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Abstract: We report on the numerical demonstration of

enhanced second harmonic generation (SHG) originating

from collective resonances in plasmonic nanoparticle ar-

rays. The nonlinear optical response of the metal nano-

particles is modeled by employing a hydrodynamic

nonlinear Drude model implemented into Finite-Difference

Time-Domain (FDTD) simulations, and effective polariz-

abilities of nanoparticle multipoles in the lattice are

analytically calculated at the fundamental wavelength by

using a coupled dipole–quadrupole approximation. Exci-

tationofnarrowcollective resonances innanoparticle arrays

with electric quadrupole (EQ) and magnetic dipole (MD)

resonant coupling leads to strong linear resonance

enhancement. In thiswork,we analyzeSHG in the vicinity of

the lattice resonance corresponding to different nano-

particle multipoles and explore SHG efficiency by varying

the lattice periods. Coupling of electric quadrupole and

magnetic dipole in the nanoparticle lattice indicates sym-

metry breaking and the possibility of enhanced SHG under

these conditions. By varying the structure parameters, we

can change the strength of electric dipole (ED), EQ, and MD

polarizabilities, which can be used to control the linewidth

and magnitude of SHG emission in plasmonic lattices. En-

gineering of lattice resonances and associated magnetic

dipole resonant excitations can be used for spectrally nar-

row nonlinear response as the SHG can be enhanced and

controlled by higher multipole excitations and their lattice

resonances. We show that both ED and EQ–MD lattice

coupling contribute to SHG, but the presence of strong EQ–

MD coupling is important for spectrally narrow SHG and, in

our structure, excitation of narrow higher-order multipole

lattice resonances results in five times enhancement.

Keywords: lattice resonances; nanoparticle arrays; plas-

monic nanoparticles; Rayleigh anomaly; second harmonic

generation.

1 Introduction

The metal nonlinear plasmonic response is one of the

strongest per unit interaction length andhas a femtosecond-

scale response time determined by relaxation of the excited

electrons to the equilibrium state, governed primarily by

electron–electron and electron–phonon scattering [1–6].

Recently nonlinear plasmonic effects in metal nano-

structures have been employed to increase the strength of

light-matter interactions [7, 8]. The electromagnetic field is

enhanced by resonant plasmonic excitation, and the energy

is mainly localized at the subwavelength scale near metal–

dielectric interface, which enables significant enhancement

of nonlinear optical effects. The extremely fast response of

free-electron systems provide opportunities for the imple-

mentation of ultrafast all-optical effects for modulating and

switching of light with light [9–11].

Nanostructures composed of periodic arrays of plas-

monic nanoparticles have generated a lot of interest

because, unlike isolated metal nanoparticles, they can

produce narrow collective plasmon resonances due to

coupling between nanoparticles in the array [12, 13]. Exci-

tations of lattice plasmon modes appear as resonant fea-

tures in the nanostructures transmission, reflection, and

absorption spectra. The narrow resonances are excited

spectrally close to and usually red-shifted with respect to

the wavelength corresponding to the Rayleigh anomaly

(RA) which is determined by the spacing of the nano-

particles in the lattice [14]. A collective resonance is a lat-

tice mode formed in the plane of the array with all
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nanoparticles oscillating in phase. At the wavelength of a

lattice plasmon mode, inter-particle interactions occur in

the array plane, and strongly localized near fields are

induced in the vicinity of each nanoparticle. In addition to

inducing sub-radiant higher order multipole field distri-

butions, diffractive scattering by each nanoparticle con-

tributes to the localized surface plasmons of adjacent

nanoparticles resulting in suppressed radiative damping

and increased local field enhancement [15, 16].

Excitation of a collective resonance has been shown to

enhance nonlinear optical processes in plasmonic nano-

particle arrays [17–20]. The nanoparticle array geometry

and interparticle separations play an important role in the

intensity and polarization properties of second harmonic

generation (SHG) [21]. Enhancement of SHG due to the

excitation of a surface lattice resonance at the fundamental

frequency, achieved by tuning the incident field angle, has

been reported in Ref. [20]. Further studies of SHG in the

proximity of RA and a surface lattice resonance excited at

the second harmonic are presented in Ref. [18].

