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Second-harmonic generation by a graphene nanoparticle
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We study the second-harmonic generation by a spherical dielectric nanoparticle covered by graphene. We
demonstrate that a strong nonlinear response is caused by an induced surface current in the graphene nanoparticle
illuminated by an external electromagnetic wave. We obtain analytical expressions for the field multipoles
characterizing the second-harmonic radiation and analyze the dependence of intensity and directivity of the
nonlinear scattering on the frequency and structure of the electromagnetic field, revealing the asymmetric radiation
patterns due to constructive multipole interference for the resonantly enhanced second-harmonic generation.
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I. INTRODUCTION

Nonlinear optical properties of metallic thin films and
plasmonic nanoparticles were the subject of extensive the-
oretical and experimental studies for several decades [1–9],
and these studies laid the foundation of nonlinear plasmon-
ics [10]. The studies of nonlinear effects accompanying the
propagation and scattering of light in nanostructured media
with metal inclusions was stimulated by rapid progress in
nanofabrication technology and a growing interest in optical
metamaterials [11].

Second-harmonic generation (SHG) of optical radiation by
individual metal nanoparticles has been discussed in several
papers [12–22]. In particular, it was shown that dipole and
quadrupole electrical moments excited in the particle at the
second harmonic frequency provide the main contribution to
the radiation, and they can be expressed via the bulk and
surface susceptibility tensors of the second order [13,17]. More
recently, the idea of all-optical control of the radiation direc-
tionality through an interplay between linear light scattering
and second-harmonic generation was proposed in the context
of nanoantennas [23].

Electromagnetic properties of structures containing
graphene attracted significant attention in past years leading
to the rapid development of a new branch of plasmonics,
which is now widely called graphene nanoplasmonics [24–28].
Graphene is suggested as an alternative to conventional metal-
based structures to confine light and guide surface plasmon
polaritons [29,30]. Studies of nonlinear optical properties
of graphene are still at relatively early stages, with several
theoretical and experimental works published to date [31–35].
Several nonlinear effects have been studied and demonstrated
for the structures with graphene, including the theoretical
prediction of spatial plasmon solitons supported by the self-
action effect of light in graphene [36–38].

Importantly, graphene is not only employed for planar
geometries, and there are also attempts to create graphene-
wrapped objects [39–41]. Further theoretical studies suggest
that by wrapping spherical nanoparticles in graphene it
becomes possible to achieve tunable cloaking effect [42–44].

In this paper we study a nonlinear response of a graphene-
wrapped dielectric spherical nanoparticle. We consider a
nanoparticle with an outer graphene layer and analyze

the second-harmonic generation induced by the nonlinear
conductivity of graphene. We develop a theoretical model
which allows one to obtain analytical expressions for the
multipole decomposition of the second-harmonic scattered
field. We study second-harmonic radiation patterns in such
a structure and explore the possibilities to control the emission
profile by inhomogeneous fields.

Since a graphene layer is many orders of magnitude
thinner than the wavelength of the electromagnetic waves
under consideration, graphene can be treated as a conductive
surface described by the Dirac δ function [45]. The frequency-
dependent surface conductivity of graphene has been derived
in a number of works [46–48], and we use the result of Ref. [48]
written in the form

σs(ω) = σintra(ω) + σinter(ω)

= ie2

π�

[
μ

�
(
ω + iτ−1

intra

) + 1

4
ln

∣∣∣∣2μ − �ω

2μ + �ω

∣∣∣∣
]
, (1)

where we assume for doped graphene �ω < 1.67μ and kBT �
μ, where μ is the chemical potential, kB is the Boltzmann
constant, T is the temperature, and τ−1

intra is the relaxation rate.
In the semiclassical limit �ω � μ the linear conductivity of
graphene can be reduced to the Drude form σs(ω) ≈ σintra(ω),
which takes into account only intraband processes [31,48].

