Second-Harmonic Generation, a Selective Probe for Excitons In science we often probe "a black box". We form an interpretation based on the evidence present at that moment. Additional research can lead to a change in interpretation. The experimental results presented in this thesis show that second-harmonic generation can probe excitons selectively. The last picture on the cover shows the exciton spectrum from C_{60} measured in a second-harmonic generation experiment, taken at 200 K.

The cover is designed by Barbara Tevarotto after the idea of Andrea Damascelli. The first two pictures are taken from *Le Petit Prince* by Antoine de Saint-Exupéry.

> D'aprés Antoine de SAINT-EXUPERY, *Le Petit Prince* (c) Editions Gallimard

Printed by: PrintPartners Ipskamp B.V., Enschede, The Netherlands

ISBN 90-367-0926-1

The work described in this thesis was performed at the Solid State Physics Laboratory of the University of Groningen. The project was supported by the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Dutch Organization for the Advancement of Pure Research (NWO). Rijksuniversiteit Groningen

Second-Harmonic Generation, a Selective Probe for Excitons

Proefschrift

ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, Dr. F. van der Woude in het openbaar te verdedigen op vrijdag 19 juni 1998 des namiddags te 2:45 uur

door

Anna-Maria Janner

geboren op 10 oktober 1968 te Nijmegen Promotor: Prof. Dr. G.A. Sawatzky

Nur Beharrung führt zum Ziel Nur die Fülle führt zur Klarheit Und im Abgrund wohnt die Wahrheit

F. Schiller in "Sprüche des Konfuzius"

aan mijn ouders

Contents

1	\mathbf{Intr}	oduction	3			
	1.1	Excitons	4			
	1.2	Nonlinear Optics	9			
	1.3	Scope of this thesis	11			
2	Opt	Optical spectroscopy and SHG				
	2.1	Optical electron-hole spectrum	15			
		2.1.1 Oscillator strength	15			
		2.1.2 Energy dispersion	18			
		2.1.3 Coherence and relaxation processes	21			
		2.1.4 Optical SHG spectrum	23			
	2.2	SHG and SFG	23			
		2.2.1 Basic concepts	24			
		2.2.2 Surface and bulk contributions	25			
		2.2.3 Symmetry	26			
		2.2.4 Microscopic description	27			
		2.2.5 Spectroscopic SHG and SFG	28			
3	\mathbf{Exp}	perimental set-up	31			
	3.1	Laser system	32			
	3.2	UHV system	36			
	3.3	Sample holder and temperature calibration	39			
	3.4	Reference and detection	41			
4	Exc	itons in C_{60} studied by SHG and SFG	45			
	4.1	Fullerenes	45			
	4.2	Structural and electronic properties of C_{60}	49			
		4.2.1 Crystallographic properties and structural phase transitions .	50			
		4.2.2 Electronic structure and excitation spectrum	53			
	4.3	Temperature-dependent SHG of the ${}^{1}T_{1g}$				
		exciton	59			
		4.3.1 Sample preparation and experimental results	59			

		4.3.2	Data interpretation and exciton propagation	. 60			
	4.4	SFG		. 69			
		4.4.1	Motivation	. 70			
		4.4.2	Search for the $2^{1}T_{1u}$ state \ldots \ldots \ldots \ldots \ldots \ldots	. 72			
		4.4.3	Search for the ${}^{1}\mathrm{H}_{1q}$ state	. 77			
	4.5	Photo	polymerization	. 82			
	4.6	Concl	usions	. 85			
5	SHG and SFG from NiO, a study of charge-transfer excitons 93						
	5.1	Introd	luction	. 93			
		5.1.1	Excitation spectrum	. 95			
		5.1.2	Crystal and magnetic structure	. 98			
	5.2	Exper	imental results	. 100			
		5.2.1	Sample preparation and characterization	. 100			
		5.2.2	SHG	. 101			
		5.2.3	Sum-Frequency Generation	. 106			
	5.3	Origin	n of SHG	. 109			
		5.3.1	Influence of the magnetic structure on SHG	. 110			
		5.3.2	Macroscopic origin	. 112			
		5.3.3	Microscopic origin.	. 115			
	5.4	Concl	usions	. 118			
6	5.4 Cu(Concl [.] C l, a n	nodel system, and a SHG study of Wannier excitons	. 118 121			
6	5.4 Cu (6.1	Concl ^a C l, a m Introd	usions	. 118 121 . 121			
6	5.4 CuC 6.1 6.2	Concl ⁻ C l, a n Introd Excita	usions	. 118 121 . 121 . 121 . 122			
6	5.4 Cu (6.1 6.2	Concl ⁻ C l, a m Introd Excita 6.2.1	usions	. 118 121 . 121 . 122 . 122			
6	5.4 Cu (6.1 6.2	Concl ⁻ C l, a m Introd Excita 6.2.1 6.2.2	usions	. 118 . 118 . 121 . 121 . 122 . 122 . 124			
6	5.4 Cu(6.1 6.2	Concl ⁻ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3	usions	. 118 . 118 121 . 121 . 122 . 122 . 122 . 124 . 126			
6	 5.4 Cu(6.1 6.2 6.3 	Concl ⁻ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128			
6	 5.4 Cu(6.1 6.2 	Concl ⁻ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1	usions	. 118 . 118 . 121 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128			
6	 5.4 Cu(6.1 6.2 6.3 	Concl ⁻ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 128 . 129			
6	 5.4 Cu(6.1 6.2 6.3 	Concl ⁻ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2 6.3.3	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 128 . 129 . 132			
6 7	 5.4 Cu(6.1 6.2 6.3 Cor 	Concl ⁻ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2 6.3.3 nclusio	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 128 . 129 . 132 . 137			
6 7	 5.4 Cu(6.1) 6.2 6.3 Cort 7.1 	Concl ⁻ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2 6.3.3 nclusio Concl ⁻	usions	. 118 . 118 121 . 121 . 122 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 128 . 129 . 132 137 . 137			
6	 5.4 Cu(6.1 6.2 6.3 Cort 7.1 7.2 	Concl ¹ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2 6.3.3 nclusio Concl ² C ₆₀ , N	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 129 . 132 . 137 . 137 . 138			
6 7	 5.4 Cu(6.1) 6.2 6.3 Cort 7.1) 7.2 	Concl ¹ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2 6.3.3 nclusio Concl ¹ C ₆₀ , N 7.2.1	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 128 . 129 . 132 . 137 . 137 . 138 . 138			
6	 5.4 Cu(6.1 6.2 6.3 Cort 7.1 7.2 	Concl ¹ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2 6.3.3 nclusio Concl ¹ C ₆₀ , N 7.2.1 7.2.2	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 129 . 132 . 137 . 137 . 137 . 138 . 138 . 139			
6	 5.4 Cu(6.1) 6.2 6.3 Cort 7.1) 7.2 	Concl ¹ Cl, a m Introd Excita 6.2.1 6.2.2 6.2.3 Measu 6.3.1 6.3.2 6.3.3 nclusio Concl ¹ C ₆₀ , N 7.2.1 7.2.2 7.2.3	usions	. 118 . 118 . 121 . 122 . 122 . 122 . 124 . 126 . 128 . 128 . 128 . 129 . 132 . 137 . 137 . 137 . 138 . 138 . 139 . 139			