam S. Bounds for the second Hankel determinant of certain univalent functions. J Inequal Appl 2013; 2031: 281.
[21] Lewin M. On a coefficient problem for bi-univalent functions. P Am Math Soc 1967; 18: 63-68.
[22] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Arch Rational Mech Anal 1969; 32: 100-112.
[23] Noonan JW, Thomas DK. On the second Hankel determinant of areally mean p-valent functions. T Am Math Soc 1976; 223: 337-346.
[24] Orhan H, Deniz E, Raducanu D. The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains. Comput Math Appl 2010; 59: 283-295.
[25] Orhan H, Magesh N, Balaji VK. Initial coefficient bounds for a general class of bi-univalent functions. Filomat 2015; 29: 1259-1267.
[26] Orhan H, Magesh N, Yamini J. Bounds for the second Hankel determinant of certain bi-univalent functions. Turk J Math 2016; 40: 679-687.
[27] Pommerenke C. Univalent Functions. Gottingen, Germany: Vandenhoeck and Rupercht, 1975.
[28] Srivastava HM, Bulut S, Çağlar M, Yağmur N. Coefficient estimates for a general subclass of analytic and biunivalent functions. Filomat 2013; 27: 831-842.
[29] Srivastava HM, Eker SS, Ali RM. Coefficient estimates for a certain class of analytic and bi-univalent functions. Filomat 2015; 29: 1839-1845.
[30] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl Math Lett 2010; 23: 1188-1192.
[31] Tan DL. Coefficient estimates for bi-univalent functions. Chinese Ann Math Ser A 1984; 5: 559-568.
[32] Xu QH, Gui YC, Srivastava HM. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl Math Lett 2012; 25: 990-994.
[33] Xu QH, Xiao HG, Srivastava HM. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Appl Math Comput 2012; 218: 11461-11465.
[34] Zaprawa P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull Belg Math Soc Simon Stevin 2014; 21: 169-178.
[35] Zaprawa P. Estimates of initial coefficients for bi-univalent functions. Abstr Appl Anal 2014; 2014: 357480.

[^0]: *Correspondence: mcaglar25@gmail.com
 2010 AMS Mathematics Subject Classification: Primary 30C45, 30C50; Secondary 30C80.