As the nonlinear response is greatly enhanced at nar-

row resonance, research interest have shifted to identify

photonic nanostructures with high quality factor reso-

nances and supporting higher-order multipoles, such as

quadrupoles and octupoles [19, 22]. A large enhancement

in spectrally narrow nonlinear response due to the exci-

tation of higher-order multipoles was experimentally

observed in Ref. [19]. For larger nanoparticles or nano-

structures with complex geometries without analytical

solutions, multipole contributions to SHG and the corre-

sponding emission pattern from nanoparticles or their ar-

rays can be analyzed through multipole decomposition

[23–25]. While nonlinear process in nanoparticle arrays

have attracted a lot of interests and both theoretical and

experimental work have been extensively conducted, less

attention has been paid to the role of the collective multi-

pole excitations and their influence on the enhancement of

nonlinear processes. In this work, we analyze SHG inmetal

metasurfaces excited at such spectrally narrow collective

lattice plasmon modes. Of particular interest is the spatial

distribution and enhancement of the near-fields induced

by different nanoparticle multipole modes at fundamental

frequency and their impact on the strength and character of

the generated second harmonic signal.

The design of our nanostructure, shown in Figure 1, is

motivated by the possibility of cross-multipole coupling in

the nanoparticle periodic array and associated symmetry

breaking under this condition. While nanoparticle multi-

poles (electric dipole (ED), electric quadrupole (EQ), mag-

netic dipole (MD), etc.) are formed independently and do

not couple to each other when excited in a single spherical

particle, that is not necessarily the case for nanoparticle

lattice. Cross-multipole coupling between EQ and MD as

well as ED and magnetic quadrupole (MQ) has been re-

ported recently [26, 27].

We choose to use spherical nanoparticles because their

polarizabilities are scalar numbers, rather than tensors, and

the analytical solution for such periodic nanoparticle arrays

has been developed earlier [27]. We anticipate that nano-

particles ofmore complex shapes, like T-, U-, or C-shape can

provide higher efficiency of SHG as their higher-order

multipole polarizabilities are larger for the same character-

istic nanoparticle dimensions. The complex-shape nano-

particles can be analyzed using recently developed method

of multipole decomposition [23, 28], but we do not employ

that technique in the present work.

We employ a nonlinear numerical simulation to self-

consistently compute the second harmonic signal and a

linear analytical dipole-quadrupole coupling approxima-

tion of nanoparticles in the array to obtain insights on

multipole contributions at the fundamental wavelength.

By varying the nanoparticle spacing in the array, we can

modify the magnitude of the multipole contributions and

thereby change the SHG strength.We show that the EQ–MD

coupling occurring in the vicinity of the RA wavelength is

important for strongly enhanced and spectrally narrow

second harmonic emission.

2 Methods

2.1 Multipole lattice resonances

In general, the polarizability of the single particle is determined by the

nanoparticle size and shape as well as material and spectral range of

consideration, and thus can be tuned to resonant conditions. How-

ever, the optical properties of nanoparticle arrays are different, and

the spectral position of the lattice resonance is determined not only by

polarizability of the individual nanoparticle but also by lattice ge-

ometry. Specifically, lattice resonances occur at thewavelengthwhere

the real part of the inverse polarizability of the single nanoparticle
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Figure 1: (Color online) Schematic viewof the gold nanosphere array

in the surrounding medium with refractive index n.
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cancels a lattice sum of the contributions of the multipoles of all other

nanoparticles in the lattice. An effective polarizability of nanoparticles

in the array can be introduced [13, 27]. Finally, the width of the lattice

resonance is determined by the imaginary part of the inverse nano-

particle polarizability [26, 29, 30].

Analytical study of the scattering of one- and two-dimensional

arrays of nanoparticles has been well established using the coupled-

dipole approximation [31] and more recently coupled-multipole

models have been developed [27, 32, 33]. The coupled-dipole model

is effective for plasmonic nanoparticle array when the size of the

nanoparticle is small compared to the wavelength of light and array

period [29], and higher multipoles need to be introduced for larger

nanoparticles. Some of the key takeaways from the analytical lattice

resonance analysis are that the multipole resonances excited in each

nanoparticle and their relative coupling coefficients are sensitive to

structure parameters, such as lattice spacing, arrangement, and ge-

ometry, polarization of the incident light, the size and shape of

nanoparticles, and their material. When the RA wavelength is red-

shifted and far away from the single-particle resonance, a lattice

resonance appears considerably narrower than conventional single-

particle resonances in plasmonic nanoparticles.

In the visible spectral range, isolated plasmonic nanoparticles

with radius larger than about 50 nm can support additional higher

order multipoles, such as quadrupole resonances, which are rela-

tively narrow and weakly couple to the light field of the plane wave.

However, in ordered nanoparticle arrays, the electric quadrupole

resonances are greatly enhanced due to the in-phase oscillations

and inter-particle interactions, and narrow collective resonances

become well-pronounced [26, 30, 34]. These conditions have been

theoretically studied by extending the coupled-dipole method to

solve coupled dipole-quadrupole equations where the dipole and

quadrupole polarizabilities of the individual particles are derived

from Mie theory and an infinite periodic array of identical nano-

particles is considered [30].