We note that for a randomly stacked multilayer graphene
film consisting of N layers, at low frequencies the equivalent
surface conductivity is N times larger than that of a monolayer
graphene [38,49–53], i.e., σ (ω) = Nσs(ω). This allows us
to engineer the conductivity of graphene-based structures.
Importantly, the increase of the effective conductivity with
a number of layers leads to a substantial reduction of the wave
number of the p-polarized plasmons supported by multilayer
graphene structures. This provides a mechanism for efficient
control of both the plasmon localization and dispersion which
is important for real nanophotonic applications [38,53]. In
what follows we develop the theoretical approach which is
applicable to both mono- and multilayer graphene structures.

II. MODEL

In the first part of the paper, which includes
Sections II–IV, we consider the Rayleigh scattering of a
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FIG. 1. (Color online) Schematic view of the graphene-wrapped
nanoparticle illuminated by a plane wave. Surface plot shows a
predominantly quadrupole second-harmonic radiation pattern formed
in the far field when the fundamental frequency is close to the
one-photon dipolar resonance.

linearly polarized plane monochromatic electromagnetic wave
[E = E0z0 exp (−iω0t + ik0

√
εhy)] on a graphene sphere of

radius a � λ0 = 2π/k0
√

εh, k0 = ω0/c (see schematics in
Fig. 1).

The incident wave excites the fundamental frequency
harmonics whose electric field is governed by the equation

− ∇ × ∇ × Eω + ω2

c2
ε(r)Eω = −4πiω

c2

(
jL
ω + jNL

ω

)
δ(r − a),

(2)

where jL
ω = σ (ω)Eτ and jNL

ω are the surface densities of the
linear and nonlinear currents at the frequency ω, respectively,
and subscript τ refers to the field component tangential to
the surface. Here, we introduced the dielectric permittivity
function

ε(r) =
{
εp, |r| < a

εh, |r| > a,
(3)

which describes the dielectric permittivity distribution in
space. This permittivity describes a dielectric particle located
in a homogeneous host medium. In what follows, we assume
that the particle is placed in vacuum, i.e., εh = 1.

The approach we employ is based on the multipole
expansion of the electromagnetic fields [54,55]. For describing
nanoparticles this method is mainly associated with the
Mie scattering theory and it gives a basic understanding of
harmonic generation from nanoparticles as was discussed
theoretically, e.g., by Dadap et al. [13,17] for small spheres.
In particular, previous studies show that the SHG response of
a nanoparticle irradiated by a linearly polarized plane wave
is dominated by an electric quadrupole and electric dipole
originating from the finite size effect and from retardation
effect. Remarkably, the magnetic dipole despite being of the
same order as an electric quadrupole is not excited because
of symmetry constraints. This will also be relevant in the
problem that we consider in this paper. The strength of the
excited leading multipoles and their interference determine
far-field radiation characteristics, such as a radiation pattern
and radiation efficiency.

In what follows we present a self-consistent derivation
underlining the important specifics of graphene as a nonlinear
material that, in some sense, may be regarded as a very
peculiar model of the surface nonlinearity associated with
Dirac particles. We would also like to note that though we
solve a model problem in the simplest spherical geometry
we believe that our findings can be useful in designing more
complex shape graphene-based nanoantennas.

III. LINEAR SCATTERING

As follows from (2), in an approximation that is linear in
Eω, outside and inside the sphere

∇ · Dω = 0, (4)

where Dω = ε(r)Eω is the electric displacement vector. In
the case when the radius a of the particle is small, i.e.,
ka � 1 and k

√
εpa � 1 (k = ω/c) are fulfilled, the solution

can be found using a perturbation method with the small
parameter M(ω) = ka ≡ aω/c � 1, assuming εp ∼ 1. The
first term in this expansion corresponds to the quasistatic
approximation [54,56].

