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1. Introduction and definitions

Let A denote the family of functions f analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}

of the form:

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Let S denote the class of all functions in A that are univalent in U . The Koebe one-quarter theorem (see, for

example, [9]) ensures that the image of U under every f ∈ S contains a disk of radius 1⧸4. Clearly, every f ∈ S
has an inverse function f−1 satisfying f−1(f(z)) = z (z ∈ U) and f(f−1(w)) = w (|w| < r0(f); r0(f) ≧ 1⧸4) ,

where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U. Let σ

denote the class of bi-univalent functions in U given by (1.1).

In 1967, Lewin [21] showed that, for every function f ∈ σ of the form (1.1), the second coefficient of f

satisfies the estimate |a2| < 1.51. In 1967, Brannan and Clunie [2] conjectured that |a2| ≦
√
2 for f ∈ σ. Later,

Netanyahu [22] proved that max
f∈σ

|a2| = 4
3 . In 1985, Kedzierawski [17] proved the Brannan–Clunie conjecture for

bi-starlike functions. In 1985, Tan [31] obtained the bound for a2 , namely that |a2| < 1.485, which is the best
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known estimate for functions in the class σ. Brannan and Taha [3] obtained estimates on the initial coefficients

|a2| and |a3| for functions in the classes of bi-starlike functions of order β and bi-convex functions of order β .

The study of bi-univalent functions was revived in recent years by Srivastava et al. [30] and a considerably

large number of sequels to the work of Srivastava et al. [30] have appeared in the literature since then. In

particular, several results on coefficient estimates for the initial coefficients |a2| , |a3| , and |a4| were proved for

various subclasses of σ (see, for example, [1, 4, 5, 10, 12, 14, 16, 25, 28, 29, 32, 33]).

Recently, Deniz [7] and Kumar et al. [19] both extended and improved the results of Brannan and Taha

[3] by generalizing their classes by means of the principle of subordination between analytic functions. The

problem of estimating the coefficients |an| (n ≧ 2) is still open (see also [29] in this connection).

Among the important tools in the theory of univalent functions are Hankel determinants, which are used,

for example, in showing that a function of bounded characteristic in U , that is, a function that is a ratio of two

bounded analytic functions, with its Laurent series around the origin having integral coefficients, is rational [6].

The Hankel determinants Hq(n) (n = 1, 2, 3, · · · , q = 1, 2, 3, · · · ) of the function f are defined by (see [23])

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

This determinant was discussed by several authors with q = 2. For example, we know that the functional

H2(1) = a3 − a22 is known as the Fekete–Szegö functional and one usually considers the further generalized

functional a3 − µa22 where µ is some real number (see [11]). Estimating for the upper bound of
∣∣a3 − µa22

∣∣
is known as the Fekete–Szegö problem. In 1969, Keogh and Merkes [18] solved the Fekete–Szegö problem for

the classes of starlike and convex functions. One can see the Fekete–Szegö problem for the classes of starlike

functions of order β and convex functions of order β in special cases in the paper of Orhan et al. [24]. On

the other hand, quite recently, Zaprawa (see [34, 35]) studied the Fekete–Szegö problem for some classes of

bi-univalent functions. In special cases, he gave the Fekete–Szegö problem for the classes of bi-starlike functions

of order β and bi-convex functions of order β .

The second Hankel determinant H2(2) is given by H2(2) = a2a4−a23. The bounds for the second Hankel

determinant H2(2) were obtained for the classes of starlike and convex functions in [15]. Lee et al. [20]

established the sharp bound for |H2(2)| by generalizing their classes by means of the principle of subordination

between analytic functionds. In their paper [20], one can find the sharp bound for |H2(2)| for the functions

in the classes of starlike functions of order β and convex functions of order β . Recently, Deniz et al. [8] and

Orhan et al. [26] found the upper bound for the functional H2(2) = a2a4− a23 for the subclasses of bi-univalent

functions.

The object of the present paper is to seek the upper bound for the functional
∣∣a2a4 − a23

∣∣ for f ∈ Nσ(β)

and f ∈ Nα
σ , which are defined as follows.