2.2 Metasurfaces and artificial magnetic response

A traditional assumption in optics has been that the interaction be-

tween electrical multipoles dominates material optical properties,

whereas magnetic multipoles provide at best a negligible contribu-

tion. With the development of metamaterials and the ability to pur-

posefully design their optical response, many types of magnetic

multipole response have been found in both plasmonic and all-

dielectric nanostructures [35–41]. Metasurfaces are the two-

dimensional counterpart of bulk (three-dimensional) metamaterials

and similarly allow for artificially designed, efficient magnetic

response from a thin layer of nanostructure. The periodic nanoparticle

array we consider in this work enable excitation of both electric and

magnetic resonances and can serve as effective metasurface.

The need to additionally include the MDmultipole to accurately

model the suppression of total reflectance from plasmonic periodic

arrays has been demonstrated in Ref. [26]. Importantly, the work has

shown that for specific lattice geometries and illumination condi-

tions (details below) the EQ andMDmultipoles are coupled and have

contributions to far-field reflection and transmission comparable to

that of the induced ED. Magnetic multipoles can play a significant

role in the scattering characteristics of the effective material and

make an important contribution to the nonlinear optical processes

[42–46].

2.3 Symmetry breaking in multipole lattice

It is known that SHG is inhibited in the bulk of a centrosymmetric

media under the electric dipole approximation, while it is allowed at

interfaces where the inverse symmetry is broken [47, 48]. Within a

classical phenomenological description, the nonlinear polarization

P(2ω)
s at the interfaces is given by P(2ω)

s � χ
↔(2)

s :  E(ω)E(ω). For a single

sphere with a centrosymmetric material, using linearly polarized

plane-wave illumination, the most efficient mechanism is a dipole

second harmonic emission, which can only come from the nonlocal

interactions of ED(ω) + EQ(ω)
→ ED(2ω) and ED(ω) +MD(ω)

→ ED(2ω)

[49–51]. In this notation, the two terms on the left of the arrowdescribe

the two exciting modes at fundamental frequency, and the third term

refers to the second harmonic emission mode. The

ED(ω) + ED(ω)
→ ED(2ω) excitation process is forbidden in a centro-

symmetric object, while the quadrupole moment can be excited

through a local interaction ED(ω) + ED(ω)
→ EQ(2ω). As the particle size

increases, the generation of higher order multipoles, e.g., octupoles,

was theoretically predicted and experimentally observed for gold

nanoparticles with size of about 70 nm [22]. However, a more detailed

analysis indicates that at this nanoparticle size, the octupole contri-

bution is not substantial and accounts only for 8% changes in 100 nm

nanoparticles.

Periodic arrangement of nanoparticles drastically changes the op-

tical properties of the array, and themechanism for SHG can be different

for spheres in a lattice. Coupling of EQ andMD in the nanoparticle lattice

indicates symmetry breaking and the possibility of enhanced SHG under

these conditions. This situation is different from the case of a single

nanosphere where multipoles are orthogonal, formed independently,

and do not couple to each other. With the enhanced EQ and MD reso-

nances in the lattice, high-order mechanisms for SHG are also possible,

for example, MD(ω) + EQ(ω)
→ EQ(2ω), MD(ω) + EQ(ω)

→MD(2ω),

MD(ω) +MD(ω)
→ EQ(2ω), EQ(ω) + EQ(ω)

→ EQ(2ω). Beyond the electric

dipole approximation, spatial field variation can also break the cen-

trosymmetry and produce a nonlocal nonlinear polarization through

field gradients [9, 52, 53]. In the present work, we employ the hydrody-

namic model for the metal material, which considers the nonlinearity

from the motion of the electrons and includes the bulk contribution

naturally. We show that the presence of strong EQ–MD coupling

provides significant advantages for spectrally narrow SHG in plasmonic

lattices.

2.4 Numerical model

We employ full-vectorial electromagnetic simulations of the plas-

monic metasurfaces using the Finite-Difference Time-Domain (FDTD)

method. The FDTD method is extended to include a hydrodynamic

nonlinear material model for the metal, which introduces complex

nonlinear response in the nanoparticle array and self consistently

accounts for all the induced multipoles. This approach extends the

optical response of bulk and macroscopic metal objects beyond the

standard linear Drude description of the metal properties. For sub-

wavelength metal nanoparticles or metasurfaces composed of arrays

of subwavelength nanoparticles, deviations from the standard Drude

model become more pronounced due to the increased relative

contribution of additional nonlinear terms in the behavior of the

conduction-band electrons [54–56].