We represent the total field in the structure Eω0 as a
superposition of the field of the incident wave z0E0e

ik0y and
the scattered field Eω0 :

Eω0 = z0E0e
ik0y + Eω0 . (5)

Next, we represent the scattered field as an asymptotic series
with the small parameter M0 = M(ω0) in the region k0r � 1
in the form

Eω0 = E0z0 + E (0)
ω0

+ (
E (1)

ω0
+ ik0yE0z0

) + · · · , (6)

where the fields in the brackets are of the order of M0.
In the zeroth and first orders of smallness in M0 the

scattered fields E (0)
ω0

and E (1)
ω0

are potential:

E (0,1)
ω0

= −∇	(0,1)
ω0

. (7)

From Eq. (4) it follows that the potential functions 	(0)
ω0

and
	(1)

ω0
both outside and inside the sphere satisfy the Laplace

equation

∇2	(0,1)
ω0

= 0 (r < a, r > a). (8)

The tangential electric field components, in general, can
experience a discontinuity at the surface of the nanoparticle.
This discontinuity is proportional to the surface gradient of the
normal component of the current density. In our case of small
energies near the K point where transitions occur between the
π -π* bonds, the normal component of the current is negligible.
Therefore, the tangential component of the electric field is
continuous at the boundary r = a, i.e., E(0)

ω0
= E0z0 − ∇	(0)

ω0

and E(1)
ω0

= ik0yE0z0 − ∇	(1)
ω0

are continuous, whereas the
normal components of the vectors D(0)

ω0
= ε(r)(−∇	(0)

ω0
+

E0z0) and D(1)
ω0

= ε(r)(−∇	(1)
ω0

+ ik0yE0z0) undergo jumps
at the surface charges ρ(0,1)

ω0
= ∇s · jL(0,1)

ω0
/iω0, where the

operator ∇s · stands for the surface divergence. The potentials
	(0)

ω0
and 	(1)

ω0
, which satisfy such boundary conditions and
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decay away from the particle, are given by

	(0)
ω0

= a3E0 cos θ
εp − 1 − 2�1

εp + 2 − 2�1

{
r
a3 , |r| < a

1
r2 , |r| > a,

(9)

	(1)
ω0

=a5E0 sin 2θ sin ϕ
ik0(εp− 1− 3�1)

4
(
εp+ 3

2 − 3�1
)

⎧⎨
⎩

r2

a5 , |r| < a

1
r3 , |r| > a,

(10)

where �1 = 4πσ1
iω0a

, σ1 ≡ σ (ω0), θ is the polar (zenith) angle
measured from the z axis, and ϕ is the azimuthal angle
measured from the x axis in a spherical coordinate system
with its origin in the center of a nanoparticle.

As seen from (9), the scattered field Eω0 in the zeroth
and first orders of the perturbation theory with respect to the
parameter M0 for r > a is the superposition of the field of a
point dipole having the dipole moment

P (0)
ω0

= z0E0a
3 εp − 1 − 2�1

εp + 2 − 2�1
, (11)

and the field of a quadrupole with the quadrupole moment
tensor

Q̂(1)
ω0

= Q(1)
ω0

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ (12)

with two nonzero components

Qyz = Qzy = Q(1)
ω0

= E0ik0a
5 εp − 1 − 3�1

2εp + 3 − 6�1
. (13)

IV. NONLINEAR SCATTERING AND
SECOND-HARMONIC GENERATION

Because of the graphene nonlinearity, the field Eω0 excites
higher harmonics, and here we consider only the second-
harmonic E2ω0 generation. To describe nonlinear properties
of graphene, we employ the quasiclassical description based
on the solution of the Boltzmann equation, applicable at low
frequencies, �ω � μ [31,32,35,57].