Definition 1 (see [30]) A function f(z) given by (1.1) is said to be in the class f ∈ Nσ(β) (0 ≦ β < 1) if the

following conditions are satisfied :

f ∈ σ and ℜ (f ′(z)) > β (z ∈ U; 0 ≦ β < 1) (1.2)
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and

ℜ (g′(w)) > β (w ∈ U; 0 ≦ β < 1) , (1.3)

where the function g is given by

g(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.4)

Definition 2 (see [30]) A function f(z) given by (1.1) is said to be in the class f ∈ Nα
σ (0 < α ≦ 1) if the

following conditions are satisfied :

f ∈ σ and |arg (f ′(z))| ≦ απ

2
(z ∈ U; 0 < α ≦ 1) (1.5)

and

|arg (g′(w))| < απ

2
(w ∈ U; 0 < α ≦ 1) , (1.6)

where the function g is defined by (1.4).

For special values of the parameters α and β , we have

Nσ(0) = N 1
σ = Nσ.

Let P be the class of functions with positive real part consisting of all analytic functions P : U → C
satisfying p(0) = 1 and ℜ (p(z)) > 0.

To establish our main results, we shall require the following lemmas.

Lemma 1 (see, for example, [27]) If the function p ∈ P is given by the following series :

p(z) = 1 + c1z + c2z
2 + · · · , (1.7)

then the sharp estimate given by

|ck| ≦ 2 (k = 1, 2, 3, · · · )

holds true.

Lemma 2 (see [13]) If the function p ∈ P is given by the series (1.7) , then

2c2 = c21 + x(4− c21), (1.8)

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)

(
1− |x|2

)
z (1.9)

for some x and z with |x| ≦ 1 and |z| ≦ 1.

2. Main results

Our first main result for the class f ∈ Nσ(β) is stated as follows:

Theorem 1 Let f(z) given by (1.1) be in the class Nσ(β) (0 ≦ β < 1). Then

∣∣a2a4 − a23
∣∣ ≦


(1−β)2

2

(
2 (1− β)

2
+ 1
) (

β ∈
[
0, 11−

√
37

12

])
,

(1−β)2

16

(
60β2−84β−25
9β2−15β+1

) (
β ∈

(
11−

√
37

12 , 1
))

.

(2.1)
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Proof Let f ∈ Nσ(β) and g = f−1. Then

f ′(z) = β + (1− β)p(z) and g′(w) = β + (1− β)q(w) (2.2)

where the functions p(z) and q(z) given by

p(z) = 1 + c1z + c2z
2 + · · ·

and

q(w) = 1 + d1w + d2w
2 + · · ·

are in class P .

Comparing the coefficients in (2.2), we have

2a2 = (1− β)c1, (2.3)

3a3 = (1− β)c2, (2.4)

4a4 = (1− β)c3, (2.5)

and

−2a2 = (1− β)d1, (2.6)

3
(
2a22 − a3

)
= (1− β)d2, (2.7)

−4
(
5a32 − 5a3a2 + a4

)
= (1− β)d3. (2.8)

From (2.3) and (2.6), we find that

c1 = −d1 (2.9)

and

a2 =
(1− β)

2
c1. (2.10)

Now, from (2.4), (2.7) and (2.10), we get

a3 =
(1− β)

2

4
c21 +

(1− β)

6
(c2 − d2) . (2.11)

Also, from (2.5) and (2.8), we find that

a4 =
5 (1− β)

2

24
c1 (c2 − d2) +

(1− β)

8
(c3 − d3) . (2.12)

Thus, we can easily establish that

∣∣a2a4 − a23
∣∣ = ∣∣∣∣∣− (1− β)

4

16
c41 +

(1− β)
3

48
c21 (c2 − d2)

+
(1− β)

2

16
c1 (c3 − d3)−

(1− β)
2

36
(c2 − d2)

2

∣∣∣∣∣ . (2.13)
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According to Lemma 2 and (2.9), we write

2c2 = c21 + x(4− c21)
2d2 = d21 + y(4− d21)

}
=⇒ c2 − d2 =

4− c21
2

(x− y) (2.14)

and

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)

(
1− |x|2

)
z,

4d3 = d31 + 2(4− d21)d1y − d1(4− d21)y
2 + 2(4− d21)

(
1− |y|2

)
w.