A. Han et al.: Nonlinearity with multipole coupling 3547



The FDTDmethod provides direct access to near-field properties

of the nanoparticles and their arrays such as local field intensity,

wave phase, as well as current and charge distributions and also the

contributions of individual nonlinear terms. The electromagnetic

fields are governed by the Maxwell’s equations and the conduction

electrons inside themetal are approximated as a continuous electron

gas. In this model, strong external-field excitation of the free-

electron gas results in the generation of higher harmonics in the

current, J, which acts as a source term for the generation of nonlinear

harmonic fields [56].

The resulting coupled fluid-Maxwell system of equations is

approximated numerically, and the fluid equations for the current

density, J, are solved using a time-split, semi-implicit finite differ-

ence algorithm. Computation of electron charge density, (∇ · E), or

terms of the form (∇ · J) at the dielectric–metal interface are inher-

ently ambiguous due to the discontinuity of the normal electric field

component at the dielectric–metal interface. A number of sophisti-

cated surface treatments and their roles in nanoparticle SHG have

been proposed to alleviate this problem [57–59]. We employ a tran-

sition layer with smoothed ion distribution between metal and the

surrounding dielectric media [56]. This regularization provides

continuous normal electric field so that the computation of (∇ · E) is

more physical and the detrimental aspects of the singularity are

mitigated and provide physically sound results.

Our numerical FDTD model solves Maxwell’s equations for

electromagnetic fields in the nanostructure,where the electrons inside

the metal are described by a free electron gas. The motion of the

electrons is governed by the continuity equation and Newton’s

equation:

∂ne

∂t
+ ∇ · (neue) � 0, (1)

∂ue

∂t
+ (ue · ∇)ue �

qe
me

(E + ue × B), (2)

where ne, ue, qe, me are the electron number density, velocity field,

electron charge, and electron mass, respectively. The equation for

current density J [56]:

∂J

∂t
� −γJ + ϵ0ω

2
pE +

qe
me

(ρE + J × B) − ∑
k

∂

∂xk
( JJk

ρ + ϵ0meω2
p/qe), (3)

where γ is the phenomenological damping constant,

ωp �
�����������
q2en0/(ϵ0me)

√
is the plasma frequency, n0, ρ, ε0 are positive ion

density, charge density, and vacuum permittivity, respectively.

Equation (3) summarizes the electron fluid response under the influ-

ence of the electromagnetic field. The first two terms correspond to the

linear Drude response, the third term represents electric force and

magnetic Lorentz force. The last term is the convection term. In results

presented here we do not include the pressure term proportional to

∇P, where

P �
(3π2)23ℏ2
5me

n
5
3
e

is the quantum pressure. As has been shown in the earlier works [60,

61], this approximation is justified for nanoparticles with dimensions

of ∼100 nm and larger, which is the case in our work. Equation (3) is

solved through a time-splitting, semi-implicit finite differencemethod

as detailed in Liu et al. [56]. In our case, the gold permittivity isfitted by

ϵAu � ϵ∞ − ω2
p/(ω

2 + iγω), with ϵ∞ � 2.4023, ωp = 1.2122 × 1016 rad/s,

and γ = 3.9941 × 1014 rad/s. To obtain the linear response of the

structure in proximity to the fundamental frequency,we illuminate the

structure with a 20 fs full width at half maximum (FWHM) pulse.

Throughout the work, we extract frequency signal from Fourier

transformation of time-dependent signal in our FDTD modeling.

To exclude the contribution of sum and difference frequency

generation of other wavelengths, we determine the nonlinear

response of the structure by performing a sequence of continuous

wave (CW) runs with a field amplitude of E = 107 V/m across the

spectral range of interests. A unit cell of the lattice, containing a

single metal sphere, is simulated with periodic boundary condi-

tions in the x- and y-directions and uniaxial perfectly matched layer

(UPML) boundary condition in the z-direction, which is the propa-

gation direction.

We define the forward and backward emitted second harmonic

signal as the integral of the Poynting vector over the field monitor

planes located in the far-field zones above and below the lattice

plane and sum them to get the total SHG amount. Here, the integral

in the forward and backward direction measures the SHG radiation

in that half space. In all figures throughout the paper, SHG intensity

results are normalized to the corresponding fundamental input field

intensity.

3 Results

3.1 Comparison of single particle and lattice

linear responses

We study the surface lattice resonances of a plasmonic

metasurface composed of gold nanoparticles arranged

in a two-dimensional periodic array of infinite extent

[26, 62]. Since our primary aim is to study the mechanism

of SHG and contribution of nanoparticle multipole reso-

nances in nonlinear processes, we consider an idealized

case and assume the nanoparticles are suspended in a

homogeneous medium with constant refractive index,

which is realizable as a substrate and index-match top

coating of the array and common in experimental setups

(see e.g., [13, 18]).