In the case of a plane graphene, in the collisionless limit,
the electron distribution function f (r,p,t) satisfies the kinetic
equation written as

∂f

∂t
+ vp

∂f

∂r
+ e

(
E + 1

c
[vp × B]

)
∂f

∂p
= 0,

where for Dirac’s massless quasiparticles vp = ∂E
∂p = vF

p
|p| ,

the energy E = vF p, vF ≈ c/300 is the Fermi velocity,
and e = −|e| is the charge. Following the perturbation ap-
proach [57,58], we solve this equation using iterations. The
electric current density at 2ω is given through the second-order
correction to the Fermi-Dirac distribution function j2ω =
4e

∑
p vpf2ω(p).

We look for the distribution function in the form

f = f0(ε) + fωe−iωt + c.c. + f2ωe−2iωt + c.c. + · · · ,

(14)

where f0(E) is the Fermi-Dirac distribution, and fω and f2ω

are the first- and the second-order corrections, respectively,

whereas the tangential electric field

Eτ = Eωe−iωt + E2ωe−2iωt . . . . (15)

Finally, under the assumption vF /ω � lE , where lE is a
characteristic spatial scale of the field inhomogeneity, we
obtain the general expression for the current at the second
harmonic,

j2ω = 2e3i

ω3(2π�)2

∫∫
d2p vp

[(
Eω

∂

∂p

) (
vp

∂

∂r

)

×
(

Eω

∂f0

∂p

)
+ 1

2

(
vp

∂

∂r

)(
Eω

∂

∂p

) (
Eω

∂f0

∂p

)]
.

(16)

We note in the case of flat graphene and transverse-
magnetic-polarized incident wave with the tangential electric
field component of the form Eω = Ex0e

iqx (and vF /ω � 1/q)
Eq. (16) is reduced to

j2ω = −x0
3

8

e3v2
F

π�2ω3
qE2e2iqx, (17)

which is in agreement with the earlier results presented in
Ref. [58].

We consider particles which are large enough on the scale
of electron motion in graphene (i.e., vF /ω � a and vF τintra �
a), then at each point of the surface of the particle, the current
can be considered locally flat. As a result, for a description of
the second-harmonic current we can use Eq. (16), where vp
and p are vectors tangential to the surface. Then, we find the
resulting formula for the second-harmonic currents induced on
the spherical object in the zeroth order of the small parameter
M0, and it corresponds to the dipole field distribution

j(0)
2ω0

= θ0i
3

16

e3

π�2ω3
0

v2
F

a
E2

d sin 2θ. (18)

In the first order of small parameter M0 we find

j(1)
2ω0

= j(1)
2ω0I

+ j(1)
2ω0II

,

j(1)
2ω0I

= i
e3

π�2ω3
0

v2
F

a
EdEq

[
θ0 sin ϕ

(
13

16
cos θ − 9

16
cos 3θ

)

+ϕ0
1

4
cos 2θ cos ϕ

]
,

j(1)
2ω0II

= i
e3v2

F

π�2ω3
0

Ed

(−ik0E0

8

)

×
[
θ0 sin ϕ cos θ + ϕ0

1

2
(3 − cos 2θ ) cos ϕ

]
, (19)

where the amplitude coefficients

Ed = E0

(
1 + 2�1 + 1 − εp

εp + 2 − 2�1

)

= E0
3

εp + 2 − 2�1
, (20a)

Eq = E0
2.5ik0a

2εp + 3 − 6�1
. (20b)
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For multilayer graphene wrappings, the obtained nonlinear
currents should be multiplied by a number of layers.

Similar to how it is done in Sec. III for the fundamental
frequency wave, here we represent the field of the second
harmonics E2ω0 inside and in the vicinity of a nanoparticle as
an asymptotic series in the parameter M(2ω0) = 2M0:

E2ω0 = E (0)
2ω0

+ E (1)
2ω0

+ · · · , (21)

where the first two terms are

E (0,1)
2ω0

= −∇	
(0,1)
2ω0

, (22)

and the potential functions 	
(0,1)
2ω0

are the solutions of the
Laplace equation:

∇2	
(0,1)
2ω0

= 0 (r < a, r > a). (23)