Moreover, we have

c3 − d3 =
c31
2

+
c1
(
4− c21

)
2

(x+ y)−
c1
(
4− c21

)
4

(x2 + y2)

+

(
4− c21

)
2

((
1− |x|2

)
z −

(
1− |y|2

)
w
)
, (2.15)

c2 + d2 = c21 +

(
4− c21

)
2

(x+ y) (2.16)

for some x, y and z, w with |x| ≦ 1, |y| ≦ 1, |z| ≦ 1 and |w| ≦ 1. Using (2.14) and (2.15) in (2.13), and applying

the triangle inequality, we have

∣∣a2a4 − a23
∣∣ = ∣∣∣∣∣− (1− β)

4

16
c41 +

(1− β)
3

96
c21(4− c21)(x− y)

+
(1− β)

2

16
c1

[
c31
2

+
(4− c21)c1

2
(x+ y)− (4− c21)c1

4
(x2 + y2) +

(4− c21)

2

(
(1− |x|2)z − (1− |y|2)w

)]

− (1− β)
2

144
(4− c21)

2(x− y)2

∣∣∣∣∣
≦ (1− β)

4

16
c41 +

(1− β)
2

32
c41 +

(1− β)
2

16
c1(4− c21)

+

[
(1− β)

3

96
c21(4− c21) +

(1− β)
2

32
c21(4− c21)

]
(|x|+ |y|)

+

[
(1− β)

2

64
c21(4− c21)−

(1− β)
2

32
c1(4− c21)

]
(|x|2 + |y|2) + (1− β)

2

144
(4− c21)

2(|x|+ |y|)2.

Since p ∈ P, we have |c1| ≦ 2. Letting c1 = c, we may assume without loss of generality that c ∈ [0, 2].

Thus, for λ = |x| ≦ 1 and µ = |y| ≦ 1, we obtain

∣∣a2a4 − a23
∣∣ ≦ T1 + T2(λ+ µ) + T3(λ

2 + µ2) + T4(λ+ µ)2 = F (λ, µ),
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where

T1 = T1(c) =
(1− β)

2

32
c
[(

1 + 2 (1− β)
2
)
c3 + 2(4− c2)

]
≧ 0,

T2 = T2(c) =
(1− β)

2

96
c2(4− c2)(4− β) ≧ 0,

T3 = T3(c) =
(1− β)

2

64
c(4− c2)(c− 2) ≦ 0,

T4 = T4(c) =
(1− β)

2

144
(4− c2)2 ≧ 0.

Now we need to maximize F (λ, µ) in the closed square S = {(λ, µ) : 0 ≦ λ ≦ 1, 0 ≦ µ ≦ 1} for c ∈ [0, 2].

We must investigate the maximum of F (λ, µ) according to c = (0, 2), c = 0 and c = 2, keeping in view the

sign of FλλFµµ − (Fλµ)
2
.

First, let c ∈ (0, 2). Since T3 < 0 and T3 + 2T4 > 0 for c ∈ (0, 2), we conclude that

FλλFµµ − (Fλµ)
2
< 0.

Thus, the function F cannot have a local maximum in the interior of the square S . Now we investigate

the maximum of F on the boundary of the square S .
For λ = 0 and 0 ≦ µ ≦ 1, we obtain

F (0, µ) = G(µ) = (T3 + T4)µ
2 + T2µ+ T1.

We consider the following two cases separately.

Case 1. Let T3 + T4 ≧ 0. In this case, for 0 < µ < 1 and for any fixed c with 0 < c < 2, it is clear that

G′(µ) = 2 (T3 + T4)µ+ T2 > 0 (0 < µ < 1),

that is, that G(µ) is an increasing function. Hence, for fixed c ∈ (0, 2), the maximum of G(µ) occurs at µ = 1,

and
max{G(µ)} = G(1) = T1 + T2 + T3 + T4.

Case 2. Let T3 + T4 < 0. Since

T2 + 2 (T3 + T4) ≧ 0

for any fixed c with 0 < c < 2, it is clear (in this case) that

T2 + 2 (T3 + T4) < 2 (T3 + T4)µ+ T2 < T2 (0 < µ < 1),

which shows that G′(µ) > 0. Hence, for fixed c ∈ (0, 2), the maximum of G(µ) occurs at µ = 1. Similarly, for

µ = 0 and 0 ≦ λ ≦ 1, we get

max{F (λ, 0)} = max{G(λ)} = G(1) = T1 + T2 + T3 + T4.