The structure analyzed here, Figure 1, is an infinite

array of gold nanospheres embedded in a medium with

refractive index n extending periodically in the x- and y-

directions. Throughout the paper, we consider only gold

nanospheres with the radius r = 100 nm in a surrounding

medium with n = 1.47.

A plane wave incident on the nanostructure propa-

gates along the z-axis and the light is polarized along the x-

axis. We refer to this as parallel polarization, and unless

stated otherwise it is the light polarization for the results

presented in the following sections. It will excite x-oriented

ED and y-oriented MD. The interparticle spacing in the

periodic array is initially chosen as px = 510 nm along the

x-axis and py = 250 nm along the y-axis. The RAwavelength

is given by λ � 2nπ/|q|, where q is the reciprocal lattice

3548 A. Han et al.: Nonlinearity with multipole coupling



vector of the array. We will use the notation 〈l,m〉 to label

the different Rayleigh anomalies corresponding to the

reciprocal lattice vector q � 2π(lx̂/px +mŷ/py). The choice

of x-spacing px = 510 nm corresponds to the 〈1, 0〉 RA

appearing at the wavelength (λ〈1,0〉RA � npx � 749.7 nm)

while the initial choice of y-spacing py = 250 nm avoids

coupling to the y-dipole lattice resonance respon-

sible for the 〈0, 1〉 RA appearing at the wavelength

(λ〈0,1〉RA � npy � 367.5 nm). For the case of incident Ex

polarization, the EQ and MD multipoles of the nano-

particles are mutually coupled in the nanoparticle lattice.

Collective lattice resonances of nanoparticle multipoles

result in significant reduction of plasmon radiative damp-

ing, and consequently a dramatic narrowing of the plas-

mon resonance.

When the polarization of the incident wave is

perpendicular to the direction of a periodicity of interest,

i.e., y-polarized, lattice resonances have been shown to be

the result of ED coupling between nanoparticles and have

been extensively studied numerically and analytically

using dipole approximation models mentioned earlier.

Conventionally, lattice resonances are always narrow

when compared to single-particle resonances of lowest

order (e.g., ED). At the same time, lattice resonances that

arise from dipole coupling in the lattice are relatively

broad in comparison to lattice resonances due to the

excitation of higher order multipoles. Under y-polarized

illumination conditions with array parameters we choose

in this work, a relatively broad dipole–dipole lattice

resonance is excited and the ultra-narrow lattice reso-

nances features do not appear in the reflection, trans-

mission, or absorption spectra.

As a baseline reference, the simulated scattering and

absorption cross-sections of an isolated nanoparticle are

shown in Figure 2A. The isolated sphere exhibits an EQ

resonance at the wavelength 550 nm and an ED resonance

at the wavelength 870 nm, and the MD has negligible

contribution to the total scattering and absorption cross-

sections.

In contrast to the isolated sphere, the resonant

behavior of an infinite rectangular lattice of gold nano-

spheres excited for two orthogonal polarization modes has

different spectral features originating from collective ef-

fects and is shown for px = 510 nm and py = 250 nm in

Figure 2B and C. The linear reflection, transmission, and

absorption spectra when the electric field of the incident

wave is polarized parallel to the x-direction (x-polarized)

are shown in Figure 2B. Under x-polarized illumination, an

EQ is the dominant multipole mode excited in each nano-

particle in the lattice. A minimum in the reflectance nearly

coincides with a maximum in the transmittance, and both

are close to the maximum of absorbance, where the EQ

lattice resonance is excited. Figure 2C shows the spectrum

when the electric field of the incident wave is y-polarized,

no narrow features are present, and instead a compara-

tively broad ED resonance is excited around the wave-

length 950 nm. Note that even under strictly y-polarization

excitation, weak features associated with the related

x-spacing (λ〈1,0〉RA � npx) are still evident at the wavelength

about 750 nm [30].

3.2 SHG at the lattice resonance

Now let us consider the nonlinear response of the nano-

particle array. Figure 3 shows effective polarizabilities of

multipoles at fundamental wavelength and the generated

second harmonic. The generated second harmonic exhibits

a narrow resonance peak, approximately 10 nm in width,

which is commensurate to the spectral width of the peak in

fundamental harmonic. This narrow resonance peak cor-

responds to the excitation of EQ- and MD-multipole reso-

nance around the wavelength 750 nm. The off-resonance

SHG is mainly due to the contribution of the broad ED

lattice resonance at fundamental wavelengths. The asym-

metric line shape of total the SHG suggests important

contributions from the MD. The total second harmonic

peak is slightly blue-shifted from the expected wavelength

of 375 nm due to an asymmetry between the forward and

backward scattered light, as shown in Figure S7.