At the boundary r = a, the tangential components of
electric fields are continuous while the normal components of
the electric displacement vectors ε(r)(−∇	

(0,1)
2ω0

) experience

discontinuities due to the surface charge density ρ
(0,1)
2ω0

=
∇s · (j(0,1)

2ω0
+ σ2E (0,1)

2ω0τ
)/i2ω0, where σ2 ≡ σ (2ω0). To find field

distribution, we need to satisfy these boundary conditions
and we expand 	

(0,1)
2ω0

(r) in spherical harmonics. ∇s · j(0)
2ω0

is proportional to (1 + 3 cos 2θ ), and thus, the respective
potential relative to a symmetric locally excited quadrupole
is expressed as follows:

	
(0)
2ω0

= (1 + 3 cos 2θ )

4
Q

(0)
2ω0

{
1
r3 , r > a

r2

a5 , r < a,
(24)

where the quadrupole moment component

Q
(0)
2ω0

= 3

2

e3v2
F

�2ω4
0(3 + 2εp − 3�2)

a2E2
d , (25)

where �2 = 4πσ2/iω0a.
We would like to note that a similar analysis can be

performed for metal nanoparticles using a free-electron hydro-
dynamic model. Generally, the potential functions 	

(0)
2ω0

and

	
(1)
2ω0

∼ cos θ̃ ≡ sin θ sin ϕ for r > a would coincide with
the potentials of the quadrupole, which is symmetric with
respect to the z axis and has a diagonal tensor of the quadrupole
moment

Q̂
(0)
2ω0

= Q
(0)
2ω0

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ (26)

and of the dipole with the dipole moment

P (1)
2ω0

= P (1)
2ω0

y0, (27)

which is directed along the wave vector of the incident wave.
The radiation intensities (powers) of the quadrupole Q̂2ω0 and
the dipole P2ω0 moments given by [54]

P
(quad)
� = c(2k0)6

60

∣∣Q(0)
2ω0

∣∣2
, (28a)

P
(dip)
� = c(2k0)4

3

∣∣P (1)
2ω0

∣∣2
(28b)
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FIG. 2. (Color online) (a) Radiated power and (b) second-
harmonic conversion efficiency as functions of frequency calculated
for a nanoparticle of radius a = 106 nm, εp = 2.1, N = 1, μ =
0.25 eV, τintra = 0.08 ps, and incident intensity 108 W/cm2. In (a) the
green solid line shows the total radiated power, and the blue dashed
and red dotted lines refer to the dipole and quadrupole contributions,
respectively. Powers are normalized to the quadrupole maximum
value.

have the same order of smallness. The radiation pattern of
the quadrupole is symmetric with respect to the z axis, along
which the electric field in the incident wave is oriented and has
maxima at θ = π/4,3π/4. The dipole radiation is symmetric
with respect to the wave vector of the incident wave, parallel
to the y axis, and is maximum in the y = 0 plane.

In our case of a graphene sphere, the dipole moment
associated with the current j(1)

2ω0
is given by the expression

P (1)
2ω0

= 3

4

ie3v2
F

�2ω4
0(3/2 + εp − 3�1)

×5/4 + εp − 3�1

2 + εp − �2
k0a

2EdE0. (29)

As follows from Eqs. (20a), (25), and (29), the resonant
enhancement in the second-harmonic (SH) scattering occurs
near the frequencies of localized plasmons. The total radiated
SH power possesses a pronounced peak at the frequency
of the one-photon dipolar resonance where the radiation
pattern appears to be predominantly quadrupolar, as shown
in Fig. 2(a).

We note here that the scattering object containing graphene
benefits from its tunability. In our problem, there is a large
number of parameters that can be adjusted for controlling the
effect. In particular, one can choose the operating frequency
ω0, the chemical potential of graphene μ, the particle radius a,
the number of graphene layers in the wrapping N , the dielectric
permittivity of the particle εp, and the relaxation time τintra,
which is responsible for the broadening of the resonant peaks.