For λ = 1 and 0 ≦ µ ≦ 1, we obtain

F (1, µ) = H(µ) = (T3 + T4)µ
2 + (T2 + 2T4)µ+ T1 + T2 + T3 + T4.
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Thus, from the above Case 1 and Case 2 for T3 + T4, we get

max{H(µ)} = H(1) = T1 + 2T2 + 2T3 + 4T4.

Similarly, for µ = 1 and 0 ≦ λ ≦ 1, we have

max{F (λ, 1)} = max{H(λ)} = H(1) = T1 + 2T2 + 2T3 + 4T4.

Since G(1) ≦ H(1) for c ∈ (0, 2), we have

max{F (λ, µ)} = F (1, 1)

on the boundary of the square S . Thus, clearly, the maximum of the function F (λ, µ) occurs when λ = 1 and

µ = 1 in the closed square S and for c ∈ (0, 2).

Let K : (0, 2) → R be given by

K(c) = max{F (λ, µ)} = F (1, 1) = T1 + 2T2 + 2T3 + 4T4. (2.17)

Substituting the values of T1, T2, T3 , and T4 into the function K(c) defined by (2.17) yields

K(c) =
(1− β)

2

144

[(
9β2 − 15β + 1

)
c4 + (34− 12β)c2 + 64

]
.

We now investigate the maximum value of K(c) in the interval (0, 2). By elementary calculation, we

find that

K ′(c) =
(1− β)

2

36

[(
9β2 − 15β + 1

)
c3 + (17− 6β)c

]
. (2.18)

As a result of some calculations, we can accomplish the following results.

Result 1. Let

9β2 − 15β + 1 ≧ 0,

that is,

β ∈

[
0,

5−
√
21

6

]
.

Then K ′(c) > 0 for every c ∈ (0, 2). Furthermore , since K(c) is an increasing function in the interval (0, 2),

it has no maximum value in this interval.

Result 2. Let

9β2 − 15β + 1 < 0,

that is,

β ∈

(
5−

√
21

6
, 1

)
.
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Then K ′(c) = 0 implies the real critical point given by

c01 =

√
6β − 17

9β2 − 15β + 1
.

In the case when

β ∈

(
5−

√
21

6
,
11−

√
37

12

]
,

then c01 ≧ 2, that is , c01 lies outside of the interval (0, 2). In the case when

β ∈

(
11−

√
37

12
, 1

)
,

then c01 < 2, that is , c01 is in the interior of the interval [0, 2]. Furthermore , since K ′′(c01) < 0, the maximum

value of K(c) occurs at c = c01 for

β ∈

(
11−

√
37

12
, 1

)
.

Thus, clearly, it is observed that

max
0<c<2

{K(c)} = K(c01) = K

(√
6β − 17

9β2 − 15β + 1

)
=

(1− β)
2

2

(
15β2 − 21β − 25

4

18β2 − 30β + 2

)
(2.19)

for

β ∈

(
11−

√
37

12
, 1

)
.

Secondly, let c = 2 and (λ, µ) ∈ S. We then obtain a constant function of the dependent variables λ and

µ as follows:

F (λ, µ) =
(1− β)

2

2
(2β2 − 4β + 3) (2.20)

for every 0 ≦ β < 1.

Finally, let c = 0 and (λ, µ) ∈ S. We then find that

F (λ, µ) =
(1− β)

2

9
(λ+ µ)2.

We can easily see that the maximum of F (λ, µ) occurs at λ = µ = 1 and we have

max{F (λ, µ)} = F (1, 1) =
4 (1− β)

2

9
(2.21)

for every β (0 ≦ β < 1).

701
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From (2.19), (2.20), and (2.21), it is easily seen that

4 (1− β)
2

9
<

(1− β)
2

2
(2β2 − 4β + 3) <

(1− β)
2

2

(
15β2 − 21β − 25

4

18β2 − 30β + 2

)

for

β ∈

(
11−

√
37

12
, 1

)
.

We thus obtain the second inequality of (2.1) for

β ∈

(
11−

√
37

12
, 1

)
.