In Figures 4 and 5, we present both the fundamental

and second harmonic near-field intensities around the

peak in the array absorption spectra at λ = 750 nm and its

second harmonic. Figure 4A and B shows the electric and

magnetic field distributions in the xz- and the yz-planes

cut through the nanoparticle center at the fundamental

frequency. The corresponding generated electric fields E

at the SHGwavelength in the xz- and yz-planes are shown

in Figure 5. The generated electric fields we show are the

differences between the simulations with and without

nonlinear material response taken at the same time

moment. We also obtained similar results using

sequentially direct and inverse fast Fourier transforms;

however the field enhancement in the obtained vector

diagrams is weaker because of the use of finite number of

frequency harmonics and loss of some information with

harmonics cut. Additionally, we present vector plot in

Figure S4 in Supplementary Information. At the funda-

mental harmonic, the enhanced near-field resembles

quadrupole profile with high intensity lobes that exhibit

A. Han et al.: Nonlinearity with multipole coupling 3549



long attenuation lengths (asymmetrically) above and

below the lattice plane at the antinodes of the lattice

standing wave [29].

The second harmonic near-field is elongated in the

direction transverse to the lattice mode standing wave and

its dipolar profile is more evident when viewed in the yz-

plane, see Figure 5D. Inferring a multipole nature of the

second harmonic field from a field distribution alone is

problematic. In the following, we use common notations

for vector harmonicsNemn andMomn from Ref. [63]. Figure 6

shows the scattering cross-section of six different multi-

poles for a single spherical particle providing each multi-

pole is excited with a plane wave at the second-harmonic

wavelength. At thewavelength λ= 375 nm, the ED (Ne11), EQ

(Ne12), and electric octupole (EO, Ne13) have non-negligible

scattering cross-sections, and EQ is the dominant one. We

see very small values forMD (Mo11), electric sedecapole (ES,

Ne14) and nearly zero MQ (Mo12) multipoles. However, it is

important to note that SHG is driven by the excitation of

nanoparticle resonances at the fundamental wavelength,

where the near field distribution is different from the plane

wave, and second harmonic multipole composition may

not coincide with the results of a simple plane wave exci-

tation. Having the multipoles Ne1n and Mo1n coming from

the x-polarized plane wave, one can only excite the mul-

tipoles with m = 0 or 2 in the second harmonic (see dis-

cussion in Ref. [64]). The first possible excited multipoles

are: Ne01 as dipolar mode (which is also ED Ne11 but in

another direction), Ne02, Ne22, and Mo22 as quadrupolar

modes, andNe03,Ne23, andMo23 as octupolarmodes. In this

case, electric dipole mode is the same in magnitude but

different in direction (x in fundamental frequency, and z in

second harmonic). However, the higher multipoles, of

quadrupolar and octupolar kind, are different form = 1 and

m = 0 or 2. Scattering cross-section is defined by Mie co-

efficients through the plane-wave excitation and related to

onlym = 1 and not necessary represent excitation form = 0

or 2. Furthermore, the excited second-harmonic multipoles

are arranged in the periodic lattice, and the collective ef-

fects may contribute to the effective polarizabilities and

scattering cross-sections of nanoparticles in the lattice.

However, the analytical theory of normal-angle plane-

wave excitation of nanoparticle lattice is not applicable in

this case as some of the SHG multipoles are excited out-of-

plane. The field pattern in Figure 5 resembles EQ profile in

the Ey- and EO in the Ex-field components from the cut-

through plots. The Ez component is dominant in the SHG

electric field and it is of dipole kind. We also note that the

linewidth features of the generated second harmonic are

more influenced by the linear multipole decomposition at

the fundamental as presented in Figure 3. This indicates

that the multipole composition at the fundamental wave-

length dominates the character of the second harmonic

emission from the lattice.

We note that the field profile at the second harmonic

also correlates more strongly with the magnetic field at the

fundamental, Figure 4B, than the electric field at the

fundamental, Figure 4A. We note that the dominant

nonlinear contribution comes from the Lorentz force term,

J × B, which can be considered a bulk contribution due to

the presence of the magnetic field inside the metal sphere.

We provide more details on the SHG contribution of the

various nonlinear terms in Equation (3) in the Supple-

mentary material.