The SH signal from a single nanoparticle is rather weak.
To quantify the conversion efficiency, we introduce the SHG
efficiency for a single particle η defined as the ratio of the
total SH radiated power to the energy flux of the fundamental
wave through the physical area of the particle s = πa2,
η = P�/[(c/8π )|E0|2πa2]. Dependence of the efficiency on
frequency clearly shows resonance [see Fig. 2(b)], and in the
maximum it reaches the value of ∼2 × 10−8.
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V. CONTROL OF RADIATION PATTERNS BY
INHOMOGENEOUS EXTERNAL FIELDS

Now we consider the case when a graphene-wrapped
nanoparticle is placed in a weakly inhomogeneous quasistatic
external field, which is axially symmetric with respect to the
z axis (see schematics in Fig. 3). Such field distribution can
be realized in two counterpropagating Bessel beams forming
a standing wave. Similar field profiles can be realized if we
place our nanoparticle near a larger particle, e.g., an elongated
nanoparticle or near a tip of an atomic force microscope,
positioned in the maximum of the standing wave created by
two counterpropagating plane waves.

Using the Taylor series expansion around the center of the
particle, we introduce the electric potential of the external field
in the form which satisfies the Laplace equation:

	(ext)
ω0

= −E0r cos θ − 1

8

∂E0

∂z
r2(1 + 3 cos 2θ ) + · · · ,

(30)

where ∂E0
∂z

≡ γ is a tunable parameter characterizing variation
of the field along the z axis. Next, we follow the procedure
described above, expand the fields, and apply the boundary
conditions.

In the previous sections we considered the linear dipole
described by the first term in Eq. (30) and associated
quadrupole at the double frequency. The resonant enhance-
ment in this case due to surface plasmon resonances is expected
near the frequencies where εp = −2 + 8π Im σ (ω0)/ω0a

and εp = −3/2 + 6π Im σ (2ω0)/ω0a, i.e., where the real
parts of the corresponding denominators vanish. However,
as we show in Fig. 4, the one-photon dipolar plasmon
resonance is much more pronounced than the two-photon
quadrupolar.

The field inhomogeneity given by the second term in
Eq. (30) determines a linear potential

	(1)
ω0

= (1 + 3 cos 2θ )

4
Q(1)

ω0

{ 1
r3 , r > a

r2

a5 , r < a
(31)

FIG. 3. (Color online) Schematic view of a graphene-wrapped
nanoparticle placed into an axially symmetric slightly inhomoge-
neous external field. The SH radiation is predominantly directed into
the upper half-space.

x

y

z

x

z

y

FIG. 4. (Color online) Spectra of the radiated powers of the SH
quadrupole (red dotted curve), SH dipole (blue dashed curve), and
total SH emission (green solid curve), calculated for a nanoparticle of
radius a = 106 nm, εp = 2.1, N = 1, μ = 0.25 eV, τintra = 0.08 ps,
and γ̄ = 0.5. Powers are normalized to the pure quadrupole maximum
value. Insets show far-field radiation patterns and surface charge
distributions of the pure (a) SH quadrupole (γ̄ = 0), and (b) SH
dipole, which is excited predominantly near the higher-frequency
resonance.

that can be attributed to a symmetric quadrupole

Q̂(1)
ω0

= Q(1)
ω0

⎛
⎝−1 0 0

0 −1 0
0 0 2

⎞
⎠ (32)

with the amplitude

Q(1)
ω0

= εp − 1 − 3�1

2εp + 3 − 6�1
γ a5. (33)

Now we calculate the induced second-harmonic current

j(1)
2ω0

= −i
e3

π�2ω3
0

v2
F

a
EdE

(ext)
q θ0

1

32
(3 sin 3θ − sin θ ) , (34)

where the quadrupole amplitude coefficient is

E(ext)
q = −15

4

γ a

2εp + 3 − 6�1
, (35)

and taking the surface divergence ∇s · j(1)
2ω0

∼ [−3.2 cos θ +
9.6(5 cos3 θ − 3 cos θ )] containing the leading term propor-
tional to cos θ we obtain the respective potential