On the other hand, since the following inequality:

4 (1− β)
2

9
<

(1− β)
2

2
(2β2 − 4β + 3)

is satisfied for every β (0 ≦ β < 1), we obtain the first inequality of (2.1) for

β ∈

[
0,

11−
√
37

12

]
.

This completes the proof of Theorem 1. 2

Our second main result for the class Nα
σ is given by Theorem 2 below.

Theorem 2 Let the function f(z) given by (1.1) be in the class Nα
σ (0 < α ≦ 1). Then

∣∣a2a4 − a23
∣∣ ≦



4α2

9

(
0 < α ≦ 7

24

)
,

α2

48

(
64α2−144α+5
12α2−12α+1

) (
7
24 ≦ α ≦ 1+

√
2

4

)
,

α2(8α2+1)
6

(
1+

√
2

4 ≦ α ≦ 1
)
.

(2.22)

Proof Let f ∈ Nα
σ , 0 < α ≦ 1 , and g = f−1. Then

f ′(z) = [p(z)]
α

and g′(w) = [q(w)]
α
, (2.23)

where the functions p(z) and q(z) given by

p(z) = 1 + c1z + c2z
2 + · · · and q(w) = 1 + d1w + d2w

2 + · · ·

are in class P .
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Now, upon equating the coefficients in (2.23), we have

2a2 = αc1, (2.24)

3a3 = αc2 +
α (α− 1)

2
c21, (2.25)

4a4 = αc3 + α (α− 1) c1c2 +
α (α− 1) (α− 2)c31

6
, (2.26)

and

−2a2 = αd1, (2.27)

3
(
2a22 − a3

)
= αd2 +

α (α− 1)

2
d21, (2.28)

−4
(
5a32 − 5a2a3 + a4

)
= αd3 + α (α− 1) d1d2 +

α (α− 1) (α− 2)d31
6

. (2.29)

From (2.24) and (2.27), we obtain

c1 = −d1 (2.30)

and

a2 =
αc1
2

. (2.31)

Now, from (2.25), (2.28), and (2.31), we find that

a3 =
α2c21
4

+
α (c2 − d2)

6
. (2.32)

Also, from (2.26) and (2.29), we get

a4 =
α (α− 1) (α− 2)c31

24
+

5α2c1 (c2 − d2)

24
+

α (c3 − d3)

8
+

α (α− 1) c1 (c2 + d2)

8
. (2.33)

We can thus easily establish that

∣∣a2a4 − a23
∣∣ = ∣∣∣∣α2(α− 1)(α− 2)c41

48
− α4c41

16
+

α3c21 (c2 − d2)

48

+
α2c1 (c3 − d3)

16
− α2 (c2 − d2)

2

36
+

α2 (α− 1) c21 (c2 + d2)

16

∣∣∣∣∣ . (2.34)

Using (2.14), (2.15), and (2.16) in (2.34), we have

∣∣a2a4 − a23
∣∣ ≦ α2(α− 1)(α− 2)c41

48
+

α4c41
16

+
α2c41
32

+
α2(α− 1)c41

16
+

α2c1(4− c21)

16

+
α3c21(4− c21)

24
(|x|+ |y|) + α2c1(4− c21) (c1 − 2)

64
(|x|2 + |y|2) + α2(4− c21)

2

144
(|x|+ |y|)2.

Since p(z) ∈ P, we obtain |c1| ≦ 2. Taking c1 = c, we may assume without any loss of generality that c ∈ [0, 2].

Thus, for

λ = |x| ≦ 1 and µ = |y| ≦ 1,
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we obtain ∣∣a2a4 − a23
∣∣ ≦ M1 +M2(λ+ µ) +M3(λ

2 + µ2) +M4(λ+ µ)2 = Ψ(λ, µ),

where

M1 = M1(c) =
α2

96

[(
8α2 + 1

)
c4 − 6c3 + 24c

]
≧ 0,

M2 = M2(c) =
α3

24
c2(4− c2) ≧ 0,

M3 = M3(c) =
α2

64
c(4− c2)(c− 2) ≦ 0,

M4 = M4(c) =
α2

144
(4− c2)2 ≧ 0.

Therefore, we need to maximize Ψ(λ, µ) in the closed square S given by

S = {(λ, µ) : 0 ≦ λ ≦ 1 and 0 ≦ µ ≦ 1} .