In terms of the second harmonic conversion efficiency,

it is difficult to provide a direct comparison to other ge-

ometries (e.g., nanoparticles of more complex shape, like

the commonly used U-shape) due to the problem of finding
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Figure 2: (Color online) (A) Scattering and absorption cross-sections for a single gold spherewith r= 100 nmnumerically calculatedwith FDTD

method. Reflection, transmission, and absorption spectra for the nanoparticle array with (B) x-polarized and (C) y-polarized incident electric
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suitable nanostructure parameterswhich have comparable

resonance wavelength and exhibit similar multipole

modes and EQ–MD coupling. The spectral range under

consideration defines not only the ratio between the

wavelength and characteristic nanostructure dimensions,

but also material response such as permittivity value and

surface parameters included in the hydrodynamic model

and numerical scheme. As the optical properties of nano-

particles are defined by their complex-value polarizability

tensors, matching these polarizabilities for several multi-

poles at the same time would require an independent work

of numerical optimization and a broad parameter search,

which is beyond the scope of our current work.

As for the comparison of plasmonic and all-dielectric

nanostructures, the former in general provide better light

localization on subwavelength nanoparticle and result in

resonances of a higher quality factor because of the low

radiative losses. In turn, the latter has lower non-radiative

losses, support magnetic resonances with simple nano-

particle shape, and spans over different material plat-

forms, including well-established silicon and III–V

nanofabrication processes. Changing the spacing between

nanoparticles in a periodic lattice provides the possibility

to control nanostructure resonances over a broad range

and tune their linewidth on demand. Thus, both plasmonic

and all-dielectric nanoparticle array can be used to achieve

comparable polarizability values and resonance quality

[65], and in this sense, comparably enhance the nonlinear

response in the nanostructure.

3.3 Multipole effect on SHG

While the FDTD with the nonlinear hydrodynamic model

can provide near field profiles and contributions of the

various nonlinear terms, in the following section we addi-

tionally employ an analytical approach in order to disen-

tangle the individualmultipole contributions to SHG. Using

the analytic dipole–quadrupole approximation model we

determine the linear ED, EQ, and MD polarizabilities and

the linear reflection, transmission and absorption linear

spectra. It has been shown previously that the spacing in

the perpendicular direction py affects the ED lattice reso-

nance while the spacing in the parallel direction px is

responsible for the EQ and MD resonances [30, 66]. Thus,

the multipole contributions to SHG can be understood by
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Figure 3: (Color online) Effective polarizabilities of (A) EQ, MD and

(B) ED in the periodic nanoparticle array with lattice periods

px= 510 nmand py=250nm.Multipoles are shown in panels A and B

separately for clarity. (C) Relative strength of the SHG in the periodic

array. The SHG with x-polarized incident electric field exhibits a

narrow resonance peak around the wavelength 375 nm

corresponding to the excitation of EQ- and MD-multipole resonance

around the wavelength 750 nm. The vertical dotted line denotes the

wavelength of the 〈1,0〉 and 〈2,0〉 Rayleigh anomaly. The dashed line

in panel C denotes the ED contribution at fundamental wavelength to

the SHG.
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examining the variation of the respective linear multipoles

polarizabilities under lattice spacing variation.

To study the ED contributions to the SHG we fix the

interparticle spacing in the x-direction at px = 510 nm,

which keeps the x-direction RA 〈1,0〉 at the wavelength

about 750 nm, and we scan the y-direction spacing over a

range from 250 to 550 nm. Figure 7A–C shows the ED, EQ,

andMD polarizabilities under different lattice spacing. The

dashed lines show the 〈1,0〉 and 〈0, 1〉 RA wavelengths. For

all values of py, the EQ and MD resonances coincide and

stay locked at the RA wavelength λRA � npx � 749.7 nm. On

the other hand, for values of py above 460 nm, the ED peak

begins to broaden and shift to longer wavelengths and

transitions to an ED lattice resonance aligning with the

〈0, 1〉 RA wavelength. Figure 7D–F illustrates the effect of

varying py on the linear spectrum. Two separate regimes

can be clearly identified: for py spacing smaller than

460 nm, the spectra are dominated by the 〈1,0〉 RA, and for

larger py spacing, the spectra are dominated by the 〈0, 1〉

RA. As the py spacing increases beyond 460 nm, the lattice

resonance mode changes from an EQ- and MD-multipole

dominated resonance to the hybrid mode and then to an

ED-dominated resonance, which changes its spectral po-

sition together with 〈0, 1〉 RA. Finally, for py > 510 nm, the

wavelength of interest 750 nm lies below the diffraction

limit and light scattering is not zero-order directional

anymore. In this regime, the intensity of the electromag-

netic fields on the particle surface drops significantly, and

very little field localization is observed on the nanoparticle.

We provide more details in Supplementary Information.