	
(1)
2ω0

= P (1)
2ω0

cos θ

{
r
a3 , |r| < a

1
r2 , |r| > a,

(36)

that corresponds to a dipole oriented along the z axis

P (1)
2ω0

= P (1)
2ω0

z0, (37)

with a dipole moment

P (1)
2ω0

= 3.2

16

e3v2
F

�2ω4
0(εp + 2 − �2)

aEdE
(ext)
q . (38)

Remarkably, this SH dipole is aligned along the direction of the
electric field of fundamental frequency, similar to the dipole
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FIG. 5. (Color online) SH radiation patterns shown as polar θ

diagrams (green solid lines) calculated at �ω0 = 0.318μ for the
parameters of Fig. 4 (k0a ≈ 0.06) and different values of γ̄ :
(a) γ̄ = 0.5, (b) γ̄ = 1.25, and the reverse at γ̄ = −1.25 (dashed
green line), and (c) γ̄ = 1.75. The inner circle in all the plots corre-
sponds to the same maximum intensity of the pure SH quadrupole. For
reference, a four-lobed pattern of a radiating SH quadrupole source
(γ̄ = 0) is also depicted in panel (a).

induced by linear scattering, and it is in sharp contrast with the
conventional nonlinear dipole arising from the retardation.

The function of the dipolar radiated power plotted
in Fig. 4 exhibits two peaks close to the frequencies
estimated from εp = −2 + 8π Im σ (ω0)/ω0a and εp =
−3/2 + 12π Im σ (ω0)/ω0a, dominating the two-photon
dipole resonance at the lower frequency around εp = −2 +
4π Im σ (2ω0)/ω0a.

The radiation pattern at 2ω0 being determined now by
both dipolar and quadrupolar contributions can be varied. We
illustrate this aspect with examples of the radiation pattern
transformations in the far field at frequency �ω0 = 0.318μ

close to the peak SHG enhancement. The angular distributions
of the SH radiation are shown in Fig. 5 as polar plots for
different values of a dimensionless parameter γ̄ = γ̄ E0/a.
These diagrams show that the SH radiation predominantly
occurs in the direction of the stronger field at fundamental
frequency. Note, near the points where E0 vanishes, for
example, near the nodes of the standing Bessel wave, the value
of γ̄ can be arbitrarily large, although the total radiation power

is obviously decreased. Importantly, the radiation pattern
remains axially symmetric with respect to the z axis but due to
the phase relations at some value of γ̄ two lower lobes almost
disappear and the SH source effectively emits into the upper
half-space as shown in Fig. 5(b). This is in sharp contrast
to the conventional multipolar interaction for small spherical
nanoparticles, placed in the field of the plane monochromatic
wave (see Sec. IV), where the resonant enhancement close
to the distinctive localized plasmon resonances is never
accompanied by strongly asymmetric radiation patterns since
the dipole and quadrupole fields are out of phase, and
hence do not interfere (see, e.g., Ref. [17]). We note that
the directivity can be changed to the opposite by changing
the sign of γ̄ (for example, moving the particle along the
standing wave). Subsequent increase of the γ̄ leads to the
gradual transformation of the radiation pattern into dipolelike
[see an intermediate step in Fig. 5(c)].

VI. CONCLUSION

We have studied the second-harmonic generation by
a nanoparticle wrapped into graphene. We have derived
the analytical model and analyzed efficiency and radiation
directionality of the second-harmonic radiation. We have
demonstrated the possibility to control the radiation pattern
with an inhomogeneous external field that breaks a balance
between the dipole and quadrupole radiation contributions.
For the typical parameters, we have predicted that the second
harmonic is predominantly radiated in the half-space with
stronger external electric field.
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