In order to determine the maximum of Ψ(λ, µ), we can analogously follow the derivation of the maximum of

F (λ, µ) in Theorem 1. Thus, clearly, the maximum of Ψ(λ, µ) occurs at λ = 1 and µ = 1 in the closed square

S . Let Φ : (0, 2) → R defined by

Φ(c) = max{Ψ(λ, µ)} = Ψ(1, 1) = M1 + 2 (M2 +M3) + 4M4. (2.35)

Substituting the values of M1,M2,M3 , and M4 into the function Φ(c) given by (2.35), we get

Φ(c) =
α2

144

[(
12α2 − 12α+ 1

)
c4 + (48α− 14)c2 + 64

]
.

Let

P = 12α2 − 12α+ 1, Q = 48α− 14, and R = 64. (2.36)

Then, since

max
0≦t≦4

{(
Pt2 +Qt+R

)}
=



R
(
Q ≦ 0; P ≦ −Q

4

)
,

16P + 4Q+R
(
Q ≧ 0 and P ≧ −Q

8 or Q ≦ 0 and P ≧ −Q
4

)
,

4PR−Q2

4P

(
Q > 0; P ≦ −Q

8

)
,

(2.37)

we have

∣∣a2a4 − a23
∣∣ ≦ α2

144



R
(
Q ≦ 0; P ≦ −Q

4

)
,

16P + 4Q+R
(
Q ≧ 0 and P ≧ −Q

8 or Q ≦ 0 and P ≧ −Q
4

)
,

4PR−Q2

4P

(
Q > 0; P ≦ −Q

8

)
,
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where P, Q , and R are given by (2.36).

This completes the proof of Theorem 2. 2

For β = 0 in Theorem 1 or for α = 1 in Theorem 2, we obtain the coefficient estimate given by the

corollary below.

Corollary. Let f(z) given by (1.1) be in the class Nσ. Then

∣∣a2a4 − a23
∣∣ ≦ 3

2
.
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[1] Altınkaya Ş, Yalçın S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C R Acad Sci

Paris Sr I 2015; 353: 1075-1080.

[2] Brannan DA, Clunie JG. Aspects of contemporary complex analysis. In: Proceedings of the NATO Advanced Study

Institute Held at the University of Durham. New York, NY, USA: Academic Press, 1980.

[3] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Mazhar SM, Hamoui A, Faour NS, editors.

KFAS Proceedings Series, Vol. 3. Oxford, UK: Pergamon Press, 1988, pp. 53-60.

[4] Bulut S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. C

R Acad Sci Paris Sr I 2014; 352: 479-484.
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[13] Grenander U, Szegö G. Toeplitz Forms and Their Applications. California Monographs in Mathematical Sciences.

Berkeley, CA, USA: University California Press, 1958.

[14] Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for analytic bi-close-to-convex functions. C R

Acad Sci Paris Sr I 2014; 352: 17-20.

[15] Janteng A, Halim SA, Darus M. Hankel Determinant for starlike and convex functions. Int J Math Anal 2007; 1:

619-625.

[16] Kanas S, Kim SA, Sivasubramanian S. Verification of Brannan and Clunie’s conjecture for certain subclasses of

bi-univalent function. Ann Polon Math 2015; 113: 295-304.

705

http://dx.doi.org/10.1016/B978-0-08-031636-9.50012-7
http://dx.doi.org/10.1016/B978-0-08-031636-9.50012-7
http://dx.doi.org/10.1016/j.crma.2014.04.004
http://dx.doi.org/10.1016/j.crma.2014.04.004
http://dx.doi.org/10.2298/FIL1307165C
http://dx.doi.org/10.2298/FIL1307165C
http://dx.doi.org/10.1090/S0002-9904-1963-10923-4
http://dx.doi.org/10.1016/j.amc.2015.09.010
http://dx.doi.org/10.1016/j.amc.2015.09.010
http://dx.doi.org/10.3906/mat-1503-58
http://dx.doi.org/10.3906/mat-1503-58
http://dx.doi.org/10.1016/j.aml.2011.03.048
http://dx.doi.org/10.1016/j.crma.2013.11.005
http://dx.doi.org/10.1016/j.crma.2013.11.005
http://dx.doi.org/10.4064/ap113-3-6
http://dx.doi.org/10.4064/ap113-3-6
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