The total SHG for different py spacing versus wave-

length is shown in Figure 8. As py increases, initially from

250 nm (see Figure 3) to py = 355 nm, the SHG corre-

sponding to the narrow EQ- and MD-multipole resonance

near the wavelength 375 nm initially grows in magnitude

and begins to exhibit a slight elbowon the longwavelength

side due to increasing impact of the ED. As the py spacing

further increases to 405 nm, the peak has split into a

doublet. This trend continues at larger spacing until

eventually a distinct and spectrally broad ED resonance

emerges on the long wavelength side while the sharp EQ-

and MD-multipole spectral peak has drops significantly in

amplitude. This trend is mirrored in the absorption in the

linear spectrum shown in Figure 7, in which the 〈1,0〉 RA

wavelength no longer has the strongest absorption in the

linear spectrum. Beyond 460 nm the peak SHG tracks the

〈2,0〉 RA and is proportional to the magnitude of the ED

polarizability. As the ED transitions to a pure ED lattice

resonance, without the presence of EQ- and MD-multipole

resonance, the corresponding SHG becomes spectrally

broad and shifts to longer wavelength commensurate with

the ED at the fundamental.
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To study the EQ- and MD-multipole contributions to

the SHG strength, we vary the x-spacing in the nanoparticle

array. With the lattice period py fixed at 250 nm and px

varied from 400 to 600 nm, the ED, EQ, andMD resonances

closely track the 〈1,0〉 RA as shown in top row in Figure 9.

As px spacing increases, ED resonances increase slightly

while EQ- and MD-multipole resonance decreases in

magnitude. The ED and EQ resonance peaks for a single

particle occur at wavelengths around 900 and 550 nm,

respectively (see Figure 2). As we increase px the

EQ-induced lattice resonance moves to longer wavelength

further away from EQ resonance peak of a single particle,

consequently the EQ resonance weakens. Simultaneously

the ED resonance strengthens as it approaches the single

particle at 900 nm and also starts to interact with RA at a

longerwavelength. Figure 9D–F shows the linear spectra of

the lattice for different px spacing. Along the 〈1,0〉 RA the

EQ- and MD-multipole resonance weakens and the ab-

sorption around the RA wavelength is reduced.

The total SHG for different px spacing versus wave-

length is shown in Figure 10. As px increases, the SHG

resonance decreases in intensity and tends towards the

broader ED resonance. The reduction in SHGpeak intensity

is consistent with the weakening of the EQ- and

MD-multipole resonance (see Figure 3C). The blue-shifting

of the total SHG peak is due to the sudden drop-off of

backward SHG scattering at the 〈2,0〉 RA wavelength, as

shown in Figure S11, since the generatedmultipoles at 〈2, 0〉

RA wavelength interfere destructively in the backward

direction.

4 Discussion

Periodic arrays of plasmonic nanoparticles can produce

narrow collective plasmon resonance due to nanoparticle

coupling in the array. The linear resonances can be

controlled and facilitate multipole coupling, leading to

strong linear resonance enhancement due to collective

lattice periodicity effects. The excitation of strong localized

field enhancement and sub-radiant multipole coupling at

these resonances results in enhanced SHG.

Figure 7: (Color online) Effective polarizabilities of (A) ED, (B) EQ, and (C) MD nanoparticle multipoles in the periodic nanoparticle array with

fixed lattice periods px = 510 nm and variant py. The calculations are based on the analytical dipole-quadrupole approximation model. (D)

Reflection, (E) transmission and (F) absorption linear spectra in periodic arraywithfixed lattice periodspx=510nmand variantpy. The colorbar

is the same for (D)–(F) panels. The dashed lines show the 〈1,0〉 and 〈0, 1〉 Rayleigh anomaly wavelengths.

Figure 8: (Color online) Intensity of the second harmonic signal

generated for different py spacing in colormap plots. The dashed

lines show the 〈2,0〉 and 〈0, 2〉 Rayleigh anomaly wavelengths.
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We show that ED, EQ, andMDmultipoles contribute to

the SHG and the presence of strong EQ–MD coupling is

important for spectrally narrow SHG in plasmonic lattices.

By varying the nanoparticle spacing in the perpendicular

direction, we find a sharp drop-off in SHG efficiency as the

spacing in that direction coincides with a secondary RA

wavelength and the narrow EQ- and MD-multipole reso-

nance smoothly transitions to a broad ED resonance.While

varying the spacing in the parallel direction, the SHG

resonance moves together with the corresponding RA and

its strength is mainly affected by the EQ–MD multipoles.

Our work provides a guide to design ultra-thin plas-

monic lattices which under plane wave excitation generate

second harmonic with desired reflection and transmission

characteristics. We anticipate that higher-order multi-

pole engineering has potential to be used in nonlinear

optics applications such as wavelength conversion, strong

light-matter coupling, nonlinear magnetic optical meta-

materials, ultrasensitive biosensing, and spectroscopy.
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